
Redesigning the Computer for Security

 Using Haskell EDSLs to Bootstrap a New Computing Platform

DARPA CRASH SAFE

BAE Systems, University of Pennsylvania, Harvard University, Northeastern University

Tom Hawkins

tom.hawkins@baesystems.com

22 Sept 2013

© BAE Systems 2013
Approved for Public Release, Distribution Unlimited.

Cleared for Open Publication on 27 August 2013.

The views expressed are those of the author and

do not reflect the official policy or position of the

Department of Defense or the U.S. Government.

State of Computer Security

• How secure is our critical infrastructure?

© BAE Systems 2013
Approved for Public Release

Welcome to wellhead7.pipelines-and-things.com

username: admin

password: admin

The SAFE Solution to Security

• What if we could start from a clean slate?

• SAFE is a Codesign of…

• A new applications programming language (Breeze).

• A new system programming languages (Tempest).

• A new operating system.

• A new processor .

• With security at every level for defense in depth.

• Why hardware enforced security?

• Dynamic security checking is too expensive in software.

• Fine grained information flow control (IFC).

• Covers the most general attack model.

• Scripting attacks down to machine code injection.

© BAE Systems 2013
Approved for Public Release

SAFE Hardware Architecture

• Atomic group unit (AGU) checks atom types, i.e.
instructions, data, pointers, streams, etc.

• Fat pointer unit (FPU) check pointer operations.

• Tag management unit (TMU) checks and applies tags.

© BAE Systems 2013

Group (5) Tag (59) Payload (64) Atom =

Register File Memory

ALU AGU TMU Load/

Store

FPU

Commit

Approved for Public Release

Starting Project at Day 1

• We have an outline for an ISA, but nothing else.

• TIARA project as a baseline (Howard Shrobe, Andre DeHon, Thomas Knight).

• But no languages, no toolchain, no hardware.

• How to proceed?

• Sketch out an assembly language.

• Build an instruction set simulator.

• Start writing and simulating small assembly programs.

• HW researchers start coding Bluespec.

• PL researchers start designing Breeze.

• Plan is to steal Andrew Meyers work on Jif. Port ideas to a dynamic PL.

• “Breeze should be done in a couple of months.”

© BAE Systems 2013
Approved for Public Release

SAFE Assembly

• How long can we keep this up?

© BAE Systems 2013
Approved for Public Release

Frames to manage fat pointer bounds.

Atomic group declarations on data.

Tags on data.

Gate structures for secure closures.

At Year 1.0

• Assembly is tedious. We need macros.

• Breeze interpreter running. Pressure to start building the compiler.

• Solution: A SAFE assembly DSL embedded in Haskell.

• Use Haskell is a macro language.

• Becomes a library for the Breeze compiler.

• Breeze Language, Version 7

• 4-5 weeks spent on figuring out datatypes for Booleans.

• “Hmm, this IFC stuff is kind of tricky.”

• Difficulties arise with access control.

• Convenience and modularity of lexical authority passing and one-principal-

per-module is anything but.

© BAE Systems 2013
Approved for Public Release

SAFE Assembly in Haskell

© BAE Systems 2013

Macros for setting up data.

A Monad to capture programs.

Macros for better control flow.

Approved for Public Release

At Year 1.5

• As a EDSL, Haskell makes for great macros, but it’s still assembly.

• Manual register allocation, calling conventions, and data structures.

• Meanwhile, Breeze compiler inches off ground, but…

• Awkward transition from high level CPS IR to assembly.

• We really need an IR somewhere in between.

• On plus side, SAFE EDSL worked great in code generator.

• Breeze Language, Version 12

• “What do we do on an access violation?”

• “Simple. We stop the machine.”

• “But what if I maliciously send you data you can’t access?”

• “Simple, I’ll just check the label before I attempt to read it.”

• “But what if the label itself is private?”

• “Oh...”

• The Poison Pill problem.

© BAE Systems 2013
Approved for Public Release

At Year 2.0

• Breeze compiler goes through major overhaul.

• Some improvement to middle IRs, but still not enough.

• Breeze compiler is temporarily shelved.

• Breeze won’t come to the rescue of the OS.

• We REALLY need a higher low-level language.

• Breeze Language, Version 23

• “We have a solution to poison pills. We’ll make all labels public.”

• To label data you must specify the label in advance (brackets).

• Prevents labels from being information channels.

• But public labels are not compatible with lexical authority passing.

• The lexical authority containment problem.

• Breeze switches to dynamic authority.

© BAE Systems 2013
Approved for Public Release

At Year 2.5

• Tempest is started: The systems programming language for SAFE.

• Imperative with automatic register allocation and optimizations.

• Control of assembly with inlining and user specified calling conventions.

• Uses the SAFE EDSL as a backend.

• As and EDSL, nicely fills the Breeze compiler IR gap.

• Breeze Language, Version 34

• Delayed exceptions with not-a-value values (NaVs).

• Dynamic authority is replaced with clearance.

• Similar ideas. Both work with public labels.

© BAE Systems 2013
Approved for Public Release

Tempest EDSL with Inline Assembly

© BAE Systems 2013

(/-/) :: (ToExpr e1, ToExpr e2) => e1 -> e2 -> Expr

a /-/ b = block $ do

 a <- var a

 b <- var b

 return $ asm [intT] $ \ result -> beginAsm $ do

 sub (R a) (R b) (R result)

(/</) :: (ToExpr e1, ToExpr e2) => e1 -> e2 -> Expr

a /</ b = block $ do

 true <- var 1

 false <- var 0

 diff <- var $ a /-/ b

 return $ asm [intT] $ \ result -> beginAsm $ do

 trueCase <- label

 end <- label

 bneg (R diff) trueCase

 mvrr (R false) (R result)

 jmp end

 trueCase -: do

 mvrr (R true) (R result)

 end -: do

 nop

SAFE Assembly Sublanguage

Approved for Public Release

The SAFE Flow

SAFE

EDSL

Tempest

EDSL

SAFE
EDSL

Tempest

SAFE
Assembly

Tempest

Compiler

SAFE ISA

Simulator

SAFE

Assembler

Breeze

SAFE

Assembly

Bluespec

Simulator

Approved for Public Release

SAFE

Debugger

Breeze

Compiler

* Haskell

Components

Lessons Learned (1)

• Designing a higher order IFC language is very hard.

• Optimal number of PL researchers on a project: 2 to 7

• On day 1, we should have started Tempest, not assembly.

• Hard to achieve good productivity with assembly code.

• Tempest is the right level for runtime / processor codesign.

• The level of indirection provides insulation from a changing ISA.

• EDSLs are great for bootstraping a language.

• And make excellent backend libraries!

© BAE Systems 2013
Approved for Public Release

Lessons Learned (2)

• EDSLs require that engineers are comfortable with the host language.

• EDSLs are hard to debug.

• Still good reasons for concrete syntax.

• More relevant for some languages than others.

• Tempest vs. SAFE assembly.

• When is the best transition point?

• Early pressure from developers for modular programming.

• One language has modularity, the switch can be made.

• Would a DSL have helped hardware design?

• Forever debugging ISS and FPGA.

• A DSL describing ISA semantics could keep it synchronized.

• Generating Bluespec, ISS, SAFE EDSL, Coq, and Documentation.

© BAE Systems 2013
Approved for Public Release

Final Plugs

• SAFE has produced a volume of interesting papers.

• Private vs. public labels.

• Lexical authority vs. dynamic authority vs. clearance.

• Exception handling in IFC.

• Efficient tag processing in hardware.

• Efficient fat pointer encoding.

• See: http://www.crash-safe.org/papers

• At ICFP this week: “Testing Noninterference, Quickly”

• Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky,

Dimitrios Vytiniotis, Arthur Azevedo de Amorim and Leonidas Lampropoulos.

• Using QuickCheck to test ISA security.

• We’re Hiring!

• Needed: Functional compiler engineers for Breeze and Tempest.

© BAE Systems 2013
Approved for Public Release

Thanks!

© BAE Systems 2013

http://crash-safe.org/

The SAFE Team:
Tim Anderson, Arthur Azevedo, Silviu Chiricescu, Nathan Collins, David Darais, Andre
DeHon, Delphine Demange, Udit Dhawan, Richard Eisenberg, Mikel Evins, Marty Fahey,
Karl Fischer, Greg Frazier, Anna Gommerstadt, Michael Greenberg, Tom Hawkins, Hillary
Holloway, Catalin Hritcu, Suraj Iyer, Andrew Kaluzniaki, Ben Karel, Aleksey Kliger, Thomas
Knight, Basil Krikeles, Marc Krull, Albert Kwon, Leonidas Lampropoulos, May Leung,
Bryan Loyall, Gregory Malecha, Josh McGrath, Benoit Montagu, Greg Morrisett, Luke
Palmer, Sam Panzer, Plamena Petrova, Greg Pfeil, David Pichardie, Benjamin Pierce,
Randy Pollack, Sumit Ray, Howard Reubenstein, Jothy Rosenberg, Andrea Ruggiero, Olin
Shivers, Jonathan Smith, Shannon Spires, Nancy Stafford, Amanda Strnad, Gregory
Sullivan, Adrien Suree, Andrew Sutherland, Arun Thomas, Andrew Tolmach, Jesse Tov,
Peter Trei, Nick Watson, Chris White, David Wittenberg, Zach Zarrow.

Special Thanks to Howie Shrobe at DARPA

Approved for Public Release

