REV
Django in the Real World

Jacob Kaplan-Moss

OSCON 2009
http://jacobian.org/TN

Jacob Kaplan-Moss

http://jacobian.org / jacob@jacobian.org / @jacobian
Lead Developer, Django

Partner, Revolution Systems

REV 2

Shameless plug:

http://revsys.com/

Hat tip:

James Bennett (http://b-list.orQ)

So you’ve written a
Django site...

... how what?

API| Metering
Backups & Snapshots
Counters
Cloud/Cluster Management Tools
* Instrumentation/Monitoring
* Failover
* Node addition/removal and hashing
* Auto-scaling for cloud resources
CSRF/XSS Protection
Data Retention/Archival
Deployment Tools
* Multiple Devs, Staging, Prod
* Data model upgrades
* Rolling deployments
* Multiple versions (selective beta)
* Bucket Testing
* Rollbacks
* CDN Management
* Distributed File Storage

Distributed Log storage, analysis

Graphing
HTTP Caching
Input/Output Filtering
Memory Caching
Non-relational Key Stores
Rate Limiting
Relational Storage
Queues
Rate Limiting
Real-time messaging (XMPP)
Search

* Ranging

* Geo
Sharding
Smart Caching

* Dirty-table management

http://randomfoo.net/2009/01/28/infrastructure-for-modern-web-sites

The bare minimum:

* Test.

e Structure for deployment.

* Use deployment tools.

* Design a production environment.
* Monitor.

e Tune.

REV 8

Testing

I l lests are the
Programmer's stone,
transmuting fear into

boredom. ,

— Kent Beck

Hardcore 1DD

I l | don’t do test ariven
development. | do stupidity
driven testing... | wait until
| do something stupid, and

then write tests to avoid

doing it again. ,

— Ti1tus Brown

Whatever happens, don’t let
your test suite break thinking,
“I’ll go back and fix this later.”

Unit testing unittest

doctest

Functional/behavior
testing

django.test.Client, Twill

Browser testing Windmill, Selenium

You need them all.

Testing Django

e Unit tests (unittest)
* Doctests (doctest)

* Fixtures

* Test client

* Email capture

Unit tests

* “Whitebox” testing

e \erify the small functional units of your
app

*\ery fine-grained

* Familier to most programmers (JUnit,
NUnit, etc.)

* Provided in Python by unittest

django.test.TestCase

* Fixtures.

* Test client.

* Email capture.

e Database management.

e Slower than unittest.TestCase.

class StoryAddViewTests(TestCase):
fixtures = ['authtestdata’', 'newsbudget test data’]

urls = 'newsbudget.urls'

def test story add get(self):
r = self.client.get('/budget/stories/add/")

self.assertEqual(r.status code, 200)

def test story add post(self):
data = {
"title’': 'Hungry cat is hungry',
‘date’': '2009-01-01',
}
r = self.client.post('/budget/stories/add/', data)

self.assertEqual(r.status code, 302)

Doctests

e Easy to write & read.
* Produces self-documenting code.
* Great for cases that only use assertEquals.

e Somewhere between unit tests and
functional tests.

e Difficult to debug.

* Don’t always provide useful test failures.

class Choices(object):

Easy declarative "choices" tool::
>>> STATUSES = Choices("Live", "Draft")

Acts like a choices list:
>>> 1ist(STATUSES)
[(1, 'Live'), (2, 'Draft')]

Easily convert from code to verbose:
>>> STATUSES.verbose(1)
"Live’

... and vice versa:
>>> STATUSES.code("Draft")
2

>k 3k 5k 3k >k 5k 5k 3k >k >k 5k 5k 3k >k >k 5k 5k 3k >k 5k 5k 5k 3k >k 5k 5k 3k sk >k 5k 5k 3k >k ok 5k 5k sk >k ok 5k ok sk >k ok 5k ok >k >k 5k 3k

File "utils.py", line 150, in _ main .Choices
Failed example:
STATUSES.verbose(1)
Expected:
'Live’
Got:
'‘Draft’

K 3K 5k 3k >k 3k 5k 5k >k >k 3k 5k 3k >k >k 5k 5k 3k >k 3k 5k 5k sk >k 5k 5k ok sk >k 5k ok ok >k ok 5k ok sk sk ok Sk ok sk sk ok Sk sk sk kK 3k

REV 29

Functional tests

* a.k.a “Behavior Driven Development.”
e “Blackbox,” holistic testing.

e All the hardcore TDD folks look down on
functional tests.

* But they keep your boss happy.

e Easy to find problems; harder to find the
actual bug.

Functional testing
tools

e django.test.Client
e webunit

° Twill

django.test.Client

* Test the whole request path without
running a web server.

* Responses provide extra information
about templates and their contexts.

class StoryAddViewTests(TestCase):
fixtures = ['authtestdata', 'newsbudget test data']

urls = 'newsbudget.urls'

def test story add get(self):
r = self.client.get('/budget/stories/add/")

self.assertEqual(r.status_code, 200)

def test story add post(self):
data = {
"title’: 'Hungry cat is hungry',
‘date': '2009-01-01",
}
r = self.client.post('/budget/stories/add/', data)

self.assertEqual(r.status_code, 302)

Web browser testing

* The ultimate in functional testing for
web applications.

* Run test in a web browser.
e Can verify JavaScript, AJAX; even CSS.

e Test your site across supported browsers.

Browser testing tools

e Selenium
o \Windmill

“Exotic” testing

e Static source analysis.
* Smoke testing (crawlers and spiders).
* Monkey testing.

* | oad testing.

cockecounty

FAILED
Test MP Frontpage run at 2:49pm

gatehouse

PASSED
Test MP Frontpage run at 2:43pm

semoindiana

PASSED
Test MP Frontpage run at 2:49pm

gazlo

PASSED
Test MP Frontpage run at 2:43pm

wenatchee

PASSED
Test MP Frontpage run at 2:43pm

lancaster

PASSED
Test MP Frontpage run at 2:49pm

semomarketplace

PASSED
Test MP Frontpage run at 2:49pm

everythingmidmo

PASSED
Test MP Frontpage run at 2:49pm

postregistermarketplace

PASSED
Test MP Frontpage run at 2:49pm

amarillo

PASSED
Test MP Frontpage run at 2:49pm

PASSED
Test MP Frontpage run at 2:49pm

wonderstate

FAILED
Test MP Frontpage run at 2:49pm

ogden

PASSED
Test MP Frontpage run at 2:49pm

marketplacedemo

FAILED
Test MP Frontpage run at 2:49pm

FAILED
Test MP Frontpage run at 2:49pm

ozark

PASSED
Test MP Frontpage run at 2:49pm

salinafyi

PASSED
Test MP Frontpage run at 2:49pm

marketplacetraining

PASSED
Test MP Frontpage run at 2:439pm

mcminn

PASSED
Test MP Frontpage run at 2:49pm

30

PAS
Test |

PAS
Test |

PAS
Test |

PAS
Test |

PAS
Test |

PAS
Test |

Further resources

e Windmill talk here at OSCON
http://bit.ly/14tkrd

* Django testing documentation
http://bit.ly/django-testing

* Python Testing Tools Taxonomy
http://bit.ly/py-testing-tools

Structuring
applications for reuse

Designing for reuse

* Do one thing, and do it well.

* Don’t be afraid of multiple apps.
* Write for flexibility.

e Build to distribute.

* Extend carefully.

1.

Do one thing, and do it well.

Application == encapsulation

Focus

* Ask yourself: “What does this
application do?”

e Answer should be one or two
short sentences.

Good focus

* “Handle storage of users and
authentication of their identities.”

* “Allow content to be tagged, del.icio.us
style, with querying by tags.”

* “Handle entries in a weblog.”

Bad focus

* “Handle entries in a weblog, and users
who post them, and their authentication,
and tagging and categorization, and some
flat pages for static content, and...”

warning signs

e | ots of files.
e | ots of modules.
e | ots of models.

e | ots of code.

Small is good

* Many great Django apps are very small.

* Even a lot of “simple” Django sites

commonly have a dozen or more
applications in INSTALLED_APPS.

* |f you've got a complex site and a short
application list, something’s probably wrong.

Approach features skeptically

* \What does the application do?

* Does this feature have anything to do
with that?

e No? Don’t add it.

2.

Don’t be afraid of many apps.

The monolith anti-pattern

* The "application” is the whole site.
* Re-use? YAGNI.
* Plugins that hook into the “main” application.

* Heavy use of middleware-like concepits.

(I blame Rails)

The Django mindset

* Application: some bit of functionality.
e Site: several applications.
e Spin off new “apps” liberally.

* Develop a suite of apps ready for when
they’re needed.

Django encourages this

* INSTALLED_APPS

* Applications are just Python packages,
not some Django-specific “app” or
“plugin.”

e Abstractions like django.contrib.sites
make you think about this as you develop.

Spin off a new app?

* |s this feature unrelated to the app’s focus?
e |s it orthogonal to the rest of the app?

* Will | need similar functionality again?

The ideal:

| need a contact form

urlpatterns = ("',

(r'~contact/', include('contact_form.urls')),

Done.

(http://bitbucket.org/ubernostrum/django-contact-formy/)

But... what about...

e Site A wants a contact form that just
collects a message.

e Site B’s marketing department wants a
bunch of info.

e Site C wants to use Akismet to filter
automated spam.

3.

Write for flexibility.

Common sense

* Sane defaults.
e Easy overrides.

* Don’t set anything in stone.

Forms

e Supply a form class.

* | et users specify their own.

Templates

e Specify a default template.

* | et users specify their own.

Form processing

e You want to redirect after successful
submission.

e Supply a default URL.
* (Preferably by using reverse resolution).

e | et users override the default.

def edit entry(request, entry id):
form = EntryForm(request.POST or None)
if form.is valid():
form.save()
return redirect('entry detail', entry id)
return render_to response('entry/form.html', {..})

def edit entry(request, entry id,
form_class=EntryForm,
template name='entry/form.html’,
post _save redirect=None):

form = form_class(request.POST or None)
if form.is valid():
form.save()
if post save redirect:
return redirect(post_save redirect)
else:
return redirect('entry detail', entry id)

return render_to _response([template name, 'entry/form.html'], {..})

URLs

* Provide a URLConf with all views.
e Use named URL patterns.

* Use reverse lookups (by name).

4.

Build to distribute (even private code).

What the tutorial teaches

myproject/
settings.py
urls.py

myapp/
models.py

mysecondapp/
views.py

REV 63

from myproject.myapp.models import ..
from myproject. myapp.models import ..

myproject.settings
myproject.urls

Project coupling
Kills re-use

Projects in real life.

* A settings module.
* A root URLConf.
* Maybe a manage.py (but...)

e And that’s It.

Advantages

* No assumptions about where things live.

* No PYTHONPATH magic.

* Reminds you that “projects” are just a
Python module.

You don’t even need a project

jworld.com:

eworldonline.settings.ljworld
eworldonline.urls.ljworld

* And a whole bunch of apps.

Where apps really live

* Single module directly on Python path
(registration, tagging, etc.).

* Related modules under a top-level
package (ellington.events,

ellington.podcasts, etc.)

* No projects (ellington.settings
doesn’t exist).

Want to distribute®?

e Build a package with distutils/setuptools.

e Put it on PyPI (or a private package
Server).

* Now it works with easy_install, pip,
buildout, ...

General best practices

o Establish dependancy rules.

e Establish a minimum Python version
(suggestion: Python 2.5).

* Establish a minimum Django version
(suggestion: Django 1.0).

* Test frequently against new versions
of dependancies.

Document obsessively.

0.

Embrace and extend.

Don’t touch!

* Good applications are extensible
without patching.

* Take advantage of every extensibility point
an application gives you.

* You may end up doing something that
deserves a new application anyway.

But this application
wasn’t meant to be
extended!

Python Power!

Extending a view

* Wrap the view with your own code.

* Doing it repetitively? Write a decorator.

Extending a model

e Relate other models to it.
e Subclass it.

* Proxy subclasses (Django 1.1).

Extending a form

e Subclass it.

* There is no step 2.

Other tricks

* Signals lets you fire off customized
behavior when certain events happen.

e Middleware offers full control over
request/response handling.

* Context processors can make additional
iInformation available if a view doesn’t.

If you must make
changes to
external code...

Keep changes to a minimum

e [f possible, instead of adding a feature,
add extensibillity.

* Keep as much changed code as you can
out of the original app.

Stay up-to-date

* Don’t want to get out of sync with the
original version of the code!

* You might miss bugfixes.

* You might even miss the feature you
needed.

Use a good VCS

* Subversion vendor branches don’t cut it.
* DVCSes are perfect for this:

* Mercurial queues.

* Git rebasing.

* At the very least, maintain a patch queue
by hand.

Be a good citizen

* [f you change someone else’s code, let
them know.

* Maybe they’ll merge your changes in and
you won’t have to fork anymore.

REV

Further reading

THE EXPERT'S VOICE® IN WEB'DEVEEDOPMENT

Practical

Django

Projects

Wrrite better web applications faster, and learn
how to build up your oun reusable code hf"'(ll_.‘

James Bennett

Dyango Release Manager

APIess®

Deployment

Deployment should...

* Be automated.

e Automatically manage dependencies.

* Be isolated.

* Be repeatable.

* Be identical in staging and in production.

* Work the same for everyone.

Dependency

management Isolation Automation
apt/yum/... virtualenv Capistrano
easy_install zc.buildout Fabric
pIp Puppet/Chef/...

zc.buildout

Dependancy management

* The Python ecosystem rocks!
* Python package management doesn't.

* Installing packages — and dependancies
— correctly is a lot harder than it should be;
most defaults are wrong.

* Here be dragons.

Vendor packages

°* APT, Yum, ...

* The good: familiar tools; stability; handles
dependancies not on PyPI.

* The bad: small selection; not (very)
portable; hard to supply user packages.

* The ugly: installs packages system-wide.

easy_Install

* The good: multi-version packages.

* The bad: requires ‘net connection; can’t
uninstall; can’t handle non-PyPI| packages;
multi-version packages barely work.

* The ugly: stale; unsupported; defaults
almost totally wrong; installs system-wide.

PIP
http://pip.openplans.org/

* “Pip Installs Packages”

* The good: Just Works™; handles non-
PyPIl packages (including direct from
SCM); repeatable dependancies;
integrates with virtualenv for isolation.

* The bad: still young; not yet bundled.
* The ugly: haven’t found it yet.

zc.buildout

http://buildout.org/

* The good: incredibly flexible; handles any
sort of dependancy; repeatable builds;
reusable “recipes;” good ecosystem,;
handles isolation, too.

* The bad: often cryptic, INI-style
configuration file; confusing duplication of
recipes; sometimes too flexible.

* The ugly: nearly completely undocumented.

Package Isolation

* Why?

e Site A requires Foo v1.0; site B requires
Foo v2.0.

* You need to develop against multiple
versions of dependancies.

Package Isolation tools

*Virtual machines (Xen, VMWare, EC2, ...)
e Multiple Python installations.
* “Virtual” Python installations.

e virtualenv
http://pypi.python.org/pypi/virtualeny

e zc.buildout
http://buildout.org/

Why automate?

e “| can’t push this fix to the servers until
Alex gets back from lunch.”

*“Sorry, | can’t fix that. I'm new here.”

*“Oops, | just made the wrong version of
our site live.”

* “It’s broken! What’d you do!?”

Automation basics

* SSH is right out.
* Don’t futz with the server. Write a recipe.

* Deploys should be idempotent.

Capistrano

http://capify.org/

* The good: lots of features; good
documentation; active community.

* The bad: stale development; very
“opinionated” and Rails-oriented.

REV 100

Fabric

http://fabfile.org/

* The good: very simple; flexible; actively
developed; Python.

* The bad: no high-level commands; in flux.

REV 101

Configuration management

e CFENngine, Puppet, Chef, ...

e Will handle a lot more than code
deployment!

| only know a little about these.

REV 102

Recommendations

Pip, Virtualenv, and Fabric
Buildout and Fabric.
Buildout and Puppet/Chef/....

Utility computing and Puppet/Chef/....

REV 103

Production
environments

LiveJournal Backend: Toda

ﬁ bigip1 l

perlbal (httpd/proxy)

(Roughly.)

‘

Global Database

http

bigip2 master_a |master_b
Memcached /NPT INEYY. slave5
djabberd
diabberd HE User DB Cluster 1
': ucla [*=| uci1b
mcd User DB Cluster 2
’ uc2a [<>| uc2b
Mogile Storage Nodes gearmand ch User DB Cluster 3
TR LaearmandN uc3a |*=| uc3b
tracker1 || tracker3 User DB Cluster N
- ucNa [*=| ucNb
MogileFS Database i
gearwrkN RN) ob Queues (xN)
mog_a || mog_b theschwkN e . igNa [==| jaNb
— /\
slave1 | .| slaveN Brad Fitzpatrik, http://danga.com/words/2007_06_usenix/

105

django
database

media

il e

Server

Application servers

* Apache + mod_python

* Apache + mod_wsgi

* Apache/lighttpd + FastCGl

e SCGI, AJP, nginx/mod_wsgqi, ...

REV 107

Use mod_wsgl

WSGIScriptAlias / /home/mysite/mysite.wsgi

import os, sys

Add to PYTHONPATH whatever you need
sys.path.append('/usr/local/django"')

Set DJANGO SETTINGS MODULE
os.environ['DJANGO SETTINGS MODULE'] = 'mysite.settings'

Create the application for mod wsgi
import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

“Scale”

Does this scale?

buooss Jad sbuly |

Number of things

Real-world example

Database A

175 req/s

Database B

75 req/s

Real-world example

650

600 -

550 A

(%)
on

Requests per seconde

650

T2 3 4 5 7 10 13 15 20 256 30 35 40 45 50 60 VO 80 90 100

REV

http://tweakers.net/reviews/657/6

115

django

media

web server

database

database server

Why separate hardware??

e Resource contention
* Separate performance concerns

0 — 1i1s much harderthan1 = N

REV 117

DATABASE HOST = '10.0.0.100°

FAIL

Connection middleware

* Proxy between web and database layers

* Most implement hot fallover and
connection pooling

* Some also provide replication, load
balancing, parallel queries, connection
limiting, &c

e DATABASE HOST = '127.0.0.1°

REV 119

Connection middleware

* PostgreSQL.: pgpool
e MySQL: MySQL Proxy
e Database-agnostic: sqglrelay

e Oracle: ?

REV 120

web server media server

database server

Media server traits

* Fast
o Lightweight
* Optimized for high concurrency

* _ow memory overhead
* Good HTTP citizen

REV 122

Media servers

* Apache?
e lighttpd
* Nginx

*S3

The absolute minimum

The absolute minimum

load balancer media server

django

web server cluster

\J

database server

REV 1

Why load balancers?

L oad balancer traits

* _ow memory overhead
* High concurrency
* Hot fallover

e Other nifty features...

REV 128

. oad balancers

* Apache + mod_proxy
* perlbal

* Nginx

* \/arnish

* Squid

CREATE POOL mypool
POOL mypool ADD 10.0.0.100
POOL mypool ADD 10.0.0.101

CREATE SERVICE mysite
SET listen = my.public.ip
SET role = reverse_proxy
SET pool = mypool
SET verify backend = on
SET buffer size = 120k
ENABLE mysite

you@yourserver:~$ telnet localhost 60000

pool mysite add 10.0.0.102
OK

nodes 10.0.0.101

10.0.0.101 lastresponse 1237987449
10.0.0.101 requests 97554563
10.0.0.101 connects 129242435
10.0.0.101 lastconnect 1237987449
10.0.0.101 attempts 129244743
10.0.0.101 responsecodes 200 358
10.0.0.101 responsecodes 302 14
10.0.0.101 responsecodes 207 99
10.0.0.101 responsecodes 301 11
10.0.0.101 responsecodes 404 18
10.0.0.101 lastattempt 1237987449

REV 131

o 1 von 1 o JI ress] ress

load balancing cluster media server cluster

cache cache
—>

web server cluster cache cluster

\
v v v

database server cluster

REV 132

“Shared nothing”

BALANCE = None

def balance sheet(request):
global BALANCE
if not BALANCE:
bank = Bank.objects.get(...)
BALANCE = bank.total balance()

FAIL

REV 134

Global variables are
right out

from django.cache import cache

def balance sheet(request):
balance = cache.get('bank balance')
if not balance:
bank = Bank.objects.get(...)
balance = bank.total balance()
cache.set('bank_balance', balance)

REV 136

def generate report(request):
report = get the report()
open('/tmp/report.txt’', 'w').write(report)
return redirect(view_report)

def view report(request):

report = open('/tmp/report.txt’').read()
return HttpResponse(report)

FAIL

REV 137

Filesystem?
What filesystem?

Further reading

e Cal Henderson, Building Scalable Web Sites
e John Allspaw, The Art of Capacity Planning
e http://kitchensoap.com/

* http://highscalability.com/

REV 139

Monitoring

(Goals

* When the site goes down, know it immediately.

* Automatically handle common sources of
downtime.

e |deally, handle downtime before it even happens.

* Monitor hardware usage to identify hotspots and
plan for future growth.

* Aid in postmortem analysis.

* Generate pretty graphs.

REV 141

Availability monitoring
principles

* Check services for availability.
* More then just “ping yoursite.com.”

* Have some understanding of dependancies.

* Notify the “right” people using the “right”
methods, and don’t stop until it’s fixed.

* Minimize false positives.

* Automatically take action against common
sources of downtime.

REV 142

Availability monitoring tools

* Internal tools
* Nagios
* Monit
* /enoss

e External monitoring tools

REV 143

Usage monitoring

» Keep track of resource usage over time.
e Spot and identify trends.
* Aid In capacity planning and management.

* | ook good in reports to your boss.

REV 144

Usage monitoring tools

e RRDTool
e Munin
e Cacti

e Graphite

Load average - by week

Perlbal requests in pool djangopool - by month

40

30
n
-+
n
o
g 20
&

10 ‘ |

0 >

Week 09 Week 10 Week 11 Week 12
Cur: Min: Avg: Max:

B Requests per second 8.69 3.11 7.81 36.74

Last update: Wed Mar 25 11:45:11 2009

s
6.0
5.0
4.0
E:
o 3.0
'—'
2.0
1.0
0.0+ N
18 19 20 21 22 23 24 25
M load Cur: 1.63 Min: 0.39 Avg: 1.27 Max: 5.16
Last update: Wed Mar 25 12:20:08 2009
etho traffic - by month
o
S z0M|
v
o
0
| 5
o
o
- 20M
+
-t
3
o
S 10M
c
=
n
Week 09 Week 10 Week 11 Week 12
Cur (-/+) Min (-/+) Avg (-/+) Max (-/+)
@ bps 214.66k/ 2.78M 47.50k/511.11k 179.66k/ 2.00M 850.94k/ 28.01M

Last update: Wed Mar 25 11:45:06 2009

CPU usage - by month

200

150

100

50

0
Week 09 Week 10 Week 11 Week 12
O system Cur: 5.54 Min: 0.87 Avg: 3.64 Max:
B user Cur: 71.50 Min: 13.52 Avg: 57.18 Max:
M nice Cur: 0.64 Min: 0.09 Avg: 0.64 Max:
@ idle Cur: 118.89 Min: 3.00 Avg: 134.74 Max:
@ iowait Cur: 2.57 Min: 0.08 Avg: 3.08 Max:
Oirq Cur: 0.14 Min: 0.05 Avg: 0.14 Max:
W softirq Cur: 0.72 Min: 0.25 Avg: 0.57 Max:

Last update: Wed Mar 25 11:40:06 2009

13.48
187.28
1.86
182.31
59.88
2.37
3.00

146

Trac tickets - by year
"
1000
800
0
b 600
R,
v
i
400
200
0 .
Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul
@ unreviewed Cur: 254.59 Min: 0.00 Avg: 230.63 Max: 581.00
B design Cur: 427.00 Min: 226.00 Avg: 335.88 Max: 429.00
B accepted Cur: 736.77 Min: 526.79 Avg: 653.95 Max: 969.00
@ ready Cur: 40. 00 Min: 14.96 Avg: 26. 38 Max: 82. 00
Last update: Mon Jul 20 11:35:10 2009

REV 147

Logging

* Record information about what’s
happening right now.

* Analyze historical data for trends.

* Provide postmortem information after
failures.

REV 148

Logging tools

* print
* Python’s logging module
* syslogad

Log analysis

egrep | sort | unig -c | sort -rn

* | oad log data into relational databases,
then slice & dice.

* OLAP/OLTP engines.

* Splunk.

* Analog, AWStats, ...

* Google Analytics, Mint, ...

REV 150

What to monitor?

* Everything possible.

e The answer to “should | monitor this?” is
always “yes.”

REV 151

Performance

And when you should care.

lgnore performance

Step 1: write your app.
Step 2: make it work.
Step 3: get it live.

Step 4. get some users.

Step 94,211: tune.

REV 153

lgnore performance

e Code isn’t “fast” or “slow” until it’s
deployed in production.

e That said, often bad code is obvious.
So don’t write it.

* YAGNI doesn’t mean you get to be
an idiot.

REV 154

Low-hanging fruit

* | ots of DB queries.
* Rule of thumb: O(1) queries per view.
*\Very complex queries.

* Read-heavy vs. write-heavy.

REV 155

Anticipate bottlenecks

* [t’s probably going to be your DB.
*|f not, it’ll be I/O.

“It’s slow!”

Define “slow”

* Benchmark in the browser.
e Compare to wget/curl.
* The results can be surprising.

e Often, “slow” is a matter of perceived
performance.

REV 158

14 Steps to Faster-Loading Web Sites Essential Knowlege for Frontend Engineers

High Performance

Web Sites_

VN

Essential Knowledge
for Front-End Engineers

4

Fven Faster
Web Sites

Steve Souders
O, RE'LLY. Foreword by .(\4::1' A'r.-(‘:l:'(jr O,RE'LLY 2 Steve Souders

YSlow

http://developer.yahoo.com/yslow/

http://developer.yahoo.com/yslow/
http://developer.yahoo.com/yslow/

Server-side
performance tuning

Tuning In a nutshell

* Cache.

e Cache some more.

* [mprove your caching strategy.
* Add more cache layers.

* Then, maybe, tune your code.

REV 162

Caching is magic

* Turns less hardware into more!

* Makes slow code fast!

* | owers hardware budgets!

* Delays the need for new servers!

e Cures scurvy!

REV 163

Caching is about
trade-offs

Caching questions

e Cache for everybody? Only logged-in users?
Only non-paying users?

* Long timeouts/stale data? Short timeouts/
worse performance?

e |[nvalidation: time-based? Data based? Both?

» Just cache everything? Or just some views?
Or just the expensive parts?

e Django’s cache layer? Proxy caches?

REV 165

Common caching strategies

* Are most of your users anonymous? Use
CACHE MIDDLEWARE ANONYMOUS ONLY

* Are there just a couple of slow views? Use
@cache_page.

* Need to cache everything? Use a site wide
cache.

* Everything except a few views? Use
@never _cache.

REV 166

Site-wide caches

* Good: Django’s cache middleware.

» Better: A proper upstream cache. (Squid,
Varnish, ...).

REV 167

External caches

* Most work well with Django.

* Internally, Django just uses HT TP headers
to control caching; those headers are
exposed to external caches.

e Cached requests never even hit Django.

REV 168

Conditional view
processing

GET / HTTP/1.1
Host: www2.1ljworld.com/

HTTP/1.1 200 OK

Server: Apache

Expires: Wed, 17 Jun 2009 18:17:18 GMT
ETag: "93431744c9097d4a3edd4580bf1204c4"

GET / HTTP/1.1
Host: www2.ljworld.com/
If-None-Match: "93431744c9097d4a3edd4580bf1204c4"

HTTP/1.1 304 NOT MODIFIED
GET / HTTP/1.1
Host: www2.ljworld.com/

If-Modified-Since: Wed, 17 Jun 2009 18:00:00 GMT

HTTP/1.1 304 NOT MODIFIED

170

Etags

e Opaqgue identifiers for a resource.
e Cheaper to compute than the resource itself.
e Bad: “17”, “some title”, etc.

e Good:
“03431744¢c9097d4a3edd4580bf1204c4”,
“74c05a20-5b6f-11de-adc7-001b63944e73”, etc.

REV 171

When caching fails...

‘I think | need a bigger box.”

Where to spend money

* First, buy more RAM.
* Then throw money at your DB.

* Then buy more web servers.

REV 174

No money?

Web server
Improvements

e Start with simple improvements: turn off
Keep-Alive, tweak MaxConnections; etc.

e Use a better application server
(mod_wsaqi).

* Investigate light-weight web servers
(nginx, lighttpd).

REV 176

Database tuning

* \Whole books can be — and many have
been — written about DB tuning.

* MySQL: High Performance MySQL
http://www.amazon.com/dp/0596101 716/

* PostgreSQL.:

http://www.revsys.com/writings/postgresqgl-performance.htmi

REV 170

http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html

Build a toolkit

eprofile, cProfile
e strace, SystemTap, dtrace.

* Django debug toolbar
http://bit.ly/django-debug-toolbar

REV 178

More...

http://jacobian.org/r/django-cache
http://jacobian.org/r/django-conditional-views

REV 1

Final thoughts

* Writing the code is the easy part.

* Making it work in the Real World is that
part that’ll make you lose sleep.

* Don’t worry too much: performance
problems are good problems to have.

e But worry a little bit: “an ounce of
prevention is worth a pound of cure.”

180

Contact me: jacob@jacobian.org / @jacobian

Hire me: http://revsys.com/

REV 1

