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Basic Concepts Arti�cial Intelligence
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Basic Concepts Arti�cial Intelligence

Begin with �AI�

Human: Memory, Computation

Computer: Learning, Thinking, Creativity
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Basic Concepts Arti�cial Intelligence

Turing Test
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Basic Concepts Arti�cial Intelligence

Arti�cial Intelligence

De�nition from Wikipedia

Arti�cial intelligence (AI) is the intelligence exhibited by machines.
Colloquially, the term �arti�cial intelligence� is likely to be applied when a
machine uses cutting-edge techniques to competently perform or mimic
�cognitive� functions that we intuitively associate with human minds, such
as �learning� and �problem solving�.

Research Topics

Knowledge Representation
Machine Learning
Natural Language Processing
Computer Vision
· · ·
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Basic Concepts Arti�cial Intelligence

Challenge: Sematic Gap

Text in Human

床前明月光，
疑是地上霜。
举头望明月，
低头思故乡。
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Basic Concepts Arti�cial Intelligence

Challenge: Sematic Gap

Text in Computer
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Basic Concepts Arti�cial Intelligence

Challenge: Sematic Gap

Figure: Guernica (Picasso)
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Basic Concepts Machine Learning

Machine Learning

ModelInput: x Output: y

Learning AlgorithmTraining Data: (x , y)
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Basic Concepts Machine Learning

Basic Concepts of Machine Learning

Input Data: (xi , yi ),1 ≤ i ≤ m
Model:

Linear Model: y = f (x) = wT x + b
Generalized Linear Model: y = f (x) = wTφ(x) + b
Non-linear Model: Neural Network

Criterion:

Loss Function:
L(y , f (x))→ Optimization
Empirical Risk:
Q(θ) = 1

m ·
∑m

i=1
L(yi , f (xi , θ))→ Minimization

Regularization: ‖θ‖2

Objective Function: Q(θ) + λ ‖θ‖2

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 12 / 131



Basic Concepts Machine Learning

Loss Function

Given an test sample (x , y), the predicted label is f (x , θ)
0-1 Loss

L(y , f (x , θ)) =

{
0 if y = f (x , θ)
1 if y 6= f (x , θ)

(1)

= I (y 6= f (x , θ)), (2)

here I is indicator function.
Quadratic Loss

L(y , ŷ) = (y − f (x , θ))2 (3)
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Basic Concepts Machine Learning

Loss Function

Cross-entropy Loss We regard fi (x , θ) as the conditional probability of class
i .

fi (x , θ) ∈ [0, 1],
C∑
i=1

fi (x , θ) = 1 (4)

fy (x , θ) is the likelihood function of y . Negative Log Likelihood function is

L(y , f (x , θ)) = − log fy (x , θ). (5)
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Basic Concepts Machine Learning

Loss Function

We use one-hot vector y to represent class c in which yc = 1 and other
elements are 0.
Negative Log Likelihood function can be rewritten as

L(y , f (x , θ)) = −
C∑
i=1

yi log fi (x , θ). (6)

yi is distribution of gold labels. Thus, Eq 6 is Cross Entropy Loss function.
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Basic Concepts Machine Learning

Loss Function

Hinge Loss For binary classi�cation, y and f (x , θ) are in {−1,+1}. Hinge
Loss is

L(y , f (x , θ)) = max (0, 1− yf (x , θ)) (7)

= |1− yf (x , θ)|+. (8)
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Basic Concepts Machine Learning

Loss Function

For binary classi�cation, y and f (x , θ) are in {−1,+1}.
z = yf (x , θ).

http://www.cs.cmu.edu/ yandongl/loss.html

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 17 / 131



Basic Concepts Machine Learning

Parameter Learning

In ML, our objective is to learn the parameter θ to minimize the loss
function.

θ∗ = argmin
θ
R(θt) (9)

= argmin
θ

1

N

N∑
i=1

L
(
y (i), f (x (i), θ)

)
. (10)

Gradient Descent:

at+1 = at − λ
∂R(θ)
∂θt

(11)

= at − λ
N∑
i=1

∂R
(
θt ; x

(i), y (i)
)

∂θ
, (12)

λ is also called Learning Rate in ML.
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Basic Concepts Machine Learning

Stochastic Gradient Descent (SGD)

at+1 = at − λ
∂R
(
θt ; x

(t), y (t)
)

∂θ
, (13)
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Basic Concepts Machine Learning

Two Tricks of SGD

Early-Stop
Shu�e
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Basic Concepts Machine Learning

Linear Classi�cation

For binary classi�cation y ∈ {0, 1}, the classi�er is

ŷ =

{
1 if wTx > 0
0 if wTx ≤ 0

= I (wTx > 0), (14)

x1

x2

w
T x

=
0

w
1‖w‖

w

Figure: Binary Linear Classi�cation
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Basic Concepts Machine Learning

Logistic Regression

How to learn the parameter w: Perceptron, Logistic Regression, etc.
The posterior probability of y = 1 is

P(y = 1|x) = σ(wTx) =
1

1+ exp(−wTx)
, (15)

where, σ(·) is logistic function.
The posterior probability of y = 0 is P(y = 0|x) = 1− P(y = 1|x).
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Basic Concepts Machine Learning

Logistic Regression

Given n samples (x (i), y (i)), 1 ≤ i ≤ N, we use the cross-entropy loss
function.

J (w) = −
N∑
i=1

(
y (i) log

(
σ(wTx(i))

)
+ (1− y (i)) log

(
1− σ(wTx(i))

))
(16)

The gradient of J (w) is

∂J (w)
∂w

=
N∑
i=1

(
x
(i) ·
(
σ(wTx(i))− y (i)

))
(17)

Initialize w0 = 0, and update

wt+1 = wt + λ
∂J (w)
∂w

, (18)
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Basic Concepts Machine Learning

Multiclass Classi�cation

Generally, y = {1, · · · ,C}, we de�ne C discriminant functions

fc(x) = wTc x, c = 1, · · · ,C , (19)

where wc is weight vector of class c .
Thus,

ŷ =
C

argmax
c=1

wTc x (20)
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Basic Concepts Machine Learning

Softmax Regression

Softmax regression is a generalization of logistic regression to multi-class
classi�cation problems.
With softmax, the posterior probability of y = c is

P(y = c |x) = softmax(wTc x) =
exp(w>c x)∑C
i=1 exp(w

>
i x)

. (21)

To represent class c by one-hot vector

y = [I (1 = c), I (2 = c), · · · , I (C = c)]T, (22)

where I () is indictor function.
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Basic Concepts Machine Learning

Softmax Regression

Rede�ne Eq 21,

ŷ = softmax(WTx)

=
exp(WTx)

1
	
T exp ((WTx))

=
exp(z)

1
	
T exp (z)

, (23)

where,
W = [w1, · · · ,wC ],
ŷ is predicted posterior probability,
ẑ = WTx is input of softmax function.
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Basic Concepts Machine Learning

Softmax Regression

Given training set (x(i), y(i)), 1 ≤ i ≤ N, the cross-entropy loss is

J (W ) = −
N∑
i=1

C∑
c=1

y
(i)
c log ŷ

(i)
c = −

N∑
i=1

(y(i))T log ŷ(i)

The gradient of J (W ) is

∂J (W )

∂wc
= −

N∑
i=1

x(i)
(
y(i) − ŷ(i)

)
c

(24)

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 27 / 131



Basic Concepts Machine Learning

The idea pipeline of NLP

Word Segmentation

POS Tagging

Syntactic Parsing

Semantic Parsing Knowledge

Applications:
Question Answering
Machine Translation
Sentiment Analysis
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Basic Concepts Machine Learning

But in practice: End-to-End

Model

I like this movie.

I dislike this movie.

Model Selection

Feature Extraction Parameter Learning

Decoding/Inference

+

−
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Basic Concepts Machine Learning

Feature Extraction

Bag-of-Word
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Basic Concepts Machine Learning

Text Classi�cation
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Basic Concepts Deep Learning
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Basic Concepts Deep Learning

Arti�cial Neural Network

Arti�cial neural networks1 (ANNs) are a family of models inspired by
biological neural networks (the central nervous systems of animals, in
particular the brain).
Arti�cial neural networks are generally presented as systems of
interconnected �neurons� which exchange messages between each other.

1https://en.wikipedia.org/wiki/Arti�cial_neural_network
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Basic Concepts Deep Learning

Arti�cial Neuron

Input: x = (x1, x2, · · · , xn)
State: z
Output: a

z = w>x+ b (25)

a = f (z) (26)

σ 0/1
∑

x2
w2

...

xn

wn

x1
w1

1

b

Input

weight
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Basic Concepts Deep Learning

Activation Function

Sigmoid Function:

σ(x) =
1

1+ e−x
(27)

tanh(x) =
ex − e−x

ex + e−x
(28)

tanh(x) = 2σ(2x)− 1
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Basic Concepts Deep Learning

Activation Function

recti�er function2, also called recti�ed linear unit (ReLU)3.

recti�er(x) = max(0, x) (29)

softplus function4:
softplus(x) = log(1+ ex) (30)

2 X. Glorot, A. Bordes, and Y. Bengio. �Deep sparse recti�er neural networks�. In:
International Conference on Arti�cial Intelligence and Statistics. 2011, pp. 315�323.

3 V. Nair and G. E. Hinton. �Recti�ed linear units improve restricted boltzmann machines�. In:
Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010, pp. 807�814.

4 C. Dugas et al. �Incorporating second-order functional knowledge for better option pricing�. In:
Advances in Neural Information Processing Systems (2001).

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 36 / 131



Basic Concepts Deep Learning

Activation Function
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Basic Concepts Deep Learning

Types of Arti�cial Neural Network5

Feedforward neural network, also called Multilayer Perceptron (MLP).
Recurrent neural network.

5https://en.wikipedia.org/wiki/Types_of_arti�cial_neural_networks
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Basic Concepts Deep Learning

Basic Concepts of Deep Learning

Model: Arti�cial neural networks that consist of multiple hidden
non-linear layers.
Function: Non-linear function y = σ(

∑
i wixi + b).
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Basic Concepts Deep Learning

Feedforward Neural Network

In feedforward neural network, the information moves in only one direction
forward: From the input nodes data goes through the hidden nodes (if any)
and to the output nodes.
There are no cycles or loops in the network.

x1

x2

x3

x4

y

Hidden HiddenInput Output

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 40 / 131



Basic Concepts Deep Learning

Feedforward Computing

De�nitions:

L Number of Layers;
nl Number of neurons in l-th layer;
fl(·) Activation function in l-th layer;

W (l) ∈ Rnl×nl−1 weight matrix between l − 1-th layer and l-th layer;
b(l) ∈ Rnl bias vector between l − 1-th layer and l-th layer;
z(l) ∈ Rnl state vector of neurons in l-th layer;
a(l) ∈ Rnl activation vector of neurons in l-th layer.

z(l) = W (l) · a(l−1) + b(l) (31)

a(l) = fl(z
(l)) (32)
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Basic Concepts Deep Learning

Feedforward Computing

z(l) = W (l) · fl(z(l−1)) + b(l) (33)

Thus,

x = a(0) → z(1) → a(1) → z(2) → · · · → a(L−1) → z(L) → a(L) = y (34)
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Basic Concepts Deep Learning

Combining feedforward network and Machine Learning

Given training samples (x(i), y (i)), 1 ≤ i ≤ N, and feedforward network
f (x|w,b), the objective function is

J(W ,b) =
N∑
i=1

L(y (i), f (x(i)|W ,b)) +
1

2
λ‖W ‖2F , (35)

=
N∑
i=1

J(W ,b; x(i), y (i)) +
1

2
λ‖W ‖2F , (36)

where ‖W ‖2F =
∑L

l=1

∑nl+1

j=1

∑nl

j=W
(l)
ij .
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Basic Concepts Deep Learning

Learning by GD

W (l) = W (l) − α∂J(W ,b)

∂W (l)
, (37)

= W (l) − α
N∑
i=1

(
∂J(W ,b; x(i), y (i))

∂W (l)
)− λW , (38)

b(l) = b(l) − α∂J(W ,b; x(i), y (i))

∂b(l)
, (39)

= b(l) − α
N∑
i=1

(
∂J(W ,b; x(i), y (i))

∂b(l)
), (40)

(41)
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Basic Concepts Deep Learning

Backpropogation

How to compute ∂J(W ,b;x,y)

∂W (l) ?
∂J(W ,b;x,y)

∂W
(l)
ij

∂J(W ,b; x, y)

∂W
(l)
ij

=

(
∂J(W ,b; x, y)

∂z(l)

)> ∂z(l)

∂W
(l)
ij

. (42)

We de�ne δ(l) = ∂J(W ,b;x,y)

∂z(l)
∈ Rn(l) .
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Basic Concepts Deep Learning

Backpropogation

Because z(l) = W (l) · a(l−1) + b(l),

∂z(l)

∂W
(l)
ij

=
∂(W (l) · a(l−1) + b(l))

∂W
(l)
ij

=


0
...

a
(l−1)
j
...
0

 . (43)← i-th row

Therefore,

∂J(W ,b; x, y)

∂W
(l)
ij

= δ
(l)
i a

(l−1)
j (44)

(45)
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Basic Concepts Deep Learning

Backpropogation

∂J(W ,b; x, y)

∂W (l)
= δ(l)(a(l−1))>. (46)

In the same way,

∂J(W ,b; x, y)

∂b(l)
= δ(l). (47)
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Basic Concepts Deep Learning

How to compute δ(l)?

δ(l) ,
∂J(W ,b; x, y)

∂z(l)
(48)

=
∂a(l)

∂z(l)
· ∂z

(l+1)

∂a(l)
· ∂J(W ,b; x, y)

∂z(l+1)
(49)

= diag(f ′l (z
(l))) · (W (l+1))> · δ(l+1) (50)

= f ′l (z
(l))� ((W (l+1))>δ(l+1)), (51)
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Basic Concepts Deep Learning

Backpropogation Algorithm

Input : Training Set: (x(i), y (i)), i = 1, · · · ,N, Iteration: T
Output: W , b

1 Initialize W , b ;
2 for t = 1 · · ·T do

3 for i = 1 · · ·N do

4 (1) Feedforward Computing;

5 (2) Compute δ(l) by 51;
6 (3) Compute gradient of parameters by 46 47;

7
∂J(W ,b;x(i),y (i))

∂W (l) = δ(l)(a(l−1))>;

8
∂J(W ,b;x(i),y (i))

∂b(l)
= δ(l);

9 (4) Update Parameter;

10 W (l) = W (l) − α
∑N

i=1(
∂J(W ,b;x(i),y (i))

∂W (l) )− λW ;

11 b(l) = b(l) − α
∑N

i=1(
∂J(W ,b;x(i),y (i))

∂b(l)
);

12 end

13 end
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Basic Concepts Deep Learning

Gradient Vanishing

δ(l) = f ′l (z
(l))� ((W (l+1))>δ(l+1), (52)

When we use sigmoid function, such as logistic σ(x) and tanh,

σ′(x) = σ(x)(1− σ(x)) ∈ [0, 0.25] (53)

tanh′(x) = 1− (tanh(x))2 ∈ [0, 1]. (54)

−4 −2 0 2 4 6

5 · 10−2

0.1

0.15

0.2

0.25

(e) logistic

−4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

(f) tanh
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Basic Concepts Deep Learning

Di�culties

Huge Parameters
Non-convex Optimization
Gradient Vanishing
Poor Interpretability

Requirments

High Computation
Big Data
Good Algorithms
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Basic Concepts Deep Learning

Tricks and Skills6 7

Use ReLU non-linearities
Use cross-entropy loss for classi�cation
SDG+mini-batch

Shu�e the training samples ( ←− very important)
Early-Stop

Normalize the input variables (zero mean, unit variance)
Schedule to decrease the learning rate
Use a bit of L1 or L2 regularization on the weights (or a combination)
Use �dropout� for regularization
Data Argument

6 G. B. Orr and K.-R. M ller. Neural networks: tricks of the trade. Springer, 2003.
7Geo� Hinton, Yoshua Bengio & Yann LeCun, Deep Learning, NIPS 2015 Tutorial.

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 52 / 131



Neural Models for Representation Learning General Architecture

Table of Contents

1 Basic Concepts
Arti�cial Intelligence
Machine Learning
Deep Learning

2 Neural Models for Representation Learning
General Architecture
Convolutional Neural Network
Recurrent Neural Network
Recursive Neural Network
Attention Model

3 Applications
Question Answering
Machine Translation
Text Matching

4 Challenges & Open Problems

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 53 / 131



Neural Models for Representation Learning General Architecture

General Neural Architectures for NLP

How to use neural network for the NLP tasks?

Distributed Representation
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General Neural Architectures for NLP

How to use neural network for the NLP tasks?

Distributed Representation
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Neural Models for Representation Learning General Architecture

General Neural Architectures for NLP8

1 represent the words/features with
dense vectors (embeddings) by
lookup table;

2 concatenate the vectors;

3 multi-layer neural networks.

classi�cation
matching
ranking

8 R. Collobert et al. �Natural language processing (almost) from scratch�. In:
The Journal of Machine Learning Research (2011).
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Neural Models for Representation Learning General Architecture

Di�erence with the traditional methods

Traditional methods Neural methods

Discrete Vector Dense Vector
Features (One-hot Representation) (Distributed Representation)

High-dimension Low-dimension

Classi�er Linear Non-Linear
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Neural Models for Representation Learning General Architecture

The key point is

how to encode the word, phrase, sentence, paragraph, or even document
into the distributed representation?

Representation Learning
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Neural Models for Representation Learning General Architecture

Representation Learning for NLP

Word Level

NNLM
C&W
CBOW & Skip-Gram

Sentence Level

NBOW
Sequence Models: Recurrent NN (LSTM/GRU), Paragraph Vector
Topoligical Models: Recursive NN,
Convolutional Models: Convolutional NN

Document Level

NBOW
Hierachical Models two-level CNN
Sequence Models LSTM, Paragraph Vector
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Neural Models for Representation Learning General Architecture

Let's start with Language Model

A statistical language model is a probability distribution over sequences
of words.
A sequence W consists of L words.

P(W ) = P(w1:L) = P(w1, · · · ,wL)

= P(w1)P(w2|w1)P(w3|w1w2) · · ·P(wL|w1:(L−1))

=
L∏

i=1

P(wi |w1:(i−1)). (55)

n-gram model:

P(W ) =
L∏

i=1

P(wi |w(i−n+1):(i−1)). (56)
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Neural Models for Representation Learning General Architecture

Neural Probabilistic Language Model9

turn unsupervised learning into supervised learning;
avoid the data sparsity of n-gram model;
project each word into a low dimensional space.

9 Y. Bengio, R. Ducharme, and P. Vincent. �A Neural probabilistic language model�. In:
Journal of Machine Learning Research (2003).
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Problem of Very Large Vocabulary

Softmax output:

Ph
θ =

exp(sθ(w , h))∑
w ′ exp(sθ(w

′, h))
, (57)

Unfortunately both evaluating Ph
θ and computing the corresponding

likelihood gradient requires normalizing over the entire vocabulary

Hierarchical Softmax: a tree-structured vocabulary10

Negative Sampling11, noise-contrastive estimation (NCE)12

10 A. Mnih and G. Hinton. �A scalable hierarchical distributed language model�. In:
Advances in neural information processing systems (2009); F. Morin and Y. Bengio. �Hierarchical Probabilistic
Neural Network Language Model.� In: Aistats. Vol. 5. Citeseer. 2005, pp. 246�252.
11 T. Mikolov et al. �E�cient estimation of word representations in vector space�. In:

arXiv preprint arXiv:1301.3781 (2013).
12 A. Mnih and K. Kavukcuoglu. �Learning word embeddings e�ciently with noise-contrastive estimation�. In:

Advances in Neural Information Processing Systems. 2013, pp. 2265�2273.
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Linguistic Regularities of Word Embeddings13

13 T. Mikolov, W.-t. Yih, and G. Zweig. �Linguistic Regularities in Continuous Space Word Representations.� In:
HLT-NAACL. 2013, pp. 746�751.
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Skip-Gram Model14

14 Mikolov et al., �E�cient estimation of word representations in vector space�.
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Skip-Gram Model

Given a pair of words (w , c), the probability that the word c is observed in
the context of the target word w is given by

Pr(D = 1|w , c) = 1

1+ exp(−wTc)
,

where w and c are embedding vectors of w and c respectively.
The probability of not observing word c in the context of w is given by,

Pr(D = 0|w , c) = 1− 1

1+ exp(−wTc)
.
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Skip-Gram Model with Negative Sampling

Given a training set D, the word embeddings are learned by maximizing the
following objective function:

J(θ) =
∑

w ,c∈D
Pr(D = 1|w , c) +

∑
w ,c∈D′

Pr(D = 0|w , c),

where the set D′ is randomly sampled negative examples, assuming they
are all incorrect.
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Convolutional Neural Network

Convolutional neural network (CNN, or ConvNet) is a type of
feed-forward arti�cial neural network.
Distinguishing features15:

1 Local connectivity
2 Shared weights
3 Subsampling

15 Y. LeCun et al. �Gradient-based learning applied to document recognition�. In: Proceedings of the IEEE 11
(1998).
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Convolution

Convolution is an integral that expresses the amount of overlap of one
function as it is shifted over another function.
Given an input sequence xt , t = 1, · · · , n and a �lter ft , t = 1, · · · ,m, the
convolution is

yt =
n∑

k=1

fk · xt−k+1. (58)
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One-dimensional convolution

15Figure from: http://cs231n.github.io/convolutional-networks/
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Two-dimensional convolution

Given an image xij , 1 ≤ i ≤ M, 1 ≤ j ≤ N and �lter fij , 1 ≤ i ≤ m,
1 ≤ j ≤ n, the convolution is

yij =
m∑

u=1

n∑
v=1

fuv · xi−u+1,j−v+1. (59)

Mean �lter:fuv = 1
mn
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Convolutional Layer

a(l) = f (w(l) ⊗ a(l−1) + b(l)), (60)

⊗ is convolutional operation.
w(l) is shared by all the neurons of l-th layer.
Just need m + 1 parameters, and n(l+1) = n(l) −m + 1.
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Fully Connected Layer V.S. Convolutional Layer

(a) Fully Connected Layer

(b) Convolutional Layer
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Pooling Layer

It is common to periodically insert a pooling layer in-between successive
convolutional layers.

progressively reduce the spatial size of the representation
reduce the amount of parameters and computation in the network
avoid over�tting

For a feature map X (l), we divide it into several (non-)overlapped regions
Rk , k = 1, · · · ,K . A pooling function down(· · · ) is

X
(l+1)
k = f (Z

(l+1)
k ), (61)

= f
(
w (l+1) · down(Rk) + b(l+1)

)
. (62)
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Pooling Layer

X (l+1) = f (Z (l+1)), (63)

= f
(
w (l+1) · down(X l) + b(l+1)

)
, (64)

Two choices of down(·): Maximum Pooling and Average Pooling.

poolmax(Rk) = max
i∈Rk

ai (65)

poolavg (Rk) =
1

|Rk |
∑
i∈Rk

ai . (66)
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Pooling Layer

15Figure from: http://cs231n.github.io/convolutional-networks/
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Large Scale Visual Recognition Challenge

2010-2015

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 76 / 131



Neural Models for Representation Learning Convolutional Neural Network

DeepMind's AlphaGo

15http://cs231n.stanford.edu/
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DeepMind's AlphaGo

15http://cs231n.stanford.edu/
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CNN for Sentence Modeling

Input: A sentence of length n,
After Lookup layer, X = [x1, x2, · · · , xn] ∈ Rd×n

variable-length input
convolution
pooling
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CNN for Sentence Modeling16

Key steps

convolution
zt:t+m−1 =
xt ⊕ xt+1 ⊕ xt+m−1 ∈ Rdm

matrix-vector operation
xlt = f (W lzt:t+m−1 + bl)
Pooling (max over time)
xli = maxt x

l−1
i ,t

16 Collobert et al., �Natural language processing (almost) from scratch�.
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CNN for Sentence Modeling17

Key steps

convolution
zt:t+m−1 = xt ⊕ xt+1 ⊕ xt+m−1 ∈ Rdm

vector-vector operation
x lt = f (wlzt:t+m−1 + bl)
multiple �lters / multiple channels
pooling (max over time)
xli = maxt x

l−1
i ,t

17 Y. Kim. �Convolutional neural networks for sentence classi�cation�. In: arXiv preprint arXiv:1408.5882
(2014).
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Dynamic CNN for Sentence Modeling18

Key steps

one-dimensional convolution
xli ,t = f (wl

ixi ,t:t+m−1 + bli )
k-max pooling (max over time)

k l = max(ktop, |L−l |L n)
(optional) folding: sums every two rows
in a feature map component-wise.
multiple �lters / multiple channels

18 N. Kalchbrenner, E. Grefenstette, and P. Blunsom. �A Convolutional Neural Network for Modelling Sentences�.
In: Proceedings of ACL. 2014.
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CNN for Sentence Modeling19

Key steps

convolution
zt:t+m−1 = xt ⊕ xt+1 ⊕ xt+m−1 ∈ Rdm

matrix-vector operation
xlt = f (Wlzl−1t:t+m−1 + bl)
binary max pooling (over time)
xli ,t = max(xl−1i ,2t−1, x

l−1
i ,2t )

19 B. Hu et al. �Convolutional neural network architectures for matching natural language sentences�. In:
Advances in Neural Information Processing Systems. 2014.

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 83 / 131



Neural Models for Representation Learning Recurrent Neural Network

Table of Contents

1 Basic Concepts
Arti�cial Intelligence
Machine Learning
Deep Learning

2 Neural Models for Representation Learning
General Architecture
Convolutional Neural Network
Recurrent Neural Network
Recursive Neural Network
Attention Model

3 Applications
Question Answering
Machine Translation
Text Matching

4 Challenges & Open Problems

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 84 / 131



Neural Models for Representation Learning Recurrent Neural Network

Recurrent Neural Network (RNN)

Output

Hidden Delay

Input

xt

ht

ht−1

ht

The RNN has recurrent hidden states
whose output at each time is
dependent on that of the previous
time. More formally, given a sequence
x(1:n) = (x(1), . . . , x(t), . . . , x(n)), the
RNN updates its recurrent hidden
state h(t) by

ht =

{
0 t = 0

f (ht−1, xt) otherwise
(67)
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Simple Recurrent Network20

ht = f (Uht−1 +Wxt + b), (68)

where f is non-linear function.

y1 y2 y3 y4 · · · yT

h1 h2 h3 h4 · · · hT

x1 x2 x3 x4 · · · xT

20 J. L. Elman. �Finding structure in time�. In: Cognitive science 2 (1990).
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Backpropagation Through Time, BPTT

Loss at time t is Jt , the whole loss is J =
∑T

t=1 Jt .
The gradient of J is

∂J
∂U

=
T∑
t=1

∂Jt
∂U

(69)

=
T∑
t=1

∂ht
∂U

∂Jt
∂ht

, (70)

J1 J2 J3 J4 · · · JT

h1 h2 h3 h4 · · · hT

x1 x2 x3 x4 · · · xT
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Gradient of RNN

∂J
∂U

=
T∑
t=1

t∑
k=1

∂hk
∂U

∂ht
∂hk

∂yt
∂ht

∂Jt
∂yt

, (71)

∂ht
∂hk

=
t∏

i=k+1

∂hi
∂hi−1

(72)

=
t∏

i=k+1

UT diag[f ′(hi−1)]. (73)

∂J
∂U

=
T∑
t=1

t∑
k=1

∂hk
∂U

(
t∏

i=k+1

UT diag(f ′(hi−1))

)
∂yt
∂ht

∂Jt
∂yt

. (74)
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Long-Term Dependencies

De�ne γ = ‖UT diag(f ′(hi−1))‖,

Exploding Gradient Problem: When γ > 1 and t − k →∞,
γt−k →∞.
Vanishing Gradient Problem: When γ < 1 and t − k →∞, γt−k → 0.

There are various ways to solve Long-Term Dependency problem.
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Long Short Term Memory Neural Network (LSTM)21

The core of the LSTM model is a memory cell c encoding memory at every
time step of what inputs have been observed up to this step.
The behavior of the cell is controlled by three �gates�:

input gate i
output gate o
forget gate f

it = σ(Wixt + Uiht−1 + Vict−1), (75)

ft = σ(Wf xt + Uf ht−1 + Vf ct−1), (76)

ot = σ(Woxt + Uoht−1 + Voct), (77)

c̃t = tanh(Wcxt + Ucht−1), (78)

ct = ft � ct−1 + it � c̃t , (79)

ht = ot � tanh(ct), (80)

21 S. Hochreiter and J. Schmidhuber. �Long short-term memory�. In: Neural computation 8 (1997).
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LSTM Architecture

ct−1 × + ct

× ×

ht−1

ft it ~ct ot

ht

σ σ tanh σ

xt
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Gated Recurrent Unit, GRU22

Two gates: update gate z and reset gate r.

rt = σ(Wrxt +Urht−1) (81)

zt = σ(Wzxt +Uzht−1) (82)

h̃t = tanh(Wcxt +U(rt � ht−1)), (83)

ht = zt � ht−1 + (1− zt)� h̃t , (84)

(85)

22 K. Cho et al. �Learning phrase representations using rnn encoder-decoder for statistical machine translation�.
In: arXiv preprint arXiv:1406.1078 (2014); J. Chung et al. �Empirical evaluation of gated recurrent neural networks
on sequence modeling�. In: arXiv preprint arXiv:1412.3555 (2014).

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 92 / 131



Neural Models for Representation Learning Recurrent Neural Network

GRU Architecture

ht−1 ×

zt rt

×

tanh

1−

~ht

σ σ

×

+ ht

xt
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Stacked RNN

y1 y2 y3 y4 · · · yT

h
(3)
1 h

(3)
2 h

(3)
3 h

(3)
4 · · · h

(3)
T

h
(2)
1 h

(2)
2 h

(2)
3 h

(2)
4 · · · h

(2)
T

h
(1)
1 h

(1)
2 h

(1)
3 h

(1)
4 · · · h

(1)
T

x1 x2 x3 x4 · · · xT
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Bidirectional RNN

h
(1)
t = f (U(1)h

(1)
t−1 +W(1)xt + b(1)), (86)

h
(2)
t = f (U(2)h

(2)
t+1 +W(2)xt + b(2)), (87)

ht = h
(1)
t ⊕ h

(2)
t . (88)

y1 y2 y3 y4 · · · yT

· · ·

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4 · · · h

(2)
T

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4 · · · h

(1)
T

x1 x2 x3 x4 · · · xT
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Application of RNN: Sequence to Category

Text Classi�cation

Sentiment Classi�cation

h y

h1 h2 · · · hT

x1 x2 · · · xT

(c) Mean

y

h1 h2 · · · hT

x1 x2 · · · xT

(d) Last
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Application of RNN: Synchronous Sequence to Sequence

Sequence Labeling, such as Chinese word segmentation, POS tagging

y1 y2 · · · yT

h1 h2 · · · hT

x1 x2 · · · xT
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Application of RNN: Asynchronous Sequence to Sequence

Machine Translation

y1 y2 · · · yM

h1 h2 · · · hT hT+1 hT+2 · · · hT+M

x1 x2 · · · xT < EOS >
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Unfolded LSTM for Text Classi�cation

h1 h2 h3 h4 · · · hT softmax

x1 x2 x3 x4 xT y

Drawback: long-term dependencies need to be transmitted one-by-one
along the sequence.
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Unfolded Multi-Timescale LSTM23

g3
1 g3

2 g3
3 g3

4 · · · g3
T

g2
1 g2

2 g2
3 g2

4 · · · g2
T softmax

g1
1 g1

2 g1
3 g1

4 · · · g1
T y

x1 x2 x3 x4 xT

23 P. Liu et al. �Multi-Timescale Long Short-Term Memory Neural Network for Modelling Sentences and
Documents�. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2015.
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LSTM for Sentiment Analysis

<s> Is this progress ? </s>

0.2

0.3

0.4

0.5

LSTM
MT-LSTM

<s> He ’d create a movie better than this . </s>

0

0.2

0.4

0.6

0.8

LSTM
MT-LSTM

<s> It ’s not exactly a gourmetmeal but the fare is fair , even coming from the drive . </s>

0

0.2

0.4

0.6

0.8

LSTM
MT-LSTM
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Paragraph Vector24

24 Q. V. Le and T. Mikolov. �Distributed representations of sentences and documents�. In:
arXiv preprint arXiv:1405.4053 (2014).
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Memory Mechanism

What di�erences among the various models from memory view?

Short-term Long short-term Global External

SRN Yes No No No

LSTM/GRU Yes Yes Maybe No

PV Yes Yes Yes No

NTM/DMN Yes Yes Maybe Yes

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 103 / 131



Neural Models for Representation Learning Recursive Neural Network

Table of Contents

1 Basic Concepts
Arti�cial Intelligence
Machine Learning
Deep Learning

2 Neural Models for Representation Learning
General Architecture
Convolutional Neural Network
Recurrent Neural Network
Recursive Neural Network
Attention Model

3 Applications
Question Answering
Machine Translation
Text Matching

4 Challenges & Open Problems

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 104 / 131



Neural Models for Representation Learning Recursive Neural Network

Recursive Neural Network (RecNN)25

a,Det red,JJ bike,NN

red bike,NP

a red bike,NP

Topological models compose
the sentence representation
following a given topological
structure over the words.

Given a labeled binary parse tree,
((p2 → ap1), (p1 → bc)), the node
representations are computed by

p1 = f (W

[
b

c

]
),

p2 = f (W

[
a

p1

]
).

25 R. Socher et al. �Parsing with compositional vector grammars�. In: Proceedings of ACL. 2013.
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Recursive Convolutional Neural Network26

Recursive neural network can only process the binary combination and is
not suitable for dependency parsing.

a,Det red,JJ bike,NN

Convolution

Pooling

a red bike,NN

a bike,NN red bike,NN

introducing the convolution and
pooling layers;
modeling the complicated
interactions of the head word
and its children.

26 C. Zhu et al. �A Re-Ranking Model For Dependency Parser With Recursive Convolutional Neural Network�.
In: Proceedings of Annual Meeting of the Association for Computational Linguistics. 2015.
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Tree-Structured LSTMs27

Natural language exhibits syntactic properties that would naturally combine
words to phrases.

Child-Sum Tree-LSTMs
N-ary Tree-LSTMs

27 K. S. Tai, R. Socher, and C. D. Manning. �Improved semantic representations from tree-structured long
short-term memory networks�. In: arXiv preprint arXiv:1503.00075 (2015).
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Gated Recursive Neural Network28

Rainy

下 雨
Day

天
Ground

地 面
Accumulated water

积 水

M E SB

DAG based Recursive Neural
Network
Gating mechanism

An relative complicated solution

GRNN models the complicated
combinations of the features, which
selects and preserves the useful
combinations via reset and update
gates.

28 X. Chen et al. �Gated Recursive Neural Network For Chinese Word Segmentation�. In:
Proceedings of Annual Meeting of the Association for Computational Linguistics. 2015; X. Chen et al. �Sentence
Modeling with Gated Recursive Neural Network�. In:
Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2015.
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Attention
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Attention Model29

1 The context vector ci is computed
as a weighted sum of hi :

ci =
T∑
j=1

αijhj

2 The weight αij is computed by

αij = softmax(vT tanh(Wsi−1+Uhj))

29 D. Bahdanau, K. Cho, and Y. Bengio. �Neural Machine Translation by Jointly Learning to Align and
Translate�. In: ArXiv e-prints (Sept. 2014). arXiv: 1409.0473 [cs.CL].

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 111 / 131

http://arxiv.org/abs/1409.0473


Applications Question Answering

Table of Contents

1 Basic Concepts
Arti�cial Intelligence
Machine Learning
Deep Learning

2 Neural Models for Representation Learning
General Architecture
Convolutional Neural Network
Recurrent Neural Network
Recursive Neural Network
Attention Model

3 Applications
Question Answering
Machine Translation
Text Matching

4 Challenges & Open Problems

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 112 / 131



Applications Question Answering

Question Answering

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 113 / 131



Applications Question Answering

LSTM30

30 K. M. Hermann et al. �Teaching machines to read and comprehend�. In:
Advances in Neural Information Processing Systems. 2015, pp. 1684�1692.
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Dynamic Memory Networks31

31 A. Kumar et al. �Ask me anything: Dynamic memory networks for natural language processing�. In:
arXiv preprint arXiv:1506.07285 (2015).

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 115 / 131



Applications Question Answering

Memory Networks32

32 S. Sukhbaatar, J. Weston, R. Fergus, et al. �End-to-end memory networks�. In:
Advances in Neural Information Processing Systems. 2015, pp. 2431�2439.
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Neural Reasoner33

33 B. Peng et al. �Towards Neural Network-based Reasoning�. In: arXiv preprint arXiv:1508.05508 (2015).
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Sequence to Sequence Machine Translation34

Neural machine translation is a recently proposed framework for machine
translation based purely on neural networks.

34 I. Sutskever, O. Vinyals, and Q. V. Le. �Sequence to sequence learning with neural networks�. In:
Advances in Neural Information Processing Systems. 2014, pp. 3104�3112.
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Image Caption353637

35 A. Karpathy and L. Fei-Fei. �Deep visual-semantic alignments for generating image descriptions�. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 3128�3137.
36 O. Vinyals et al. �Show and tell: A neural image caption generator�. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 3156�3164.
37 K. Xu et al. �Show, attend and tell: Neural image caption generation with visual attention�. In:

arXiv preprint arXiv:1502.03044 (2015).
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Image Caption

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 121 / 131



Applications Text Matching

Table of Contents

1 Basic Concepts
Arti�cial Intelligence
Machine Learning
Deep Learning

2 Neural Models for Representation Learning
General Architecture
Convolutional Neural Network
Recurrent Neural Network
Recursive Neural Network
Attention Model

3 Applications
Question Answering
Machine Translation
Text Matching

4 Challenges & Open Problems

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 122 / 131
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Text Matching

Among many natural language processing (NLP) tasks, such as text
classi�cation, question answering and machine translation, a common
problem is modelling the relevance/similarity of a pair of texts, which is
also called text semantic matching.
Three types of interaction models:

Weak interaction Models
Semi-interaction Models
Strong Interaction Models

Xipeng Qiu (Fudan University) Deep Learning for Natural Language Processing 123 / 131



Applications Text Matching

Weak interaction Models

Some early works focus on sentence level interactions, such as ARC-I38,
CNTN39 and so on. These models �rst encode two sequences into
continuous dense vectors by separated neural models, and then compute
the matching score based on sentence encoding.

 

question
+f +

 

answer Matching
Score

Figure: Convolutional Neural Tensor Network

38 Hu et al., �Convolutional neural network architectures for matching natural language sentences�.
39 X. Qiu and X. Huang. �Convolutional Neural Tensor Network Architecture for Community-based Question

Answering�. In: Proceedings of International Joint Conference on Arti�cial Intelligence. 2015.
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Semi-interaction Models

Another kind of models use soft attention mechanism to obtain the
representation of one sentence by depending on representation of another
sentence, such as ABCNN40, Attention LSTM41. These models can
alleviate the weak interaction problem to some extent.

Figure: Attention LSTM42

40 W. Yin et al. �ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs�. In:
arXiv preprint arXiv:1512.05193 (2015).
41 Hermann et al., �Teaching machines to read and comprehend�.
42 T. Rockt schel et al. �Reasoning about Entailment with Neural Attention�. In:

arXiv preprint arXiv:1509.06664 (2015).
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Strong Interaction Models

The models build the interaction at di�erent granularity (word, phrase and
sentence level), such as ARC-II43, MV-LSTM44, coupled-LSTMs45. The
�nal matching score depends on these di�erent levels of interactions.

Figure: coupled-LSTMs

43 Hu et al., �Convolutional neural network architectures for matching natural language sentences�.
44 S. Wan et al. �A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations�.
In: AAAI. 2016.
45 P. Liu, X. Qiu, and X. Huang. �Modelling Interaction of Sentence Pair with coupled-LSTMs�. In:

arXiv preprint arXiv:1605.05573 (2016).
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Conclusion of DL4NLP (just kidding)

Long long ago: you must know intrinsic rules of data.
Past ten years: you just know e�ective features of data.
Nowadays: you just need to have big data.
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Challenges & Open Problems

Depth of network
Rare words
Fundamental data structure
Long-term dependencies
Natural language understanding & reasoning
Biology inspired model
Unsupervised learning
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DL4NLP from scratch

Select a real problem
Translate your problem to (supervised) learning problem
Prepare your data and hardware (GPU)
Select a library: Theano, Keras, TensorFlow
Find an open source implementation
Incrementally writing your own code
Run it.
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More Information

《神经网络与深度学习》最新讲义：http://nlp.fudan.edu.cn/dl-book/
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Challenges & Open Problems

Recommended Courses

CS224d: Deep Learning for Natural Language Processing

http://cs224d.stanford.edu/
斯坦福大学Richard Socher
主要讲解自然语言处理领域的各种深度学习模型

CS231n:Convolutional Neural Networks for Visual Recognition

http://cs231n.stanford.edu/
斯坦福大学Fei-Fei Li Andrej Karpathy
主要讲解CNN、RNN在图像领域的应用
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