
Building a smarter application stack

Tomas	
 Doran	

@bobtfish	

2014-­‐06-­‐10

Docker is the future

• Preaching to the converted here ;)  

• Game changing technology  

• No silver bullets (ever)
• Introduces it’s own set of problems and issues
• Dependency discovery / wiring
• Scheduling

2

Smartstack

• One possible solution to discovery
problems 

• This talk:
• Application architecture
• Problem(s) we’re solving
• Why this solution works well for us
• Alternate solutions

3

Microservices - also the future!

• The same as SOA
• But one API per service.
• Own data store! 

• Lots of services (dozens, maybe 100s) 

• All individually very simple
• Easy to reason about.
• Easy to replace

4

Don’t break the site - ever!!!
• Microservices are individually deployable!
• When we say “Don’t break the site”
• We mean
• Don’t break all of the site!

5

Don’t break the site - ever!!!
• If you have graceful degradation…
• You can ignore MTBF in the backend services!
• You only care about MTTR.

6

“I’ll just break this out into it’s own
application, as it’ll be easier to
maintain in 10 years time”

- Pre seed funding
nobody, ever!

7

Monolith - the reality

• Everyone has one of these :)
• If you’re far enough down the path, you call

this ‘The presentation layer’. 

• Still poses a challenge
• need async requests
• need graceful degradation

8

Monolith - the reality

• Most popular service  

• Most dependencies
• Call into 10s or 100s of other services in a

request! 

• Needs circuit breakers + dynamic
configuration

9

No silver bullet = No one solution

• You should always have 2.
• Nagios / Sensu
• RRDs + Ganglia / Graphite + Diamond
• YAML files / Zookeeper

10

No silver bullet = No one solution

• ‘Top down’ architecture sucks.
• Instead, broad goals + ’Bottom up’ architecture
• Internal competition!
• Replacing the incumbent solution happens

organically
• If your thing works better, people will want to

move!  

• Not perfect! Better than top-down!

11

“Humans are bad at predicting the performance of
complex systems […]. Our ability to create large
and complex systems fools us into believing that
we’re also entitled to understand them”  
 - Carlos Bueno “Mature optimization handbook” 

12

Distributed complexity
• Distributed systems introduce their own set of complexity

• Reasoning about the whole system challenging
• Timing/profiling/performance analysis non-trivial
• Resource scheduling also non-trivial
• 2nd order effects

!
• Can’t reason about emergent behavior

13

14

15

?

16

?

What the heck happened at 16:46?

17

?

And why did it stop at 17:00?

Dynamic architecture

• Cattle not pets
• AWS and VMs in ‘the cloud’ started this
• Docker takes it a step further  

• Explicitly manage persistent state
• Explicit regular recycling
• All updates are redeploys  

18

Dependency nightmares
• Almost everything has some dependencies

• Simple example, web app with a mysql DB
• App config in a YAML file  

• Mysql container address changes when you restart mysql!
• Oops, app can’t find mysql!  

• Do I need to restart every application using mysql?
• Sucks!

• Do I need to rebuild application containers using mysql?
• To edit the config YAML file!
• Super super sucks!

19

Runtime wiring
• mysql failovers - the simple case! 

• Presentation layer talking to service REST layers
• Different deployment schedules
• No downtime 

• Only possible solution: wiring dependencies at runtime
• A challenge
• Also an opportunity 

• DNS is workable in some cases
20

Dynamic discovery
• Discovery becomes a core problem  

• DNS re-resolving not generally trustworthy
• You need to test everything for this  

• DNS balancing (internally) is awful
• Failed node + multiple connections/requests

• DNS round robin
• Everything sees failure

• Slow to shift traffic
• Round robin is crappy for load balancing  

21

Externalized wiring
• Remove a lot of complexity from the application domain 

• Run a load balancer (haproxy) on each machine  

• Applications always connect to load balancer on fixed
host/port
• localhost on traditional metal/VMs
• supplied by —link or environment variables in Docker 

• Applications become wiring agnostic!

22

Externalized wiring

23

‘Client side load balancing’

• Lots of projects use this approach:
• Project Atomic
• Marathon + Mesos-Docker
• vulcand (https://github.com/mailgun/vulcand)
• Frontrunner (https://github.com/Wizcorp/

frontrunner)
• Consul

!
• Smartstack

24

https://github.com/Wizcorp/frontrunner

Legacy infrastructure

• Physical machines
• Application images in AMIs
• kvm 

• Can’t just use container links or a Docker only
solution 

• Want to use the same (uniform) solution
everywhere.

25

Entropy reduction

• You can’t change everything at once!  

• Everything will tend towards chaos
• ‘Old infrastructure’
• ‘New infrastructure’
• ‘New new infrastructure’

!
• Solution specifically chosen so it could be generic.

26

SmartStack

• 2 parts
• Synapse
• Nerve

!
• Conceptually simple
• Very flexible
• Easy to hack on
• Plays well on traditional machines
• Plays well in docker

27

Synapse
• Does discovery against a pluggable backend
• Writes out a haproxy configuration  

• Assign a well known port to all services
• Application connects to that port
• haproxy forwards to an available backend  

• Your application doesn’t need to know about discovery!  

• Technology agnostic - works the same on metal/VMs/Docker

28

29

Why synapse?
• haproxy is a well known solution
• ruby - easy to modify
• simple (has one job)
• Pluggable - discovery with multiple methods:

• JSON config (static)
• zookeeper
• etcd
• docker API
• ec2 tags

• Flexible
• Deploy one per instance
• Or pairs as dedicated lbs 30

Nerve

• Health checks services
• Health checks are pluggable.
• HTTP (flexible) + mysql come out the box

• Registers service information to backend
• zookeeper
• etcd (beta)

31

32

Connector agnostic containers

• On ‘real servers’ or VMs, running a synapse
instance per box is fine. 

• In docker, we want to abstract more than that
• Make containers connector agnostic!
• They don’t need to know or care
• Upgrade independently.

33

Synapse <3 ambassador
containers

• ‘Ambassador pattern’
• Run a synapse ‘ambassador’ container on each host

for each service
• Link each application to the ambassador for each of

it’s dependencies
• Environment variables to each service’s haproxy
• Separates synapse management (i.e. changing the

wiring) from application management (i.e.
upgrading the app version).

34

35

Container links
• Ambassador for service A presents:

• port 8000 for HTTP REST service
• port 8443 for HTTPS REST service
!

• Container linking to ambassador sees:
• SRVA_PORT_8000_TCP=tcp://172.17.0.8:6379
• SRVA_PORT_8000_TCP_PROTO=tcp
• SRVA_PORT_8000_TCP_ADDR=172.17.0.8
• SRVA_PORT_8000_TCP_PORT=6379
• SRVA_PORT_8443_TCP=tcp://172.17.0.8:6380
• SRVA_PORT_8443_TCP_PROTO=tcp
• SRVA_PORT_8443_TCP_ADDR=172.17.0.8
• SRVA_PORT_8443_TCP_PORT=6380

36

Nerve registration container

• Each app container gets a Nerve instance
• Nerve registers its 1 app
• Nerve instance can be generic
• Make services all have a standard /health

endpoint
• Healthchecks standard
• Only need one nerve container image!

37

Alternate options
• Just register the contents of the docker API into etcd

• http://coreos.com/blog/docker-dynamic-ambassador-
powered-by-etcd/

• No health checks
• Docker only

• confd
• Consul
• frontrunner - discovery from Marathon

• Uses haproxy too
• Less health checking options

38

Vulcand

39

Issues

• If you have lots of machines + services, you have a lot
of Synapses
• haproxy health checks can become expensive on

end user apps
• Nerve helps with this 

• Lots of small load balancers is harder to reason about
than a few big ones

40

Live demo?

41

Thanks

• Slides will be online  
http://slideshare.net/bobtfish  

• Official Smartstack site:  
http://nerds.airbnb.com/smartstack-service-discovery-cloud/ 

• Pre-built containers to play with + blog post  
http://engineeringblog.yelp.com/ 
https://index.docker.io/u/bobtfish/synapse-etcd-amb/  
https://index.docker.io/u/bobtfish/nerve-etcd/ 

• Questions?
42

