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State of Computer Security 

• How secure is our critical infrastructure? 
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Welcome to wellhead7.pipelines-and-things.com 
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The SAFE Solution to Security 

• What if we could start from a clean slate? 

• SAFE is a Codesign of… 

• A new applications programming language (Breeze). 

• A new system programming languages (Tempest). 

• A new operating system. 

• A new processor .  

• With security at every level for defense in depth. 

• Why hardware enforced security? 

• Dynamic security checking is too expensive in software. 

• Fine grained information flow control (IFC). 

• Covers the most general attack model. 

• Scripting attacks down to machine code injection. 
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SAFE Hardware Architecture 

• Atomic group unit (AGU) checks atom types, i.e. 
instructions, data, pointers, streams, etc. 

• Fat pointer unit (FPU) check pointer operations. 

• Tag management unit (TMU) checks and applies tags. 
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Starting Project at Day 1 

• We have an outline for an ISA, but nothing else. 

• TIARA project as a baseline (Howard Shrobe, Andre DeHon, Thomas Knight). 

• But no languages, no toolchain, no hardware. 

• How to proceed? 

• Sketch out an assembly language. 

• Build an instruction set simulator. 

• Start writing and simulating small assembly programs. 

• HW researchers start coding Bluespec. 

• PL researchers start designing Breeze. 

• Plan is to steal Andrew Meyers work on Jif.  Port ideas to a dynamic PL. 

• “Breeze should be done in a couple of months.” 
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SAFE Assembly 

• How long can we keep this up? 
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Frames to manage fat pointer bounds. 

Atomic group declarations on data. 

Tags on data. 

Gate structures for secure closures. 



At Year 1.0 

• Assembly is tedious.  We need macros. 

• Breeze interpreter running.  Pressure to start building the compiler. 

• Solution: A SAFE assembly DSL embedded in Haskell. 

• Use Haskell is a macro language. 

• Becomes a library for the Breeze compiler. 

• Breeze Language, Version 7 

• 4-5 weeks spent on figuring out datatypes for Booleans. 

• “Hmm, this IFC stuff is kind of tricky.” 

• Difficulties arise with access control. 

• Convenience and modularity of lexical authority passing and one-principal-

per-module is anything but. 
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SAFE Assembly in Haskell 
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Macros for setting up data. 

A Monad to capture programs. 

Macros for better control flow. 
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At Year 1.5 

• As a EDSL, Haskell makes for great macros, but it’s still assembly. 

• Manual register allocation, calling conventions, and data structures. 

• Meanwhile, Breeze compiler inches off ground, but… 

• Awkward transition from high level CPS IR to assembly. 

• We really need an IR somewhere in between. 

• On plus side, SAFE EDSL worked great in code generator. 

• Breeze Language, Version 12 

• “What do we do on an access violation?” 

• “Simple.  We stop the machine.” 

• “But what if I maliciously send you data you can’t access?” 

• “Simple, I’ll just check the label before I attempt to read it.” 

• “But what if the label itself is private?” 

• “Oh...” 

• The Poison Pill problem. 
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At Year 2.0 

• Breeze compiler goes through major overhaul. 

• Some improvement to middle IRs, but still not enough. 

• Breeze compiler is temporarily shelved. 

• Breeze won’t come to the rescue of the OS. 

• We REALLY need a higher low-level language. 

• Breeze Language, Version 23 

• “We have a solution to poison pills.  We’ll make all labels public.” 

• To label data you must specify the label in advance (brackets). 

• Prevents labels from being information channels. 

• But public labels are not compatible with lexical authority passing. 

• The lexical authority containment problem. 

• Breeze switches to dynamic authority. 
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At Year 2.5 

• Tempest is started: The systems programming language for SAFE. 

• Imperative with automatic register allocation and optimizations. 

• Control of assembly with inlining and user specified calling conventions. 

• Uses the SAFE EDSL as a backend. 

• As and EDSL, nicely fills the Breeze compiler IR gap. 

• Breeze Language, Version 34 

• Delayed exceptions with not-a-value values (NaVs). 

• Dynamic authority is replaced with clearance. 

• Similar ideas.  Both work with public labels. 
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Tempest EDSL with Inline Assembly 
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(/-/) :: (ToExpr e1, ToExpr e2) => e1 -> e2 -> Expr 

a /-/ b = block $ do 

  a <- var a 

  b <- var b 

  return $ asm [intT] $ \ result -> beginAsm $ do 

    sub (R a) (R b) (R result) 

 

(/</) :: (ToExpr e1, ToExpr e2) => e1 -> e2 -> Expr 

a /</ b = block $ do 

  true  <- var 1 

  false <- var 0 

  diff  <- var $ a /-/ b 

  return $ asm [intT] $ \ result -> beginAsm $ do 

    trueCase <- label 

    end      <- label 

    bneg (R diff) trueCase 

    mvrr (R false) (R result) 

    jmp end 

    trueCase -: do 

      mvrr (R true) (R result) 

    end -: do 

      nop 

   

SAFE Assembly Sublanguage 
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The SAFE Flow 
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Lessons Learned (1) 

• Designing a higher order IFC language is very hard. 

• Optimal number of PL researchers on a project: 2 to 7 

• On day 1, we should have started Tempest, not assembly. 

• Hard to achieve good productivity with assembly code. 

• Tempest is the right level for runtime / processor codesign. 

• The level of indirection provides insulation from a changing ISA. 

• EDSLs are great for bootstraping a language. 

• And make excellent backend libraries! 

 

© BAE Systems 2013 
Approved for Public Release 



Lessons Learned (2) 

• EDSLs require that engineers are comfortable with the host language. 

• EDSLs are hard to debug. 

• Still good reasons for concrete syntax. 

• More relevant for some languages than others. 

• Tempest vs. SAFE assembly. 

• When is the best transition point? 

• Early pressure from developers for modular programming. 

• One language has modularity, the switch can be made. 

• Would a DSL have helped hardware design? 

• Forever debugging ISS and FPGA. 

• A DSL describing ISA semantics could keep it synchronized. 

• Generating Bluespec, ISS, SAFE EDSL, Coq, and Documentation. 
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Final Plugs 

• SAFE has produced a volume of interesting papers. 

• Private vs. public labels. 

• Lexical authority vs. dynamic authority vs. clearance. 

• Exception handling in IFC. 

• Efficient tag processing in hardware. 

• Efficient fat pointer encoding. 

• See: http://www.crash-safe.org/papers 

• At ICFP this week:  “Testing Noninterference, Quickly” 

• Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky, 

Dimitrios Vytiniotis, Arthur Azevedo de Amorim and Leonidas Lampropoulos. 

• Using QuickCheck to test ISA security. 

• We’re Hiring! 

• Needed: Functional compiler engineers for Breeze and Tempest. 
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Thanks! 
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http://crash-safe.org/ 
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