SEEING PEOPLE WITH DEEP LEARNING

GRAHAM TAYLOR SCHOOL OF ENGINEERING UNIVERSITY OF GUELPH

Deep Learning Summer School 2015 Montreal, Quebec

Seeing Humans

- Humans: dominant subject in nearly all video
- Better algorithms for interpreting their behaviour can
 - help understanding of people's use of public spaces
 - improve healthcare delivery and outcomes
 - augment people's interaction with the world
 - improve human-computer and human-robot interaction

Image: Neverova et al. (2015)

Source: Daily dose of imagery

ML for Vision

- Advances in vision have enabled "sci-fi" like applications: gesture recognition, face detection and recognition
- Machine learning is a major driving force behind this development
 - vast amounts of visual data, inherently large variations
 - emergence of new computational paradigms (GPUs)
- Deep learning has emerged as a major force in vision

Challenges Lie Ahead

- Many realistic situations are currently out of reach
 - person-person and person-object interactions
 - long-running dynamical behaviour in video
 - large-scale variation (e.g. deformable objects)

Images:Christian Wolf

This Lecture

Focus on "seeing humans" in images and video using deep learning methods:

Tracking

07 Aug 2015 / 9 DLSS. Seeing People/ G Taylor

Pose Estimation

- Localization of joints
- Extreme variability in articulations •
- Many joints barely visible •
 - small # pixels
 - occlusions

Images: Toshev and Szegedy (2014)

DNNs for Precise Localization?

07 Aug 2015 / 11 DLSS• Seeing People/ G Taylor

DNNs for Precise Localization?

Most obvious approach: map input vector directly to a • vector coding the articulated pose (e.g. unbounded 2-D or 3-D positions of joints or angles)

DNNs for Precise Localization?

- Most obvious approach: map input vector directly to a • vector coding the articulated pose (e.g. unbounded 2-D or 3-D positions of joints or angles)
 - Pooling, while useful for recognition, destroys precise spatial information
 - The mapping from input space to kinematic pose is highly nonlinear and not one-to-one
 - Valid poses represent a much lower-dimensional manifold in the high-dimensional space of configurations

CNNs for Pose Estimation

- Train multiple convnets to perform independent • body-part classification
- Applied as sliding windows to input, map a window • of pixels to a single binary output

(Jain et al. 2014)

Output:Pose Confidence Maps

RGB and joint predictions

Output before Spatial Model

07 Aug 2015 / 13 DLSS• Seeing People/ G Taylor

Output after Spatial Model

Spatial Model

- Raw output of network produces many false positives
 - small image context
 - training set size limited

face

shoulder

 $p_{sho\,|\,fac}$

- convnet provides unary distributions
- body part priors fit to training data

Spatial priors

For a body part *i* with a set of neighbouring nodes *U*:

$$\hat{p}_i \propto p_i{}^\lambda \prod_{u \in U} \left(p_{i|u=\vec{0}} * p_u \right)$$

e.g. for the shoulder joint:

 $\log\left(\hat{p}_{\rm sho}\right) \propto \lambda \, \log\left(p_{\rm sho}\right) + \log\left(p_{\rm sho|fac=\vec{0}} * p_{\rm fac}\right) + \log\left(p_{\rm sho|elb=\vec{0}} * p_{\rm elb}\right)$

07 Aug 2015 / 15 DLSS. Seeing People/ G Taylor

$p_{\text{wri}|\text{elb}=\vec{0}}$

$\lambda = 1$ in experiments

Face prior

- Incorporating image evidence from the shoulder • joint to the filtered face distribution doesn't work
 - Due to the fact that the convnet already does a good job of localizing the face
 - Incorporating noisy evidence from the shoulder increases uncertainty
- Instead use a global position prior: •

 $\log(\hat{p}_{\text{fac}}) \propto \lambda \log(p_{\text{fac}}) + \log(h_{\text{fac}})$

 $h_{\rm fac}$

DeepPose

- Pose estimation as DNN-based regression ullet
- Normalize joint co-ordinates w.r.t. human bounding ulletbox
- Normalize the image by the same box (crop human) ●
- "Alexnet" architecture

07 Aug 2015 / 17 DLSS. Seeing People/ G Taylor

(Toshev and Szegedy 2014)

Cascade of pose regressors

- Joint estimation is based on • the full image and therefore relies on context
- 220 x 220
- Fixed input size of 220 x 220, • only captures pose at coarse scale
- Propose to train a cascade • of regressors

Initial stage

Images: Toshev and Szegedy (2014)

Pose Estimation Datasets

- Frames Labeled In Cinema (FLIC, Sapp and Taskar 2013)
 - 6,543 training images, 1,016 test images
 - 10 upper-body joints -
- Leeds Sports Dataset (Johnson and Everingham, 2010, 2011)
 - 11,000 training and 1,000 test images
 - 14 full-body joints -

MPII Human Pose

- Addresses appearance variability and complexity
- YouTube as a data source
- Many activities, • indoor and outdoor scenes, variety of imaging conditions

Dataset	#training	#test	img. type
Full body pose datasets			
Parse [16]	100	205	diverse
LSP [12]	1,000	1,000	sports (8 types)
PASCAL Person Layout [6]	850	849	everyday
Sport [21]	649	650	sports
UIUC people [21]	346	247	sports (2 types)
LSP extended [13]	10,000	-	sports (3 types)
FashionPose [2]	6,530	775	fashion blogs
J-HMDB [11]	31,838	-	diverse (21 act.)
Upper body pose datasets			
Buffy Stickmen [8]	472	276	TV show (Buffy)
ETHZ PASCAL Stickmen [3]	-	549	PASCAL VOC
Human Obj. Int. (HOI) [23]	180	120	sports (6 types)
We Are Family [5]	350 imgs.	175 imgs.	group photos
Video Pose 2 [18]	766	519	TV show (Friends)
FLIC [17]	6,543	1,016	feature movies
Sync. Activities [4]	-	357 imgs.	dance / aerobics
Armlets [9]	9,593	2,996	PASCAL VOC/Flickr
MPII Human Pose (this paper)	28,821	(11,701)	diverse (491 act.)

MPII Human Pose (this paper)	28,821
Armlets [9]	9,593
Sync. Activities [4]	-
FLIC [17]	6,543
Video Pose 2 [18]	766
We Are Family [5]	350 imgs.
Human Obj. Int. (HOI) [23]	180
ETHZ PASCAL Stickmen [3]	-
Buffy Stickmen [8]	472

(Andriluka et al. 2014)

Metrics

- Percentage of Correct Parts (PCP) •
 - measures detection rate of limbs
 - penalizes shorter limbs
- Percent of Detected Joints (PDJ) •
 - distance b/w detected and true joint within certain (varying) fraction of the torso diameter

State-of-the-art

07 Aug 2015 / 22 DLSS. Seeing People/ G Taylor

Enhanced version of the model described earlier: more efficient sliding-window convnet

- learn spatial prior model structure

(Jain et al. 2014)

Tracking

07 Aug 2015 / 23 DLSS• Seeing People/ G Taylor

3-D Human Pose Tracking

07 Aug 2015 / 24 DLSS• Seeing People/ G Taylor

3-D Human Pose Tracking

Pose estimation + time element

07 Aug 2015 / 24 DLSS• Seeing People/ G Taylor

3-D Human Pose Tracking

- Pose estimation + time element
- We will investigate methods which learn a dynamical prior using motion capture data
 - intuition: if you understand the way people move, you can make a good prediction of where they will be at the next frame

Prior Models of Human Pose and Motion

Prior work	Limitatio
Linear models (Sidenbladh et al. '00, Balan et al. '05, Deutscher & Reid '05)	 Nonlinear dynamic
Switching LDS (<i>Pavlovic et al. '</i> 99)	Inference is compliDifficulty modeling
Nonlinear dimension reduction (<i>Sminchisescu & Jepson '04, Lee &</i> <i>Elgammal '07, Lu & Carreira-</i> <i>Perpinan '07, Li et al. '07)</i>	 Poor generalizatior
GPLVM / GPDM (<i>Urtasun et al. '05,'06</i>)	 Only small training

Implicit Mixtures of CRBMs (Taylor et al. 2010) Very large datasets, stylistic diversity and multiple

- activities
- Supervised with activity labels, or unsupervised • with automatic discovery of atomic motions ("movemes")
- Simultaneous inference of pose and activity

Implicit Mixtures of CRBMs (Taylor et al. 2010) Very large datasets, stylistic diversity and multiple

- activities
- Supervised with activity labels, or unsupervised • with automatic discovery of atomic motions ("movemes")
- Simultaneous inference of pose and activity

Bayesian Filtering w/imCRBM

Latent variables:

- q: discrete activity
- **Z**: multivariate binary (shared among activities)

3D pose: x - observed for learning - latent during tracking

Image features: y

- always observed

07 Aug 2015 / 27 DLSS. Seeing People/ G Taylor

Restricted Boltzmann Machines (RBM) - Review

- Continuous observed variables (pose)
- **Binary latent variables** • (capture pose/dynamics)
- Efficient, exact inference • (bipartite connectivity)

Latent variables

Observed variables

Restricted Boltzmann Machines (RBM) - Review

- Continuous observed variables (pose)
- **Binary latent variables** • (capture pose/dynamics)
- Efficient, exact inference • (bipartite connectivity)

Latent variables

Observed variables

Restricted Boltzmann Machines (RBM) - Review

- Continuous observed variables (pose)
- **Binary latent variables** • (capture pose/dynamics)
- Efficient, exact inference • (bipartite connectivity)

Observed variables

Conditional Restricted Boltzmann Machines (CRBM)

07 Aug 2015 / 31 DLSS• Seeing People/ G Taylor

Extend RBM to capture temporal dependencies

07 Aug 2015 / 31 DLSS• Seeing People/ G Taylor

- Extend RBM to capture temporal dependencies
- Observed and latent variables conditioned on the observation history

07 Aug 2015 / 31 DLSS• Seeing People/ G Taylor

- Extend RBM to capture temporal dependencies
- Observed and latent variables conditioned on the observation history
- Inference and learning unchanged

- Extend RBM to capture temporal dependencies
- Observed and latent variables conditioned on the observation history
- Inference and learning unchanged
- Proposed for motion synthesis (Taylor et al. 2006)

Implicit mixture of CRBMs (imCRBM)

Discrete component variable sets the "effective" CRBM

07 Aug 2015 / 32 DLSS · Seeing People/ G Taylor

\mathbf{q}_t \mathbf{x}_h

 \mathbf{Z}

 \mathbf{X}

Implicit mixture of CRBMs (imCRBM)

Discrete component variable sets the "effective" CRBM

Marginalize over latent variables to obtain dynamical mixture model

$$p(\mathbf{x}_t | \mathbf{x}_{h_t}) = \sum_{\mathbf{z}_t, \mathbf{q}_t} p(\mathbf{x}_t, \mathbf{z}_t, \mathbf{q}_t | \mathbf{x}_{h_t})$$
$$= \sum_{k=1}^{K} p(\mathbf{q}_t = k) \sum_{\mathbf{z}_t} p(\mathbf{x}_t, \mathbf{z}_t | \mathbf{q}_t = k, \mathbf{x}_{h_t})$$

07 Aug 2015 / 32 DLSS · Seeing People/ G Taylor

\mathbf{q}_t \mathbf{X}_h

 \mathbf{Z}

 \mathbf{X}

Advantages of the imCRBM

- Approximate learning by contrastive divergence (or PCD, or Minimum Probability Flow, or...)
- Can be trained on 10^6 frames in a few hours (minutes on GPUs)
- Gibbs sampling is simple and fast for synthesis (at 60Hz)
- Training can be done with and without activity labels

Filtering distribution:

 $p(\mathbf{x}_t | \mathbf{y}_{1:t}) \propto p(\mathbf{y}_t | \mathbf{x}_t) p(\mathbf{x}_t | \mathbf{y}_{1:t-1})$

07 Aug 2015 / 34 DLSS. Seeing People/ G Taylor

Filtering distribution:

 $p(\mathbf{x}_t|\mathbf{y}_{1:t}) \propto p(\mathbf{y}_t|\mathbf{x}_t) p(\mathbf{x}_t|\mathbf{y}_{1:t-1})$

posterior

likelihood

prediction

07 Aug 2015 / 34 DLSS. Seeing People/ G Taylor

Filtering distribution:

 $p(\mathbf{x}_t | \mathbf{y}_{1:t}) \propto p(\mathbf{y}_t | \mathbf{x}_t) p(\mathbf{x}_t | \mathbf{y}_{1:t-1})$

Predictive distribution:

$$p(\mathbf{x}_t | \mathbf{y}_{1:t-1}) = \int_{\mathbf{x}_{t-1}} p(\mathbf{x}_t | \mathbf{x}_{t-1}) p(\mathbf{x}_{t-1} | \mathbf{y}_{1:t-1}) d\mathbf{x}$$

$$\mathbf{x}_{t-1} \quad \text{dynamical} \quad \text{posterior}$$

$$\text{model}$$

07 Aug 2015 / 34 DLSS. Seeing People/ G Taylor

 $\boldsymbol{\zeta}_{t-1}$

Filtering distribution:

 $p(\mathbf{x}_t | \mathbf{y}_{1:t}) \propto p(\mathbf{y}_t | \mathbf{x}_t) p(\mathbf{x}_t | \mathbf{y}_{1:t-1})$

Predictive distribution:

$$p(\mathbf{x}_t | \mathbf{y}_{1:t-1}) = \int_{\mathbf{x}_{t-1}} p(\mathbf{x}_t | \mathbf{x}_{t-1}) p(\mathbf{x}_{t-1} | \mathbf{y}_{1:t-1}) d\mathbf{x}$$

$$\mathbf{x}_{t-1} \quad \text{dynamical} \quad \text{posterior}$$

$$\text{model}$$

Inference: Particle filter

07 Aug 2015 / 34 DLSS. Seeing People/ G Taylor

 L_{t-1}

Bayesian Filtering

Dynamical Model: $p(\mathbf{x}_t | \mathbf{x}_{h_t})$

07 Aug 2015 / 35 DLSS• Seeing People/ G Taylor

Bayesian Filtering

Dynamical Model: $p(\mathbf{x}_t \mid \mathbf{x}_{h_t})$

(Deutscher & Reid '05, Balan et al. '05)

07 Aug 2015 / 35 DLSS · Seeing People/ G Taylor

Silhouette

Likelihood: $p(\mathbf{y}_t \mid \mathbf{x}_t)$

Experiments

- Multi-view and monocular 3D tracking
- HumanEva: multi-view sequences with synchronized mocap data for training and quantitative evaluation
- Comparisons: annealed particle filter with smooth zero-order dynamics (baseline) and other state-of-the-art methods
- Performance measure: Average joint location error (mm)

Multi-view: Walking + Jogging with Transitions

Model	Error (mm)
Baseline	164.2±25.0
CRBM	81.9±12.4
imCRBM-2L	60.2±1.2
imCRBM-2L*	75.5±1.8
imCRBM-10U	75.8±1.7
imCRBM-10U*	84.7±1.1

Pose estimation and segmentation:

imCRBM-2L (supervised)

Multi-view: Walking + Jogging with Transitions

Model	Error (mm)
Baseline	164.2±25.0
CRBM	81.9±12.4
imCRBM-2L	60.2±1.2
imCRBM-2L*	75.5±1.8
imCRBM-10U	75.8±1.7
imCRBM-10U*	84.7±1.1

Pose estimation and segmentation:

07 Aug 2015 / 37 DLSS · Seeing People/ G Taylor imCRBM-10U (unsupervised)

imCRBM-2L (supervised)

Monocular tracking with transitions (imCRBM-2L)

- This is a very challenging scenario at which both the baseline and CRBM fail
- We track with imCRBM-2L on each of the 3 views independently and report performance averaged over 5 runs

M	on	oc	uli
			T
			Su

Camera 1
Camera 2
Camera 3

ar Tracking with ransitions

ıbject S3 Camera 2

Relative Error (mm)
118.9±33.1
84.26±6.9
90.4±7.6

Monocular tracking with transitions (imCRBM-2L)

- This is a very challenging scenario at which both the baseline and CRBM fail
- We track with imCRBM-2L on each of the 3 views independently and report performance averaged over 5 runs

M	on	oc	uli
			T
			Su

Camera 1
Camera 2
Camera 3

ar Tracking with ransitions

ıbject S3 Camera 2

Relative Error (mm)
118.9±33.1
84.26±6.9
90.4±7.6

07 Aug 2015 / 39 DLSS• Seeing People/ G Taylor

<u>Activity /Gesture</u>

Hybrid Unsupervised/Supervised

07 Aug 2015 / 40 DLSS• Seeing People/ G Taylor

Gated RBM (Two views) (Memisevic and Hinton, 2007)

Convolutional Gated RBM (Taylor et al. 2010)

- Like the GRBM, captures third-order interactions
- Shares weights at all locations in an image
- As in a standard RBM, exact inference is efficient
- Inference and reconstruction are performed through convolution operations

Feature extraction examples

- We learn 32 feature maps •
- 6 are shown here ullet
- KTH contains 25 subjects • performing 6 actions under 4 conditions
- Only preprocessing is • local contrast normalization

Time

- Edge features (4)

Hand clapping

Walking

• Motion sensitive features (1,3) • Segmentation operator (6)

Recognition Architecture

KTH Results

Prior Art	Acc (%)	Convolutional architectures	Acc. (%)
HOG3D+KM+SVM	85.3	convGRBM+3D-convnet+logistic reg.	88.9
HOG/HOF+KM+SVM	86.1	convGRBM+3D convnet+MLP	90
HOG+KM+SVM	79	3D convnet+3D convnet+logistic reg.	79.4
HOF+KM+SVM	88	3D convnet+3D convnet+MLP	79.5

07 Aug 2015 / 44 DLSS• Seeing People/ G Taylor

Stacked Convolutional Independent Subspace Analysis (ISA) (Le et al. 2011)

- Use of ISA (right) as a basic module
- Learns features robust to local translation; selective to frequency, rotation and velocity
- Key idea: scale up ISA by applying convolution and stacking

Typical filters learned by ISA when trained on static images (organized in pools - red units above)

Images: Le et al. (2011)

Convolution and Stacking

- The network is built by "copying" the learned network and "pasting" it to different parts of the input data (analagous to convnet)
- Outputs are then treated as • the inputs to a new ISA network
- PCA is used to reduce • dimensionality

Simple example: 1D data

Image: Le et al. (2011)

Spatio-Temporal Feature Extraction

- Inputs to the network are blocks of video
- Each block is vectorized and processed by ISA
- Features from Layer 1 and Layer 2 are combined prior to classification

Image: Le et al. (2011)

Velocity and Orientation Selectivity

Velocity tuning curves for five neurons in an ISA network trained on Hollywood2 data

07 Aug 2015 / 48 DLSS · Seeing People/ G Taylor

Edge velocities (radius) and orientations (angle) to which filters give maximum response Outermost velocity: 4 pixels per frame

Coupling of motion and invariance

- Traditional motion energy models (Adelson & Bergen, 1985) and cross-correlation models (Arndt et al, 1995, Fleet et al., 1996) are closely related and they confound representing transformations and <u>encoding invariance</u>
- (Konda et al. 2014): decouple by computing motion • by "synchrony detection" and achieving contentinvariance by pooling

Motion synchrony

- Say, two images are related by an orthogonal image warp
- To detect the transformation:
 - Choose a filter pair, such that it is an example of that transformation
 - Determine whether the two filters yield equal responses when applied in sequence to two frames

(Konda et al. 2014)

$\mathbf{x}_2 = P\mathbf{x}_1$

$\mathbf{w}_2 = P\mathbf{w}_1$

 $\mathbf{w}_2^T \mathbf{x}_2 = \mathbf{w}_1^T \mathbf{x}_1$

Practically: how to check for synchrony?

- Necessary to detect equality • of transformed filter responses across time
- Can't use standard sum of • filter responses + thresholding
- Can use multiplicative • (gating) interactions between filter responses

Image: Konda et al. (2014)

Learning to detect synchrony

Synchrony autoencoder

- Learn a gated autoencoder with tied weights, trained to reconstruct \mathbf{x}_2 from \mathbf{x}_1 and vice-versa
- Use a contractive regularization term

Synchrony K-means

- 1986)
- optimization

Note: neither method is trained with pooling. A pooling layer may be learned separately.

• Filters are learned by a temporal variant of online K-means (Coates et al. 2011, Rumelhart & Zipser,

• Gradient descent-based

Results

KTH Dataset

Method	Accuracy (%)
SAE (Konda et al. 2014)	93.5
SK-means (Konda et al. 2015)	93.6
Conv-ISA (Le et al. 2011)	93.9
Conv-GRBM (Taylor et al. 2010)	90.0

Hollywood 2

Method	Mean A.P.
SAE (Konda et al. 2014)	51.8
SK-means (Konda et al. 2015)	50.5
Conv-ISA (Le et al. 2011)	53.3
Conv-GRBM (Taylor et al. 2010)	43.3

Method	Accuracy (%)
SAE (Konda et al. 2014)	86.0
SK-means (Konda et al. 2015)	84.7
Conv-ISA (Le et al. 2011)	86.5

Training Time

Method	Mean A.P.	
SK-means (Konda et al. 2015) (GPU)	2 min	
SK-means (Konda et al. 2015) (CPU)	3 min	
SAE (Konda et al. 2014) (GPU)	1 - 2 hr	
Conv-ISA (Le et al. 2011)	1-2 hr	
Conv-GRBM (Taylor et al. 2010)	2 - 3 days	

UCF Sports

End-to-end Supervised

07 Aug 2015 / 54 DLSS · Seeing People/ G Taylor

3D Convnets for Activity Recognition

- One approach: treat video frames as still images • (LeCun et al. 2005)
- Alternatively, perform 3D convolution capturing discriminative features across space and time

Multiple convolutions applied to contiguous frames to extract multiple features

07 Aug 2015 / 55 DLSS. Seeing People/ G Taylor

Figure: Ji et al. (2010)

Early CNN Architecture

Hardwired to extract: 1)grayscale 2)grad-x 3)grad-y 4)flow-x 5)flow-y

2 different 3D	Subsample	3
filters applied to	spatially	fi
each of 5 blocks		е
independently		C
		b

07 Aug 2015 / 56 DLSS• Seeing People/ G Taylor different 3D ilters applied to each of 5 hannels in 2 olocks Two fullyconnected layers

Figure: Ji et al. (2010)
State-of-the-art CNN Architecture

- Multi-resolution, foveated • architecture
- **Released Google Sports-1M** • dataset, 487 classes
- Significant performance • compared to feature-based baselines

Modest improvement compared • to single-frame architectures

(Karpathy et al. 2014)

Also see: Simonyan and Zisserman, 2014

Recognizing intentional gestures

- Communicative gestures •
- Multiple modalities: •
 - colour and depth video
 - skeleton (articulated pose)
 - audio
- Multiple scales: •
 - full upper-body motion
 - fine hand articulation
 - short and long-term dependencies -

07 Aug 2015 / 58 DLSS · Seeing People/ G Taylor

This gesture can be fully characterized by upper-body motion

PhD work of Natalia Neverova (here!) and co-advisor Christian Wolf (INSA-Lyon)

(Neverova et al. 2015)

Here, subtle finger movements play the primary role

A multi-scale architecture

Operates at 3 temporal scales corresponding to dynamic poses of 3 different durations

07 Aug 2015 / 59 DLSS. Seeing People/ G Taylor

Single-scale deep architecture

07 Aug 2015 / 60 DLSS• Seeing People/ G Taylor

Articulated Pose: Input

- Extract 11 joints from full-body skeleton (Kinect) •
- Position normalization: HipCentre is an origin of a body-• centred co-ordinate system
- Size normalization by the mean distance between each pair of joints (compensate for different body sizes, proportions, and shapes)
- Final representation (183-D descriptor) •
 - Joint positions, velocities, and accelerations
 - **Inclination angles**
 - Azimuth angles
 - **Bending angles**
 - **Pairwise distances**

Shoulder Right Elbow Right HipRight HandRight

07 Aug 2015 / 61 DLSS. Seeing People/ G Taylor

¹Zanfir M., Leordeanu, M., Sminchisescu, C., "The Moving Pose: An Efficient 3D Kinematics Descriptor for Low-Latency Action Recognition and Detection", ICCV 2013

1

Depth Video Stream

- Interested in capturing fine movements of palms and fingers
- Extract a bounding box around RHand, LHand centred at hand positions provided by skeleton
- Subtract background by thresholding along depth axis
- Apply local contrast normalization

Training algorithm

- **Difficulties:** •
 - Number of parameters:
 - ~12.4M per scale
 - ~37.2M total
 - Number of training gestures: ~10,000 -
- **Proposed solution:** •
 - Structured weight matrices
 - Pretraining of individual channels separately
 - Careful initialization of shared layers
 - Iterative training algorithm which gradually increases # of parameters -

Initialization: structured weights

- Top hidden layer from each path is initially wired to a subset of neurons in the shared layer
- During fusion, additional • connections between paths and the shared hidden layer are added

data flow-

Slightly different view

Blocks of the weight matrices are learned iteratively after proper initialization of the diagonal elements

2014 ChaLearn Looking at People Challenge (ECCV)

07 Aug 2015 / 66 DLSS. Seeing People/ G Taylor

Metric is mean Jaccard Index (intersection over union)

Error evolution during iterative training

Dropout (review)

- Introduced in 2012, made famous by ImageNet
- During training, for each training sample, "drop out"
 50% of hidden unit activities
- Punishes co-adaptation of units
- Can be viewed as very efficient model averaging

Moddrop - dropout on shared layer

$$h_{j}^{(k)} = \sigma \Big[\sum_{i=1}^{F_{k}} w_{i,j}^{(k,k)} x_{i}^{(k)} + \gamma \sum_{\substack{n=1\\n \neq k}}^{K} \sum_{i=1}^{F_{n}} w_{i,j}^{(n,k)} \Big] \Big] = \sigma \Big[\sum_{i=1}^{F_{k}} w_{i,j}^{(k,k)} x_{i}^{(k)} + \gamma \sum_{\substack{n=1\\n \neq k}}^{K} \sum_{i=1}^{F_{n}} w_{i,j}^{(n,k)} \Big] \Big]$$

07 Aug 2015 / 69 DLSS. Seeing People/ G Taylor output layer

 $\left| x_{i}^{(k)} x_{i}^{(n)} + b_{j}^{(k)} \right|$

Moddrop: modality-wise dropout

- Punish co-adaptation of individual units (like ulletdropout)
- Train a network which is robust/resistent to ulletdropping of individual modalities (e.g. fail of audio)

$$\bar{h}_{j}^{(k)} = \sigma \Big[\sum_{i=1}^{F_{k}} w_{i,j}^{(k,k)} x_{i}^{(k)} + \sum_{\substack{n=1\\n \neq k}}^{K} \delta^{(k)} \sum_{i=1}^{F_{n}} w_{i,j}^{(n,k)} x_{i}^{(n)} + \sum_{\substack{n=1\\n \neq k}}^{K} \delta^{(k)} x_{i}^{(n)} x_{i}^{(n)} + \sum_{\substack{n=1\\n \neq k}}^{K} \delta^{(k)} x_{i}^{(n)} + \sum_{\substack{n=1\\n \neq k}}^{K} \delta^{(k)} x_{i}^{(n)} x_{i}^{(n)} + \sum_{\substack{n=1\\n \neq k}}^{K} \delta^{(k)} x_{i}^{(n)} + \sum_{\substack{n=1\\n \neq k}}^{K} \delta^{(k)} x_{i}^{(n)} x_{i}^{(n)} + \sum_{\substack{n=1\\n \neq k}}^{K} \delta^{(k)} x_{i}^{(n)} x_{i}^{(n)} + \sum_{\substack{n=1\\n \neq k}}^{K} \delta^{(k)} x_{i}^{(n)} x_{i}^{(n)} x_{i}^{(n)} + \sum_{\substack{n=1\\n \neq k}}^{K} \delta^{(k)} x_{i}^{(n)} x_{i}^{(n)} x_{i}^{(n)} + \sum_{\substack{n=1\\n \neq k}}^{K} \delta^{(k)} x_{i}^{(n)} x_{i}^{$$

07 Aug 2015 / 70 DLSS. Seeing People/ G Taylor

or

Moddrop results

Classification accuracy on the validation set (dynamic poses)

Modalities	Dropout (%)	Dropout + Moddrop (%)
All	96.77	96.81
Mocap missing	38.41	92.82
Audio missing	84.10	92.59
Hands missing	53.13	73.28

Jacquard index on test set (full gestures)

Modalities	Dropout (%)	Dropout + Moddrop (%)
All	87.6	88.0
Mocap missing	30.6	85.9
Audio missing	78.9	85.4
Hands missing	46.6	68.0

07 Aug 2015 / 71 DLSS · Seeing People/ G Taylor

Summary

- Extreme variability
- Small # pixels
- Occlusions
- Dominated by convnets
- Structured output

Activity /Gesture

Two families:
unsupervised feature extraction + pipeline
convnets (supervised)
Potential for multimodal data

Where to go from here?

- Limited labeled data
 - Unsupervised, weakly supervised learning?
- Going beyond classification of short, simple activities or gestures
 - Capture structural relationships w/ structured models: less flexible and efficient than DL models

jog

. . .

07 Aug 2015 / 73 DLSS∙ Seeing People/ G Taylor

Images: Greg Mori

Acknowledgements

- Much of the background was developed in collaboration with a larger research team:
 - Christian Wolf and Julien Mille (INSA-Lyon)
 - Greg Mori (SFU)

Matthieu Cord and Nicolas Thome (UPMC-Paris 6)

Thank You!

