Building a smarter application stack

Tomas Doran
@bobtfish
2014-06-10 ©

Docker is the future

NN
« Preaching to the converted here ;) doc kQ r

« Game changing technology

« No silver bullets (ever)
 Introduces it's own set of problems and issues
« Dependency discovery / wiring

« Scheduling

Smartstack

NN
« One possible solution to discovery d k
problems OC Q r

« This talk:

« Application architecture

* Problem(s) we're solving
« Why this solution works well for us

« Alternate solutions

Microservices - also the future!

The same as SOA
But one API per service.

Own data store!
Lots of services (dozens, maybe 100s)

All individually very simple
« Easy to reason about.

« Easy to replace

Don’t break the site - ever!!!

e Microservices are individually deployable!
When we say “Don’t break the site”

« We mean

« Don't break all of the site!

Don’t break the site - ever!!!

 If you have graceful degradation...
* You can ignore MTBF in the backend services!

* You only care about MTTR.

“Pll just break this out into it’s own
application, as it’ll be easier to

maintain in 10 years time”
- Pre seed funding

nobody, ever!

Monolith - the reality

« Everyone has one of these :)

« If you're far enough down the path, you call
this ‘'The presentation layer’.

 Still poses a challenge
* need async requests
« need graceful degradation

Monolith - the reality

* Most popular service

* Most dependencies

« Callinto 10s or 100s of other services in a
request!

« Needs circuit breakers + dynamic
configuration

No silver bullet = No one solution

* You should always have 2.
* Nagios / Sensu
« RRDs + Ganglia / Graphite + Diamond
* YAML files / Zookeeper

No silver bullet = No one solution

“Top down’ architecture sucks.
Instead, broad goals + ‘Bottom up’ architecture
 Internal competition!

« Replacing the incumbent solution happens
organically

 If your thing works better, people will want to
movel

Not perfect! Better than top-down!

“Humans are bad at predicting the performance of
complex systems [...]. Our ability to create large
and complex systems fools us into believing that
we’re also entitled to understand them?”

— Carlos Bueno "“Mature optimization handbook”

Distributed complexity

« Distributed systems introduce their own set of complexity
« Reasoning about the whole system challenging
« Timing/profiling/performance analysis non-trivial
« Resource scheduling also non-trivial
« 2nd order effects

« Can't reason about emergent behavior

ServiceCalls—timing—+total time—s | ALL__~ ! F

H‘i |

1|V
A NN 1

X A / A

|0V 0 57 RITAVLIA H1¥
P2 e o, A I Y S === i L] s ey \ A [
\ LA alp il

[ARl T
— 7 n | =) : il v
DRSS = =

15:15 15:39 15:45 16:00 16:15 16:30 16:45 17:00

14:30 14:45

14:15

What the heck happened at 16:46?

And why did it stop at 17:00?

Dynamic architecture

Cattle not pets
AWS and VMs in ‘the cloud’ started this

« Docker takes it a step further

Explicitly manage persistent state
Explicit regular recycling

All updates are redeploys

Dependency nightmares

Almost everything has some dependencies
« Simple example, web app with a mysql DB
« App config in a YAML file

Mysql container address changes when you restart mysql!

« Oops, app can’t find mysql!

Do | need to restart every application using mysql?
Sucks!
Do | need to rebuild application containers using mysql?

« To edit the config YAML file!

 Super super sucks!

Runtime wiring

« mysql failovers - the simple casel!

« Presentation layer talking to service REST layers
« Different deployment schedules

e No downtime

Only possible solution: wiring dependencies at runtime
« A challenge

« Also an opportunity

« DNS is workable in some cases

Dynamic discovery

« Discovery becomes a core problem

e DNS re-resolving not generally trustworthy

« You need to test everything for this

« DNS balancing (internally) is awful
« Failed node + multiple connections/requests
« DNS round robin
e Everything sees failure
« Slow to shift traffic

« Round robin is crappy for load balancing

Externalized wiring

Remove a lot of complexity from the application domain
Run a load balancer (haproxy) on each machine
Applications always connect to load balancer on fixed
host/port

 J|localhost on traditional metal/VMs

« supplied by —link or environment variables in Docker

Applications become wiring agnostic!

23

‘Client side load balancing’

Lots of projects use this approach:

* Project Atomic

« Marathon + Mesos-Docker

 vulcand (https://github.com/mailgun/vulcand)

« Frontrunner (https://github.com/Wizcorp/
frontrunner)

e Consul

Smartstack

https://github.com/Wizcorp/frontrunner

Legacy infrastructure

Physical machines
Application images in AMls

kvm

Can't just use container links or a Docker only
solution

Want to use the same (uniform) solution
everywhere.

Entropy reduction

* You can’t change everything at once!

« Everything will tend towards chaos
e« 'Old infrastructure’
« 'New infrastructure’

e 'New new infrastructure’

« Solution specifically chosen so it could be generic.

SmartStack

e 2 parts
« Synapse
* Nerve

Conceptually simple

Very flexible

Easy to hack on

Plays well on traditional machines

Plays well in docker

Synapse

Does discovery against a pluggable backend

Writes out a haproxy configuration

Assign a well known port to all services
« Application connects to that port

« haproxy forwards to an available backend
Your application doesn’t need to know about discovery!

Technology agnostic - works the same on metal/VMs/Docker

Discovery info
about backends

synapse

Rewrites config

+
Reload

haproxy

y

i

application

Backend
tcp:/l...
http://...

Why synapse?

haproxy is a well known solution

ruby - easy to modify

simple (has one job)

Pluggable - discovery with multiple methods:

JSON config (static)
zookeeper

etcd

docker API

ec2 tags

Flexible

Deploy one per instance

Or pairs as dedicated lbs

Nerve

« Health checks services
e Health checks are pluggable.

« HTTP (flexible) + mysqgl come out the box
« Registers service information to backend

« zookeeper

e etcd (beta)

synapse

=

haproxy

I

mysq|l

web application

Health
Checks

nerve

Connector agnostic containers

« On ‘real servers’ or VMs, running a synapse
instance per box is fine.

« In docker, we want to abstract more than that
« Make containers connector agnostic!
« They don’t need to know or care
« Upgrade independently.

Synapse <3 ambassador
containers

« ‘Ambassador pattern’

Run a synapse ‘ambassador’ container on each host
for each service

Link each application to the ambassador for each of
it's dependencies

Environment variables to each service’s haproxy

Separates synapse management (i.e. changing the
wiring) from application management (i.e.
upgrading the app version).

Server 1

application

docker run -d —link srv_A_amb:srva

myapp

N Container link
service A ambassador /

synapse :>

haproxy

Server 3

service A
Backend
tep://...
http://...

Server 2

service A
Backend
tcp:/l...
http://...

Discovery

Container links

« Ambassador for service A presents:
« port 8000 for HTTP REST service
« port 8443 for HTTPS REST service

« Container linking to ambassador sees:

« SRVA_PORT_8000_TCP=tcp://172.17.0.8:6379
« SRVA_PORT_8000_TCP_PROTO=tcp

« SRVA_PORT_8000_TCP_ADDR=172.17.0.8

« SRVA_PORT_8000_TCP_PORT=6379

« SRVA_PORT_8443_TCP=tcp://172.17.0.8:6380
« SRVA_PORT_8443 TCP_PROTO=tcp

« SRVA_PORT_8443_TCP_ADDR=172.17.0.8

« SRVA_PORT_8443_TCP_PORT=6380

Nerve registration container

Each app container gets a Nerve instance

Nerve registers its 1 app

Nerve instance can be generic

« Make services all have a standard /health
endpoint

« Healthchecks standard

« Only need one nerve container image!

Alternate options

Just register the contents of the docker API into etcd

« http://coreos.com/blog/docker-dynamic-ambassador-
powered-by-etcd/

e No health checks

« Docker only

confd

Consul

frontrunner - discovery from Marathon
« Uses haproxy too

« Less health checking options

Vulcand

| . eth

“

|
2.0.0-B

Issues

If you have lots of machines + services, you have a lot

of Synapses

« haproxy health checks can become expensive on
end user apps

* Nerve helps with this

Lots of small load balancers is harder to reason about
than a few big ones

Live demo?

Thanks

Slides will be online
http://slideshare.net/bobtfish

Official Smartstack site:
http://nerds.airbnb.com/smartstack-service-discovery-cloud/

Pre-built containers to play with + blog post
http://engineeringblog.yelp.com/
https://index.docker.io/u/bobtfish/synapse-etcd-amb/
https://index.docker.io/u/bobtfish/nerve-etcd/

Questions?

