
Docker at Spotify
!

Rohan Singh
@rohansingh

Spotify

“Music for every moment”
!

40+ million active users
!

20+ million songs available
(we’re in 55+ countries, differs by market)

!

Live in the US for 2 years

2

What are we working with?

!

100+ distinct backend services
!

5000+ production servers in 4 sites worldwide
!

Almost 300 servers per ops engineer

3

Deployment at Spotify

4

Build Debian packages
!

Requisition new hardware
!

Use combination of Puppet
and internal tooling (deployify)

5

old way:
SSH to a bunch of machines,

apt-get install || upgrade
!

deployify:
Uses fabric, which just SSH’s,
runs apt-get install || upgrade

6

What’s wrong with that?

7

Requisitioning new hardware is slow
!

Hardware utilization is low
!

We’ve automated and improved,
but still too slow

8

Deployments often fail…
!

…though usually only partially

9

!

Machines get denormalized easily

10

Debian packaging is its own special hell

So many damn files!
!

debhelper
!

Distro & version specific
!

apt-get update

11

What do we want?

12

Deployments that are:
!

Repeatable
!

Straightforward
!

Fault-tolerant

13

Why Docker?

!

It gives us “repeatable”,
right out of the box

!

!

And it’s fairly straightforward, too!

14

Repeatability?

!

!

The code you test isn’t necessarily
the code that runs in prod

15

Repeatability — Docker

!

Build an image
!

Run tests against the image
!

Run the tested image in prod

16

Straightforward

!

Just one Dockerfile
!

Pretty simple syntax
!

Immutable images — easy to reason about

17

Fault-tolerance?

Even if your code is perfect,
deployments might fail

!

Puppet or Debian repos are down
!

Network issues
!

The machine dies

18

Fault-tolerance — Docker

Just one thing has to work —
pulling & running an image

!

If it fails, just try again
!

No machines left in weird states*
!

!

*(in theory)

19

What more do we need?

20

Deploying Docker containers across
our entire fleet of servers

!

Some way to deal with Docker or container failures
!

That’s pretty much it

21

Looking around for a Docker platform

Several really feature-full offerings
!

Pretty opinionated and all-encompassing
!

All we need is reliably deploying containers
to a fleet of Docker hosts

22

Helios

23

Makes sure your containers are deployed & running
exactly where you want them…

!

…and that’s pretty much it
!

!
github.com/spotify/helios

24

http://github.com/spotify/helios

What’s in the box?

Helios master
frontend that you talk to

!

Helios agent
runs alongside each Docker instance

!

Zookeeper
!

Straightforward CLI

25

How does it work?

Create a job —
tell Helios which Docker image to deploy

!

Deploy the job —
tell Helios where to run the Docker containers

26

See it in action

27

What’s next?

28

Helios is just the beginning
!

Brought up plenty of Helios+Docker agents
in our private cloud for our devs

!

Integrated Helios with JUnit —
write JUnit tests run against Docker containers

29

Dockerized integration tests

30

This week —
first Helios+Docker-based service in production

!

!

In the future —
Containerizing more of our infrastructure

31

Give it a go

Open source:
github.com/spotify/helios

!

Try it out:
git clone https://github.com/spotify/helios.git \

&& cd helios && vagrant up
!
!
!

Come play with us (spotify.com/jobs)

32

http://github.com/spotify/helios
https://github.com/spotify/helios.git
http://spotify.com/jobs

