

Introduction
to

Docker
and

Containers

@docker
@charme_g

Outline

● Whom is this for?
● What's the problem?
● What's a Container?
● Docker 101
● Docker images
● Docker future

Ops

● any distro¹
● any cloud²
● any machine (physical, virtual...)
● recent kernels³

¹ as long as it's Ubuntu or Debian ☺ others coming soon
² as long as they don't ship with their custom crappy kernel
³ at least 3.8; support for RHEL 2.6.32 on the way

Devs

● all languages
● all databases
● all O/S
● targetting Linux systems

Docker will eventually be able to target FreeBSD, Solaris, and maybe OS X.

CFO, CIO, CTO, ...

● LESS overhead!
● MORE consolidation!
● MORE agility!
● LESS costs!

Outline

● Whom is this for?
● What's the problem?
● What's a Container?
● Docker 101
● Docker images
● Docker future

The Matrix From Hell

django
web frontend ? ? ? ? ? ?

node.js
async API ? ? ? ? ? ?

background
workers ? ? ? ? ? ?

SQL database
? ? ? ? ? ?

distributed
DB, big data ? ? ? ? ? ?

message
queue ? ? ? ? ? ?

my laptop your laptop QA staging prod on
cloud VM

prod on bare
metal

Another Matrix from Hell

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

Solution:
the intermodal shipping container

Solved!

Solution to the deployment problem:
the Linux container

Linux containers...

Units of software delivery (ship it!)
● run everywhere

– regardless of kernel version

– regardless of host distro

– (but container and host architecture must match*)

● run anything
– if it can run on the host, it can run in the container

– i.e., if it can run on a Linux kernel, it can run

 *Unless you emulate CPU with qemu and binfmt

Outline

● Whom is this for?
● What's the problem?
● What's a Container?
● Docker 101
● Docker images
● Docker future

High level approach:
it's a lightweight VM

● own process space
● own network interface
● can run stuff as root
● can have its own /sbin/init

(different from the host)

« Machine Container »

Low level approach:
it's chroot on steroids

● can also not have its own /sbin/init
● container = isolated process(es)
● share kernel with host
● no device emulation (neither HVM nor PV)

« Application Container »

Separation of concerns:
Dave the Developer

● inside my container:
– my code

– my libraries

– my package manager

– my app

– my data

Separation of concerns:
Oscar the Ops guy

● outside the container:
– logging

– remote access

– network configuration

– monitoring

How does it work?
Isolation with namespaces

● pid
● mnt
● net
● uts
● ipc
● user

How does it work?
Isolation with cgroups

● memory
● cpu
● blkio
● devices

If you're serious about security,
you also need…

● capabilities
– okay: cap_ipc_lock, cap_lease, cap_mknod,

cap_net_admin, cap_net_bind_service,
cap_net_raw

– troublesome: cap_sys_admin (mount!)

● think twice before granting root
● grsec is nice
● seccomp (very specific use cases); seccomp-

bpf
● beware of full-scale kernel exploits!

How does it work?
Copy-on-write storage

● unioning filesystems
(AUFS, overlayfs)

● snapshotting filesystems
(BTRFS, ZFS)

● copy-on-write block devices
(thin snapshots with LVM or device-mapper)

This is now being integrated with low-level LXC tools as well!

Efficiency

Compute efficiency:
almost no overhead

● processes are isolated,
but run straight on the host

● CPU performance
= native performance

● memory performance
= a few % shaved off for (optional) accounting

● network performance
= small overhead; can be reduced to zero

Storage efficiency:
many options!

Union
Filesystems

Snapshotting
Filesystems

Copy-on-write
block devices

Provisioning Superfast
Supercheap

Fast
Cheap

Fast
Cheap

Changing
small files

Superfast
Supercheap

Fast
Cheap

Fast
Costly

Changing
large files

Slow (first time)
Inefficient (copy-up!)

Fast
Cheap

Fast
Cheap

Diffing Superfast Superfast (ZFS)
Kinda meh (BTRFS)

Slow

Memory usage Efficient Efficient Inefficient
(at high densities)

Drawbacks Random quirks
AUFS not mainline
!AUFS more quirks

ZFS not mainline
BTRFS not as nice

Higher disk usage
Great performance
(except diffing)

Bottom line Ideal for PAAS and
high density things

This might be the
Future

Dodge Ram 3500

Outline

● Whom is this for?
● What's the problem?
● What's a Container?
● Docker 101
● Docker images
● Docker future

Docker-what?

● Open Source engine to commoditize LXC
● using copy-on-write for quick provisioning

STOP!

HAMMER DEMO TIME.

Yes, but...

● « I don't need Docker;
I can do all that stuff with LXC tools, rsync,
some scripts! »

● correct on all accounts;
but it's also true for apt, dpkg, rpm, yum, etc.

● the whole point is to commoditize,
i.e. make it ridiculously easy to use

Containers before Docker

Containers after Docker

What this really means…

● instead of writing « very small shell scripts » to
manage containers, write them to do the rest:
– continuous deployment/integration/testing

– orchestration

● = use Docker as a building block
● re-use other people images (yay ecosystem!)

Docker-what?
The Big Picture

● Open Source engine to commoditize LXC
● using copy-on-write for quick provisioning
● allowing to create and share images
● standard format for containers

(stack of layers; 1 layer = tarball+metadata)
● standard, reproducible way to easily build

trusted images (Dockerfile, Stackbrew...)

Docker-what?
Under The Hood

● rewrite of dotCloud internal container engine
– original version: Python, tied to dotCloud's internal

stuff

– released version: Go, legacy-free

● the Docker daemon runs in the background
– manages containers, images, and builds

– HTTP API (over UNIX or TCP socket)

– embedded CLI talking to the API

● Open Source (GitHub public repository + issue
tracking)

● user and dev mailing lists
● FreeNode IRC channels #docker, #docker-dev

Outline

● Whom is this for?
● What's the problem?
● What's a Container?
● Docker 101
● Docker images
● Docker future

Authoring images
with run/commit

1) docker run ubuntu bash

2) apt-get install this and that

3) docker commit <containerid> <imagename>

4) docker run <imagename> bash

5) git clone git://.../mycode

6) pip install -r requirements.txt

7) docker commit <containerid> <imagename>

8) repeat steps 4-7 as necessary

9) docker tag <imagename> <user/image>

10) docker push <user/image>

Authoring images
with a Dockerfile

FROM ubuntu

RUN apt-get -y update
RUN apt-get install -y g++
RUN apt-get install -y erlang-dev erlang-manpages
erlang-base-hipe ...
RUN apt-get install -y libmozjs185-dev libicu-dev
libtool ...
RUN apt-get install -y make wget

RUN wget http://.../apache-couchdb-1.3.1.tar.gz | tar
-C /tmp -zxf-
RUN cd /tmp/apache-couchdb-* && ./configure && make
install

RUN printf "[httpd]\nport = 8101\nbind_address =
0.0.0.0" >
 /usr/local/etc/couchdb/local.d/docker.ini

EXPOSE 8101
CMD ["/usr/local/bin/couchdb"]

docker build -t
jpetazzo/couchdb .

Authoring Images
with Chef/Puppet/Ansible/Salt/...

Plan A: « my other VM is a container »
● write a Dockerfile to install $YOUR_CM
● start tons of containers
● run $YOUR_CM in them

Good if you want a mix of containers/VM/metal

But slower to deploy, and uses more resources

Authoring Images
with Chef/Puppet/Ansible/Salt/...

Plan B: « the revolution will be
containerized »
● write a Dockerfile to install $YOUR_CM
● … and run $YOUR_CM as part of build

process
● deploy fully baked images

Faster to deploy

Easier to rollback

Outline

● Whom is this for?
● What's the problem?
● What's a Container?
● Docker 101
● Docker images
● Docker future

Docker: the community

● Docker: >200 contributors
● <7% of them work for dotCloud Docker inc.
● latest milestone (0.6): 40 contributors
● ~50% of all commits by external contributors
● GitHub repository: >800 forks

Docker: the ecosystem

● Cocaine (PAAS; has Docker plugin)
● CoreOS (full distro based on Docker)
● Deis (PAAS; available)
● Dokku (mini-Heroku in 100 lines of bash)
● Flynn (PAAS; in development)
● Maestro (orchestration from a simple YAML

file)
● OpenStack integration (in Havana, Nova has a

Docker driver)
● Pipework (high-performance, Software Defined

Networks)
● Shipper (fabric-like orchestration)

And many more; including SAAS offerings
(Orchard, Quay...)

Docker long-term roadmap

Docker 1.0:
● dynamic discovery
● remove AUFS, THINP, LXC, etc.

– execution? chroot!

– storage? cp!

– we can run everywhere \o/

● re-add everything as plugins

Thank you! Questions?

http://docker.io/

http://docker.com/

https://github.com/dotcloud/docker

@docker

@charme_g

http://docker.io/
http://docker.com/
https://github.com/dotcloud/docker

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

