
Are VM’s Passé?
Ben Golub

CEO Docker, Inc.

They told me that I needed a
provocative title for this talk.

So…

Q: Are VMs Passé?

A: No

Thank you for attending

A different question…

• Q: Is there a better alternative for many use cases &

environments?

–application management & creation?

–application deployment across clusters & clouds?

–CI & CD?

–scale out?

–high performance?

–collaborative development?

A: Yes

Agenda

• Server Proliferation and the rise of the VM

• The Matrix from Hell and the need for lightweight, interoperable
containers

• Step 1: Making lightweight containers:
• Containers vs. VMs: how they work

• Step 2: Making containers really interoperable:

• Step 3: Making containers really lightweight

• Step 4: Creating a container-based system for app mgt & deployment

• Step 5: Creating an ecosystem around containers

• Where to Use VMs vs. Containers/Docker

• Learn more

Some ancient history: Where did VM’s come from?

• PROBLEM IN 2000: Server Proliferation/Consolidation

- I’ve got a single purpose, physical Microsoft Exchange
Server, Mac print server, and Custom Unix inventory server

- Machines are getting more powerful

- I want to consolidate all those single purpose, physical
servers onto a single server

- BTW--It takes too damn long to provision a physical machine

• ANSWER: Create a Virtual Machine

Results

• Single purpose physical application servers
become single purpose virtual servers

• Provisioning a “server” goes from days/weeks
to minutes

• Huge cost savings

• An awesome solution to the server consolidation
problem

• An awesome solution for creating flexible
infrastructures

• Mature ecosystem and tool set for isolation,
security, management

What has changed since the VM was developed?

2000 2014

Apps are long lived Development is iterative and constant

Apps are monolithic and developed on
a single stack

Apps are created from loosely coupled
components, themselves created from
a multitude of “stacks”

Deployment is to a single server Deployment is to a variety of servers:
VM, physical, cluster, open stack,
public cloud, +++

• Result: An application isn’t easily represented or managed as a
single purpose server (whether physical or virtual)

Static website

Web frontend

User DB

Queue Analytics DB

Background workers

API endpoint

nginx 1.5 + modsecurity + openssl + bootstrap 2

postgresql + pgv8 + v8

hadoop + hive + thrift + OpenJDK

Ruby + Rails + sass + Unicorn

Redis + redis-sentinel

Python 3.0 + celery + pyredis + libcurl + ffmpeg + libopencv + nodejs +

phantomjs

Python 2.7 + Flask + pyredis + celery + psycopg + postgresql-client

Development VM

QA server

Public Cloud

Disaster recovery

Contributor’s laptop

Production Servers

The Problem in 2014
M

u
lt

ip
lic

it
y

o
f

St
ac

ks
M

u
lt

ip
lic

it
y

o
f

h
ar

d
w

ar
e

e

n
vi

ro
n

m
en

ts

Production Cluster

Customer Data Center

D
o

 se
rvice

s an
d

 ap
p

s
in

te
ract

ap
p

ro
p

riately?

C
an

 I m
igrate

sm

o
o

th
ly an

d

q
u

ickly?

The Matrix From Hell

Static website

Web frontend

Background workers

User DB

Analytics DB

Queue

Development

VM
QA Server

Single Prod

Server

Onsite

Cluster
Public Cloud

Contributor’s

laptop

Customer

Servers

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

M
u

lt
ip

lic
it

y
o

f
G

o
o

d
s

M
u

lt
ip

ili
ci

ty
o

f
m

e
th

o
d

s
fo

r
tr

an
sp

o
rt

in
g/

st
o

ri
n

g

D
o

 I w
o

rry ab
o

u
t

h
o

w
 go

o
d

s in
teract

(e
.g. co

ffe
e

 b
e

an
s

n
ext to

 sp
ice

s)

C
an

 I tran
sp

o
rt q

u
ickly

an
d

 sm
o

o
th

ly
(e

.g. fro
m

 b
o

at to
 train

to

 tru
ck)

An Inspiration…and some really ancient history:
Cargo Transport Pre-1960

M
u

lt
ip

lic
it

y
o

f
G

o
o

d
s

M
u

lt
ip

lic
it

y
o

f
m

et
h

o
d

s
fo

r
tr

an
sp

o
rt

in
g

/s
to

ri
n

g

D
o

 I w
o

rry ab
o

u
t

h
o

w
 go

o
d

s in
teract

(e.g. co
ffee

 b
e

an
s

n
ext to

 sp
ices)

C
an

 I tran
sp

o
rt

q
u

ickly an
d

 sm
o

o
th

ly
(e.g. fro

m
 b

o
at to

train

 to
 tru

ck)

Solution: Intermodal Shipping Container

…in between, can be loaded and

unloaded, stacked, transported

efficiently over long distances,

and transferred from one mode

of transport to another

A standard container that is

loaded with virtually any

goods, and stays sealed until
it reaches final delivery.

This spawned an Intermodal Shipping Container Ecosystem

• 90% of all cargo now shipped in a standard container
• Order of magnitude reduction in cost and time to load and unload ships
• Massive reduction in losses due to theft or damage
• Huge reduction in freight cost as percent of final goods (from >25% to <3%)
 massive globalization
• 5000 ships deliver 200M containers per year

Static website Web frontend User DB Queue Analytics DB

Development

VM
QA server Public Cloud Contributor’s

laptop

Let’s create a shipping container system for code
M

u
lt

ip
lic

it
y

o
f

St
ac

ks
M

u
lt

ip
lic

it
y

o
f

h
ar

d
w

ar
e

en
vi

ro
n

m
e

n
ts

Production

Cluster
Customer Data

Center

D
o

 se
rvices an

d
 ap

p
s

in
teract

ap
p

ro
p

riately?

C
an

 I m
igrate

sm
o

o
th

ly an
d

 q
u

ickly

…that can be manipulated using

standard operations and run

consistently on virtually any

hardware platform

An engine that enables any

payload to be encapsulated

as a lightweight, portable,

self-sufficient container…

Static website

Web frontend

Background workers

User DB

Analytics DB

Queue

Development

VM
QA Server

Single Prod

Server

Onsite

Cluster
Public Cloud

Contributor’s

laptop

Customer

Servers

Eliminate the matrix from Hell

App
A

Step One: Create a lightweight container (vs. VMs)

Hypervisor (Type 2)

Host OS

Server

Guest
OS

Bins/
Libs

App
A’

Guest
OS

Bins/
Libs

App
B

Guest
OS

Bins/
Libs

A
p

p
 A

’

Host OS

Server

Bins/Libs

A
p

p
 A

Bins/Libs

A
p

p
 B

A
p

p
 B

’

A
p

p
 B

’

A
p

p
 B

’
VM

Container

Containers are isolated,
but share OS kernel and, where
appropriate, bins/libraries

Guest
OS

Guest
OS

…result is significantly faster deployment,
much less overhead, easier migration,
faster restart

A great slide stolen from IBM: Why Containers?

 Provision in seconds / milliseconds

 Near bare metal runtime performance

 10 x greater density

 VM-like agility – it’s still “virtualization”

 Flexibility

– Containerize a “system”

– Containerize “application(s)”

 Lightweight

– Just enough Operating System (JeOS)

– Minimal per container penalty

 Open source – free – lower TCO

 Supported with OOTB modern Linux kernel

 Growing in popularity

3/28/2014 20

“Containers as poised as the next VM in our modern Cloud era…”

Manual VM LXC

Provision Time

Days

Minutes

Seconds / ms

linpack performance @ 45000

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 B
M

vcpus

G
F

lo
p

s

Google trends - LXC Google trends - docker

http://en.wikipedia.org/wiki/Just_enough_operating_system

Step 2: Make the containers easy to use,
standardized, interoperable, automatable

• Shipping containers are a standard size, and
have hooks and holes in all the same places

• With Docker, Containers get the following:
- Ease of use, tooling
- Re-usable components
- Ability to run on any Linux server today: physical, virtual,

VM, cloud, OpenStack, +++
- (Stay tuned for other O/S’s)

- Ability to move between any of the above in a matter of
seconds-no modification or delay

- Ability to share containerized components
- Interoperability with all existing devops tools
- Self contained environment—no dependency hell
- Tools for how containers work together: linking, nesting,

discovery, orchestration, ++

• You get ability to separate app management
from infrastructure management

Technical & cultural revolution: separation of concerns

• Dan the Developer

• Worries about what’s “inside” the
container

• His code

• His Libraries

• His Package Manager

• His Apps

• His Data

• All Linux servers look the same

• Oscar the Ops Guy
• Worries about what’s “outside” the

container

• Logging

• Remote access

• Monitoring

• Network config

• All containers start, stop, copy, attach,
migrate, etc. the same way

Step 3: Make containers super lightweight

Bins/
Libs

App
A

Original App
(No OS to take
up space, resources,
or require restart)

A
p

p
 Δ

B
in

s/

App
A

Bins/
Libs

App
A’

Guest
OS

Bins/
Libs

Modified App

Copy on write allows
us to only save the diffs
Between container A
and container
A’

VMs
Every app, every copy of an
app, and every slight modification
of the app requires a new virtual server

App
A

Guest
OS

Bins/
Libs

Copy of
App

No OS. Can
Share bins/libs

App
A

Guest
OS

Guest
OS

VMs Containers

Prod Hosts 21000+: OS (Linux)Prod Hosts 21000+: OS (Linux)

Step 4: Build a System for creating, managing,
deploying code

Source
Code

Repository

Dockerfile
For
A

Docker
Registry

Build

D
o

cker

Prod Hosts: OS (Linux)

C
o

n
tain

e
r A

C
o

n
tain

er B

C
o

n
tain

er C

C
o

n
tain

e
r A

Push

Search
Pull

Run

Dev Host : OS (Linux)

D
o

cker

Including a System for Changes and Updates

Docker
Registry

Push

Update

Bins/
Libs

App
A

A
p

p
 Δ

B
in

s/

Base
Container

Image

Hosts are now running A’’

Container
Mod A’’

A
p

p
 Δ

B
in

s/

Bins/
Libs

App
A

B
in

s/

Bins/
Libs

App
A’’

Host(s) running A want to upgrade to A’’.
Requests update. Gets only diffs

Container
Mod A’

Prod Hosts 21000+: OS (Linux)Prod Hosts 21000+: OS (Linux)Prod Hosts: OS (Linux)
Prod Hosts 21000+: OS (Linux)Prod Hosts 21000+: OS (Linux)Prod Hosts: OS (Linux)

Including a System for the Full Lifecycle

Develop Test/QA Build Run Scale
Hyper
scale

APP CREATION

APP DEPLOYMENT

APP MANAGEMENT

Docker
engine

Docker
engine

Docker
engine

Docker
engine

Containers can
be linked and
assembled into
complex service-
oriented stacks.

v0.7
Stacks can span
multiple machines,
using encrypted and
authenticated tunnels.

v0.9

docker.io

v0.really soon
Docker deployments can
span multiple
datacenters and cloud
providers by using the
docker.io service.
Docker.io acts as a hub
and federates
authentication, service
discovery and
orchestration across all
docker engines across
an organization

Including a System for Complex Apps

Step 5: Create an Ecosystem

45,000

Open Ecosystem Momentum

• Truly open: Apache license, open design, open
tooling, non-Docker maintainers

• Downloads: Over 1.2 m container downloads

• Users: Over 45,000 trained developers

• Content: Over 8000 repositories now
publishing containers to Docker Index

• Contributors: 380 contributors, 95% of whom
don’t work for Docker, In.c

• Meetups: Over 80 cities in 30 countries have
Docker meetups

• Integrations: OpenStack, RHEL, Ubuntu, Salt,
Chef, Puppet, Salt +++

• Github
• Over 10,000 stars

• Over 1.7 K forks

• Over 350 derivative projects

Who is using Docker?

… and hundreds of other small and big companies

Four major use cases

• Continuous Integration/Continuous Delivery:
• Go from developer’s laptop, through automated test, to production, and through

scaling without modification

• Alternative form of virtualization for multi-tenant services

• Scale-out:
• Rapidly scale same application across hundreds or thousands of servers…and

scale down as rapidly

• Cross Cloud Deployment
• Move the same application across multiple clouds (public, private, or hybrid)

without modification or noticeable delay

Where should I use VMs?

• VMs are definitely the way to go to solve many problems
• Heterogeneous O/S families: Run Windows app on a Mac Server

• Using O/S or kernel that doesn’t support containers

• Your real problem is infrastructure management

• You want the maturity of the VM toolset

• VM requires unique kernel setup which is not applicable to other VMs on the host
(i.e. per VM kernel config)

• Need to freeze state and live migrate

• But… you can pursue a hybrid strategy: containers on VMs

• Stay tuned for better Docker/Container answers for many of the above

Conclusion

• Multiple forces are driving a reconsideration of how applications should be
created, built, deployed, scaled, and managed

• We believe that the right approach is to decouple application management from
infrastructure management

• Container based approach (vs. VM approach) provides right level of abstraction

• Enables infrastructure to be managed consistently and stably

• Enables applications to be built flexibly and deployed flexibly

• Provides greater degree of visibility, control, and management of what runs
where and what components are allowed

• Massive cost, speed, efficiency savings

• Docker is becoming the standard for containerization

Learn More

• LXC Technical discussion: slideshare.net/BodenRussell/realizing-linux-containerslxc

• Docker project: www.docker.io/

• Follow Docker on Twitter: twitter.com/docker

• Take the Docker interactive tutorial: www.docker.io/gettingstarted/

• Join Docker on IRC: botbot.me/freenode/docker/

• Go to the Docker repository on GitHub: github.com/dotcloud/docker/

• Go to a meetup: www.docker.io/community/#Docker-Meetups

• See what others are doing: www.docker.io/community/

• Come to DockerCon, Jun 9-10, San Francisco: www.dockercon.com

http://www.slideshare.net/BodenRussell/realizing-linux-containerslxc
http://www.docker.io/
https://twitter.com/docker
http://www.docker.io/gettingstarted/
https://botbot.me/freenode/docker/
https://github.com/dotcloud/docker/
http://www.docker.io/community/#Docker-Meetups
http://www.docker.io/community/
http://www.dockercon.com/

Are VM’s Passé?
Ben Golub

CEO Docker, Inc.

