clang API Documentation
00001 //===--- MacroExpansion.cpp - Top level Macro Expansion -------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the top level handling of macro expansion for the 00011 // preprocessor. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "clang/Lex/Preprocessor.h" 00016 #include "clang/Basic/Attributes.h" 00017 #include "clang/Basic/FileManager.h" 00018 #include "clang/Basic/SourceManager.h" 00019 #include "clang/Basic/TargetInfo.h" 00020 #include "clang/Lex/CodeCompletionHandler.h" 00021 #include "clang/Lex/ExternalPreprocessorSource.h" 00022 #include "clang/Lex/LexDiagnostic.h" 00023 #include "clang/Lex/MacroArgs.h" 00024 #include "clang/Lex/MacroInfo.h" 00025 #include "llvm/ADT/STLExtras.h" 00026 #include "llvm/ADT/SmallString.h" 00027 #include "llvm/ADT/StringSwitch.h" 00028 #include "llvm/Config/llvm-config.h" 00029 #include "llvm/Support/ErrorHandling.h" 00030 #include "llvm/Support/Format.h" 00031 #include "llvm/Support/raw_ostream.h" 00032 #include <cstdio> 00033 #include <ctime> 00034 using namespace clang; 00035 00036 MacroDirective * 00037 Preprocessor::getMacroDirectiveHistory(const IdentifierInfo *II) const { 00038 assert(II->hadMacroDefinition() && "Identifier has not been not a macro!"); 00039 00040 macro_iterator Pos = Macros.find(II); 00041 assert(Pos != Macros.end() && "Identifier macro info is missing!"); 00042 return Pos->second; 00043 } 00044 00045 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ 00046 assert(MD && "MacroDirective should be non-zero!"); 00047 assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); 00048 00049 MacroDirective *&StoredMD = Macros[II]; 00050 MD->setPrevious(StoredMD); 00051 StoredMD = MD; 00052 // Setup the identifier as having associated macro history. 00053 II->setHasMacroDefinition(true); 00054 if (!MD->isDefined()) 00055 II->setHasMacroDefinition(false); 00056 bool isImportedMacro = isa<DefMacroDirective>(MD) && 00057 cast<DefMacroDirective>(MD)->isImported(); 00058 if (II->isFromAST() && !isImportedMacro) 00059 II->setChangedSinceDeserialization(); 00060 } 00061 00062 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, 00063 MacroDirective *MD) { 00064 assert(II && MD); 00065 MacroDirective *&StoredMD = Macros[II]; 00066 assert(!StoredMD && 00067 "the macro history was modified before initializing it from a pch"); 00068 StoredMD = MD; 00069 // Setup the identifier as having associated macro history. 00070 II->setHasMacroDefinition(true); 00071 if (!MD->isDefined()) 00072 II->setHasMacroDefinition(false); 00073 } 00074 00075 /// RegisterBuiltinMacro - Register the specified identifier in the identifier 00076 /// table and mark it as a builtin macro to be expanded. 00077 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){ 00078 // Get the identifier. 00079 IdentifierInfo *Id = PP.getIdentifierInfo(Name); 00080 00081 // Mark it as being a macro that is builtin. 00082 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation()); 00083 MI->setIsBuiltinMacro(); 00084 PP.appendDefMacroDirective(Id, MI); 00085 return Id; 00086 } 00087 00088 00089 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the 00090 /// identifier table. 00091 void Preprocessor::RegisterBuiltinMacros() { 00092 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__"); 00093 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__"); 00094 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__"); 00095 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__"); 00096 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__"); 00097 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma"); 00098 00099 // C++ Standing Document Extensions. 00100 Ident__has_cpp_attribute = RegisterBuiltinMacro(*this, "__has_cpp_attribute"); 00101 00102 // GCC Extensions. 00103 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__"); 00104 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__"); 00105 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__"); 00106 00107 // Microsoft Extensions. 00108 if (LangOpts.MicrosoftExt) { 00109 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier"); 00110 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma"); 00111 } else { 00112 Ident__identifier = nullptr; 00113 Ident__pragma = nullptr; 00114 } 00115 00116 // Clang Extensions. 00117 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature"); 00118 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension"); 00119 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin"); 00120 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute"); 00121 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include"); 00122 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next"); 00123 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning"); 00124 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier"); 00125 00126 // Modules. 00127 if (LangOpts.Modules) { 00128 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module"); 00129 00130 // __MODULE__ 00131 if (!LangOpts.CurrentModule.empty()) 00132 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__"); 00133 else 00134 Ident__MODULE__ = nullptr; 00135 } else { 00136 Ident__building_module = nullptr; 00137 Ident__MODULE__ = nullptr; 00138 } 00139 } 00140 00141 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token 00142 /// in its expansion, currently expands to that token literally. 00143 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, 00144 const IdentifierInfo *MacroIdent, 00145 Preprocessor &PP) { 00146 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); 00147 00148 // If the token isn't an identifier, it's always literally expanded. 00149 if (!II) return true; 00150 00151 // If the information about this identifier is out of date, update it from 00152 // the external source. 00153 if (II->isOutOfDate()) 00154 PP.getExternalSource()->updateOutOfDateIdentifier(*II); 00155 00156 // If the identifier is a macro, and if that macro is enabled, it may be 00157 // expanded so it's not a trivial expansion. 00158 if (II->hasMacroDefinition() && PP.getMacroInfo(II)->isEnabled() && 00159 // Fast expanding "#define X X" is ok, because X would be disabled. 00160 II != MacroIdent) 00161 return false; 00162 00163 // If this is an object-like macro invocation, it is safe to trivially expand 00164 // it. 00165 if (MI->isObjectLike()) return true; 00166 00167 // If this is a function-like macro invocation, it's safe to trivially expand 00168 // as long as the identifier is not a macro argument. 00169 for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end(); 00170 I != E; ++I) 00171 if (*I == II) 00172 return false; // Identifier is a macro argument. 00173 00174 return true; 00175 } 00176 00177 00178 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be 00179 /// lexed is a '('. If so, consume the token and return true, if not, this 00180 /// method should have no observable side-effect on the lexed tokens. 00181 bool Preprocessor::isNextPPTokenLParen() { 00182 // Do some quick tests for rejection cases. 00183 unsigned Val; 00184 if (CurLexer) 00185 Val = CurLexer->isNextPPTokenLParen(); 00186 else if (CurPTHLexer) 00187 Val = CurPTHLexer->isNextPPTokenLParen(); 00188 else 00189 Val = CurTokenLexer->isNextTokenLParen(); 00190 00191 if (Val == 2) { 00192 // We have run off the end. If it's a source file we don't 00193 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the 00194 // macro stack. 00195 if (CurPPLexer) 00196 return false; 00197 for (unsigned i = IncludeMacroStack.size(); i != 0; --i) { 00198 IncludeStackInfo &Entry = IncludeMacroStack[i-1]; 00199 if (Entry.TheLexer) 00200 Val = Entry.TheLexer->isNextPPTokenLParen(); 00201 else if (Entry.ThePTHLexer) 00202 Val = Entry.ThePTHLexer->isNextPPTokenLParen(); 00203 else 00204 Val = Entry.TheTokenLexer->isNextTokenLParen(); 00205 00206 if (Val != 2) 00207 break; 00208 00209 // Ran off the end of a source file? 00210 if (Entry.ThePPLexer) 00211 return false; 00212 } 00213 } 00214 00215 // Okay, if we know that the token is a '(', lex it and return. Otherwise we 00216 // have found something that isn't a '(' or we found the end of the 00217 // translation unit. In either case, return false. 00218 return Val == 1; 00219 } 00220 00221 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be 00222 /// expanded as a macro, handle it and return the next token as 'Identifier'. 00223 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, 00224 MacroDirective *MD) { 00225 MacroDirective::DefInfo Def = MD->getDefinition(); 00226 assert(Def.isValid()); 00227 MacroInfo *MI = Def.getMacroInfo(); 00228 00229 // If this is a macro expansion in the "#if !defined(x)" line for the file, 00230 // then the macro could expand to different things in other contexts, we need 00231 // to disable the optimization in this case. 00232 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); 00233 00234 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. 00235 if (MI->isBuiltinMacro()) { 00236 if (Callbacks) Callbacks->MacroExpands(Identifier, MD, 00237 Identifier.getLocation(), 00238 /*Args=*/nullptr); 00239 ExpandBuiltinMacro(Identifier); 00240 return true; 00241 } 00242 00243 /// Args - If this is a function-like macro expansion, this contains, 00244 /// for each macro argument, the list of tokens that were provided to the 00245 /// invocation. 00246 MacroArgs *Args = nullptr; 00247 00248 // Remember where the end of the expansion occurred. For an object-like 00249 // macro, this is the identifier. For a function-like macro, this is the ')'. 00250 SourceLocation ExpansionEnd = Identifier.getLocation(); 00251 00252 // If this is a function-like macro, read the arguments. 00253 if (MI->isFunctionLike()) { 00254 // Remember that we are now parsing the arguments to a macro invocation. 00255 // Preprocessor directives used inside macro arguments are not portable, and 00256 // this enables the warning. 00257 InMacroArgs = true; 00258 Args = ReadFunctionLikeMacroArgs(Identifier, MI, ExpansionEnd); 00259 00260 // Finished parsing args. 00261 InMacroArgs = false; 00262 00263 // If there was an error parsing the arguments, bail out. 00264 if (!Args) return true; 00265 00266 ++NumFnMacroExpanded; 00267 } else { 00268 ++NumMacroExpanded; 00269 } 00270 00271 // Notice that this macro has been used. 00272 markMacroAsUsed(MI); 00273 00274 // Remember where the token is expanded. 00275 SourceLocation ExpandLoc = Identifier.getLocation(); 00276 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); 00277 00278 if (Callbacks) { 00279 if (InMacroArgs) { 00280 // We can have macro expansion inside a conditional directive while 00281 // reading the function macro arguments. To ensure, in that case, that 00282 // MacroExpands callbacks still happen in source order, queue this 00283 // callback to have it happen after the function macro callback. 00284 DelayedMacroExpandsCallbacks.push_back( 00285 MacroExpandsInfo(Identifier, MD, ExpansionRange)); 00286 } else { 00287 Callbacks->MacroExpands(Identifier, MD, ExpansionRange, Args); 00288 if (!DelayedMacroExpandsCallbacks.empty()) { 00289 for (unsigned i=0, e = DelayedMacroExpandsCallbacks.size(); i!=e; ++i) { 00290 MacroExpandsInfo &Info = DelayedMacroExpandsCallbacks[i]; 00291 // FIXME: We lose macro args info with delayed callback. 00292 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, 00293 /*Args=*/nullptr); 00294 } 00295 DelayedMacroExpandsCallbacks.clear(); 00296 } 00297 } 00298 } 00299 00300 // If the macro definition is ambiguous, complain. 00301 if (Def.getDirective()->isAmbiguous()) { 00302 Diag(Identifier, diag::warn_pp_ambiguous_macro) 00303 << Identifier.getIdentifierInfo(); 00304 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) 00305 << Identifier.getIdentifierInfo(); 00306 for (MacroDirective::DefInfo PrevDef = Def.getPreviousDefinition(); 00307 PrevDef && !PrevDef.isUndefined(); 00308 PrevDef = PrevDef.getPreviousDefinition()) { 00309 Diag(PrevDef.getMacroInfo()->getDefinitionLoc(), 00310 diag::note_pp_ambiguous_macro_other) 00311 << Identifier.getIdentifierInfo(); 00312 if (!PrevDef.getDirective()->isAmbiguous()) 00313 break; 00314 } 00315 } 00316 00317 // If we started lexing a macro, enter the macro expansion body. 00318 00319 // If this macro expands to no tokens, don't bother to push it onto the 00320 // expansion stack, only to take it right back off. 00321 if (MI->getNumTokens() == 0) { 00322 // No need for arg info. 00323 if (Args) Args->destroy(*this); 00324 00325 // Propagate whitespace info as if we had pushed, then popped, 00326 // a macro context. 00327 Identifier.setFlag(Token::LeadingEmptyMacro); 00328 PropagateLineStartLeadingSpaceInfo(Identifier); 00329 ++NumFastMacroExpanded; 00330 return false; 00331 } else if (MI->getNumTokens() == 1 && 00332 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), 00333 *this)) { 00334 // Otherwise, if this macro expands into a single trivially-expanded 00335 // token: expand it now. This handles common cases like 00336 // "#define VAL 42". 00337 00338 // No need for arg info. 00339 if (Args) Args->destroy(*this); 00340 00341 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro 00342 // identifier to the expanded token. 00343 bool isAtStartOfLine = Identifier.isAtStartOfLine(); 00344 bool hasLeadingSpace = Identifier.hasLeadingSpace(); 00345 00346 // Replace the result token. 00347 Identifier = MI->getReplacementToken(0); 00348 00349 // Restore the StartOfLine/LeadingSpace markers. 00350 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); 00351 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); 00352 00353 // Update the tokens location to include both its expansion and physical 00354 // locations. 00355 SourceLocation Loc = 00356 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, 00357 ExpansionEnd,Identifier.getLength()); 00358 Identifier.setLocation(Loc); 00359 00360 // If this is a disabled macro or #define X X, we must mark the result as 00361 // unexpandable. 00362 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { 00363 if (MacroInfo *NewMI = getMacroInfo(NewII)) 00364 if (!NewMI->isEnabled() || NewMI == MI) { 00365 Identifier.setFlag(Token::DisableExpand); 00366 // Don't warn for "#define X X" like "#define bool bool" from 00367 // stdbool.h. 00368 if (NewMI != MI || MI->isFunctionLike()) 00369 Diag(Identifier, diag::pp_disabled_macro_expansion); 00370 } 00371 } 00372 00373 // Since this is not an identifier token, it can't be macro expanded, so 00374 // we're done. 00375 ++NumFastMacroExpanded; 00376 return true; 00377 } 00378 00379 // Start expanding the macro. 00380 EnterMacro(Identifier, ExpansionEnd, MI, Args); 00381 return false; 00382 } 00383 00384 enum Bracket { 00385 Brace, 00386 Paren 00387 }; 00388 00389 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the 00390 /// token vector are properly nested. 00391 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) { 00392 SmallVector<Bracket, 8> Brackets; 00393 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(), 00394 E = Tokens.end(); 00395 I != E; ++I) { 00396 if (I->is(tok::l_paren)) { 00397 Brackets.push_back(Paren); 00398 } else if (I->is(tok::r_paren)) { 00399 if (Brackets.empty() || Brackets.back() == Brace) 00400 return false; 00401 Brackets.pop_back(); 00402 } else if (I->is(tok::l_brace)) { 00403 Brackets.push_back(Brace); 00404 } else if (I->is(tok::r_brace)) { 00405 if (Brackets.empty() || Brackets.back() == Paren) 00406 return false; 00407 Brackets.pop_back(); 00408 } 00409 } 00410 if (!Brackets.empty()) 00411 return false; 00412 return true; 00413 } 00414 00415 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new 00416 /// vector of tokens in NewTokens. The new number of arguments will be placed 00417 /// in NumArgs and the ranges which need to surrounded in parentheses will be 00418 /// in ParenHints. 00419 /// Returns false if the token stream cannot be changed. If this is because 00420 /// of an initializer list starting a macro argument, the range of those 00421 /// initializer lists will be place in InitLists. 00422 static bool GenerateNewArgTokens(Preprocessor &PP, 00423 SmallVectorImpl<Token> &OldTokens, 00424 SmallVectorImpl<Token> &NewTokens, 00425 unsigned &NumArgs, 00426 SmallVectorImpl<SourceRange> &ParenHints, 00427 SmallVectorImpl<SourceRange> &InitLists) { 00428 if (!CheckMatchedBrackets(OldTokens)) 00429 return false; 00430 00431 // Once it is known that the brackets are matched, only a simple count of the 00432 // braces is needed. 00433 unsigned Braces = 0; 00434 00435 // First token of a new macro argument. 00436 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin(); 00437 00438 // First closing brace in a new macro argument. Used to generate 00439 // SourceRanges for InitLists. 00440 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end(); 00441 NumArgs = 0; 00442 Token TempToken; 00443 // Set to true when a macro separator token is found inside a braced list. 00444 // If true, the fixed argument spans multiple old arguments and ParenHints 00445 // will be updated. 00446 bool FoundSeparatorToken = false; 00447 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(), 00448 E = OldTokens.end(); 00449 I != E; ++I) { 00450 if (I->is(tok::l_brace)) { 00451 ++Braces; 00452 } else if (I->is(tok::r_brace)) { 00453 --Braces; 00454 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) 00455 ClosingBrace = I; 00456 } else if (I->is(tok::eof)) { 00457 // EOF token is used to separate macro arguments 00458 if (Braces != 0) { 00459 // Assume comma separator is actually braced list separator and change 00460 // it back to a comma. 00461 FoundSeparatorToken = true; 00462 I->setKind(tok::comma); 00463 I->setLength(1); 00464 } else { // Braces == 0 00465 // Separator token still separates arguments. 00466 ++NumArgs; 00467 00468 // If the argument starts with a brace, it can't be fixed with 00469 // parentheses. A different diagnostic will be given. 00470 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) { 00471 InitLists.push_back( 00472 SourceRange(ArgStartIterator->getLocation(), 00473 PP.getLocForEndOfToken(ClosingBrace->getLocation()))); 00474 ClosingBrace = E; 00475 } 00476 00477 // Add left paren 00478 if (FoundSeparatorToken) { 00479 TempToken.startToken(); 00480 TempToken.setKind(tok::l_paren); 00481 TempToken.setLocation(ArgStartIterator->getLocation()); 00482 TempToken.setLength(0); 00483 NewTokens.push_back(TempToken); 00484 } 00485 00486 // Copy over argument tokens 00487 NewTokens.insert(NewTokens.end(), ArgStartIterator, I); 00488 00489 // Add right paren and store the paren locations in ParenHints 00490 if (FoundSeparatorToken) { 00491 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation()); 00492 TempToken.startToken(); 00493 TempToken.setKind(tok::r_paren); 00494 TempToken.setLocation(Loc); 00495 TempToken.setLength(0); 00496 NewTokens.push_back(TempToken); 00497 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(), 00498 Loc)); 00499 } 00500 00501 // Copy separator token 00502 NewTokens.push_back(*I); 00503 00504 // Reset values 00505 ArgStartIterator = I + 1; 00506 FoundSeparatorToken = false; 00507 } 00508 } 00509 } 00510 00511 return !ParenHints.empty() && InitLists.empty(); 00512 } 00513 00514 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next 00515 /// token is the '(' of the macro, this method is invoked to read all of the 00516 /// actual arguments specified for the macro invocation. This returns null on 00517 /// error. 00518 MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName, 00519 MacroInfo *MI, 00520 SourceLocation &MacroEnd) { 00521 // The number of fixed arguments to parse. 00522 unsigned NumFixedArgsLeft = MI->getNumArgs(); 00523 bool isVariadic = MI->isVariadic(); 00524 00525 // Outer loop, while there are more arguments, keep reading them. 00526 Token Tok; 00527 00528 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 00529 // an argument value in a macro could expand to ',' or '(' or ')'. 00530 LexUnexpandedToken(Tok); 00531 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); 00532 00533 // ArgTokens - Build up a list of tokens that make up each argument. Each 00534 // argument is separated by an EOF token. Use a SmallVector so we can avoid 00535 // heap allocations in the common case. 00536 SmallVector<Token, 64> ArgTokens; 00537 bool ContainsCodeCompletionTok = false; 00538 00539 SourceLocation TooManyArgsLoc; 00540 00541 unsigned NumActuals = 0; 00542 while (Tok.isNot(tok::r_paren)) { 00543 if (ContainsCodeCompletionTok && (Tok.is(tok::eof) || Tok.is(tok::eod))) 00544 break; 00545 00546 assert((Tok.is(tok::l_paren) || Tok.is(tok::comma)) && 00547 "only expect argument separators here"); 00548 00549 unsigned ArgTokenStart = ArgTokens.size(); 00550 SourceLocation ArgStartLoc = Tok.getLocation(); 00551 00552 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note 00553 // that we already consumed the first one. 00554 unsigned NumParens = 0; 00555 00556 while (1) { 00557 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 00558 // an argument value in a macro could expand to ',' or '(' or ')'. 00559 LexUnexpandedToken(Tok); 00560 00561 if (Tok.is(tok::eof) || Tok.is(tok::eod)) { // "#if f(<eof>" & "#if f(\n" 00562 if (!ContainsCodeCompletionTok) { 00563 Diag(MacroName, diag::err_unterm_macro_invoc); 00564 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 00565 << MacroName.getIdentifierInfo(); 00566 // Do not lose the EOF/EOD. Return it to the client. 00567 MacroName = Tok; 00568 return nullptr; 00569 } else { 00570 // Do not lose the EOF/EOD. 00571 Token *Toks = new Token[1]; 00572 Toks[0] = Tok; 00573 EnterTokenStream(Toks, 1, true, true); 00574 break; 00575 } 00576 } else if (Tok.is(tok::r_paren)) { 00577 // If we found the ) token, the macro arg list is done. 00578 if (NumParens-- == 0) { 00579 MacroEnd = Tok.getLocation(); 00580 break; 00581 } 00582 } else if (Tok.is(tok::l_paren)) { 00583 ++NumParens; 00584 } else if (Tok.is(tok::comma) && NumParens == 0 && 00585 !(Tok.getFlags() & Token::IgnoredComma)) { 00586 // In Microsoft-compatibility mode, single commas from nested macro 00587 // expansions should not be considered as argument separators. We test 00588 // for this with the IgnoredComma token flag above. 00589 00590 // Comma ends this argument if there are more fixed arguments expected. 00591 // However, if this is a variadic macro, and this is part of the 00592 // variadic part, then the comma is just an argument token. 00593 if (!isVariadic) break; 00594 if (NumFixedArgsLeft > 1) 00595 break; 00596 } else if (Tok.is(tok::comment) && !KeepMacroComments) { 00597 // If this is a comment token in the argument list and we're just in 00598 // -C mode (not -CC mode), discard the comment. 00599 continue; 00600 } else if (Tok.getIdentifierInfo() != nullptr) { 00601 // Reading macro arguments can cause macros that we are currently 00602 // expanding from to be popped off the expansion stack. Doing so causes 00603 // them to be reenabled for expansion. Here we record whether any 00604 // identifiers we lex as macro arguments correspond to disabled macros. 00605 // If so, we mark the token as noexpand. This is a subtle aspect of 00606 // C99 6.10.3.4p2. 00607 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) 00608 if (!MI->isEnabled()) 00609 Tok.setFlag(Token::DisableExpand); 00610 } else if (Tok.is(tok::code_completion)) { 00611 ContainsCodeCompletionTok = true; 00612 if (CodeComplete) 00613 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), 00614 MI, NumActuals); 00615 // Don't mark that we reached the code-completion point because the 00616 // parser is going to handle the token and there will be another 00617 // code-completion callback. 00618 } 00619 00620 ArgTokens.push_back(Tok); 00621 } 00622 00623 // If this was an empty argument list foo(), don't add this as an empty 00624 // argument. 00625 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) 00626 break; 00627 00628 // If this is not a variadic macro, and too many args were specified, emit 00629 // an error. 00630 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { 00631 if (ArgTokens.size() != ArgTokenStart) 00632 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); 00633 else 00634 TooManyArgsLoc = ArgStartLoc; 00635 } 00636 00637 // Empty arguments are standard in C99 and C++0x, and are supported as an 00638 // extension in other modes. 00639 if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99) 00640 Diag(Tok, LangOpts.CPlusPlus11 ? 00641 diag::warn_cxx98_compat_empty_fnmacro_arg : 00642 diag::ext_empty_fnmacro_arg); 00643 00644 // Add a marker EOF token to the end of the token list for this argument. 00645 Token EOFTok; 00646 EOFTok.startToken(); 00647 EOFTok.setKind(tok::eof); 00648 EOFTok.setLocation(Tok.getLocation()); 00649 EOFTok.setLength(0); 00650 ArgTokens.push_back(EOFTok); 00651 ++NumActuals; 00652 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) 00653 --NumFixedArgsLeft; 00654 } 00655 00656 // Okay, we either found the r_paren. Check to see if we parsed too few 00657 // arguments. 00658 unsigned MinArgsExpected = MI->getNumArgs(); 00659 00660 // If this is not a variadic macro, and too many args were specified, emit 00661 // an error. 00662 if (!isVariadic && NumActuals > MinArgsExpected && 00663 !ContainsCodeCompletionTok) { 00664 // Emit the diagnostic at the macro name in case there is a missing ). 00665 // Emitting it at the , could be far away from the macro name. 00666 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); 00667 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 00668 << MacroName.getIdentifierInfo(); 00669 00670 // Commas from braced initializer lists will be treated as argument 00671 // separators inside macros. Attempt to correct for this with parentheses. 00672 // TODO: See if this can be generalized to angle brackets for templates 00673 // inside macro arguments. 00674 00675 SmallVector<Token, 4> FixedArgTokens; 00676 unsigned FixedNumArgs = 0; 00677 SmallVector<SourceRange, 4> ParenHints, InitLists; 00678 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs, 00679 ParenHints, InitLists)) { 00680 if (!InitLists.empty()) { 00681 DiagnosticBuilder DB = 00682 Diag(MacroName, 00683 diag::note_init_list_at_beginning_of_macro_argument); 00684 for (const SourceRange &Range : InitLists) 00685 DB << Range; 00686 } 00687 return nullptr; 00688 } 00689 if (FixedNumArgs != MinArgsExpected) 00690 return nullptr; 00691 00692 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); 00693 for (const SourceRange &ParenLocation : ParenHints) { 00694 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "("); 00695 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")"); 00696 } 00697 ArgTokens.swap(FixedArgTokens); 00698 NumActuals = FixedNumArgs; 00699 } 00700 00701 // See MacroArgs instance var for description of this. 00702 bool isVarargsElided = false; 00703 00704 if (ContainsCodeCompletionTok) { 00705 // Recover from not-fully-formed macro invocation during code-completion. 00706 Token EOFTok; 00707 EOFTok.startToken(); 00708 EOFTok.setKind(tok::eof); 00709 EOFTok.setLocation(Tok.getLocation()); 00710 EOFTok.setLength(0); 00711 for (; NumActuals < MinArgsExpected; ++NumActuals) 00712 ArgTokens.push_back(EOFTok); 00713 } 00714 00715 if (NumActuals < MinArgsExpected) { 00716 // There are several cases where too few arguments is ok, handle them now. 00717 if (NumActuals == 0 && MinArgsExpected == 1) { 00718 // #define A(X) or #define A(...) ---> A() 00719 00720 // If there is exactly one argument, and that argument is missing, 00721 // then we have an empty "()" argument empty list. This is fine, even if 00722 // the macro expects one argument (the argument is just empty). 00723 isVarargsElided = MI->isVariadic(); 00724 } else if (MI->isVariadic() && 00725 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) 00726 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() 00727 // Varargs where the named vararg parameter is missing: OK as extension. 00728 // #define A(x, ...) 00729 // A("blah") 00730 // 00731 // If the macro contains the comma pasting extension, the diagnostic 00732 // is suppressed; we know we'll get another diagnostic later. 00733 if (!MI->hasCommaPasting()) { 00734 Diag(Tok, diag::ext_missing_varargs_arg); 00735 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 00736 << MacroName.getIdentifierInfo(); 00737 } 00738 00739 // Remember this occurred, allowing us to elide the comma when used for 00740 // cases like: 00741 // #define A(x, foo...) blah(a, ## foo) 00742 // #define B(x, ...) blah(a, ## __VA_ARGS__) 00743 // #define C(...) blah(a, ## __VA_ARGS__) 00744 // A(x) B(x) C() 00745 isVarargsElided = true; 00746 } else if (!ContainsCodeCompletionTok) { 00747 // Otherwise, emit the error. 00748 Diag(Tok, diag::err_too_few_args_in_macro_invoc); 00749 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 00750 << MacroName.getIdentifierInfo(); 00751 return nullptr; 00752 } 00753 00754 // Add a marker EOF token to the end of the token list for this argument. 00755 SourceLocation EndLoc = Tok.getLocation(); 00756 Tok.startToken(); 00757 Tok.setKind(tok::eof); 00758 Tok.setLocation(EndLoc); 00759 Tok.setLength(0); 00760 ArgTokens.push_back(Tok); 00761 00762 // If we expect two arguments, add both as empty. 00763 if (NumActuals == 0 && MinArgsExpected == 2) 00764 ArgTokens.push_back(Tok); 00765 00766 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && 00767 !ContainsCodeCompletionTok) { 00768 // Emit the diagnostic at the macro name in case there is a missing ). 00769 // Emitting it at the , could be far away from the macro name. 00770 Diag(MacroName, diag::err_too_many_args_in_macro_invoc); 00771 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 00772 << MacroName.getIdentifierInfo(); 00773 return nullptr; 00774 } 00775 00776 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); 00777 } 00778 00779 /// \brief Keeps macro expanded tokens for TokenLexers. 00780 // 00781 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is 00782 /// going to lex in the cache and when it finishes the tokens are removed 00783 /// from the end of the cache. 00784 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, 00785 ArrayRef<Token> tokens) { 00786 assert(tokLexer); 00787 if (tokens.empty()) 00788 return nullptr; 00789 00790 size_t newIndex = MacroExpandedTokens.size(); 00791 bool cacheNeedsToGrow = tokens.size() > 00792 MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); 00793 MacroExpandedTokens.append(tokens.begin(), tokens.end()); 00794 00795 if (cacheNeedsToGrow) { 00796 // Go through all the TokenLexers whose 'Tokens' pointer points in the 00797 // buffer and update the pointers to the (potential) new buffer array. 00798 for (unsigned i = 0, e = MacroExpandingLexersStack.size(); i != e; ++i) { 00799 TokenLexer *prevLexer; 00800 size_t tokIndex; 00801 std::tie(prevLexer, tokIndex) = MacroExpandingLexersStack[i]; 00802 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; 00803 } 00804 } 00805 00806 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); 00807 return MacroExpandedTokens.data() + newIndex; 00808 } 00809 00810 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { 00811 assert(!MacroExpandingLexersStack.empty()); 00812 size_t tokIndex = MacroExpandingLexersStack.back().second; 00813 assert(tokIndex < MacroExpandedTokens.size()); 00814 // Pop the cached macro expanded tokens from the end. 00815 MacroExpandedTokens.resize(tokIndex); 00816 MacroExpandingLexersStack.pop_back(); 00817 } 00818 00819 /// ComputeDATE_TIME - Compute the current time, enter it into the specified 00820 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of 00821 /// the identifier tokens inserted. 00822 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, 00823 Preprocessor &PP) { 00824 time_t TT = time(nullptr); 00825 struct tm *TM = localtime(&TT); 00826 00827 static const char * const Months[] = { 00828 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" 00829 }; 00830 00831 { 00832 SmallString<32> TmpBuffer; 00833 llvm::raw_svector_ostream TmpStream(TmpBuffer); 00834 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon], 00835 TM->tm_mday, TM->tm_year + 1900); 00836 Token TmpTok; 00837 TmpTok.startToken(); 00838 PP.CreateString(TmpStream.str(), TmpTok); 00839 DATELoc = TmpTok.getLocation(); 00840 } 00841 00842 { 00843 SmallString<32> TmpBuffer; 00844 llvm::raw_svector_ostream TmpStream(TmpBuffer); 00845 TmpStream << llvm::format("\"%02d:%02d:%02d\"", 00846 TM->tm_hour, TM->tm_min, TM->tm_sec); 00847 Token TmpTok; 00848 TmpTok.startToken(); 00849 PP.CreateString(TmpStream.str(), TmpTok); 00850 TIMELoc = TmpTok.getLocation(); 00851 } 00852 } 00853 00854 00855 /// HasFeature - Return true if we recognize and implement the feature 00856 /// specified by the identifier as a standard language feature. 00857 static bool HasFeature(const Preprocessor &PP, const IdentifierInfo *II) { 00858 const LangOptions &LangOpts = PP.getLangOpts(); 00859 StringRef Feature = II->getName(); 00860 00861 // Normalize the feature name, __foo__ becomes foo. 00862 if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4) 00863 Feature = Feature.substr(2, Feature.size() - 4); 00864 00865 return llvm::StringSwitch<bool>(Feature) 00866 .Case("address_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Address)) 00867 .Case("attribute_analyzer_noreturn", true) 00868 .Case("attribute_availability", true) 00869 .Case("attribute_availability_with_message", true) 00870 .Case("attribute_cf_returns_not_retained", true) 00871 .Case("attribute_cf_returns_retained", true) 00872 .Case("attribute_deprecated_with_message", true) 00873 .Case("attribute_ext_vector_type", true) 00874 .Case("attribute_ns_returns_not_retained", true) 00875 .Case("attribute_ns_returns_retained", true) 00876 .Case("attribute_ns_consumes_self", true) 00877 .Case("attribute_ns_consumed", true) 00878 .Case("attribute_cf_consumed", true) 00879 .Case("attribute_objc_ivar_unused", true) 00880 .Case("attribute_objc_method_family", true) 00881 .Case("attribute_overloadable", true) 00882 .Case("attribute_unavailable_with_message", true) 00883 .Case("attribute_unused_on_fields", true) 00884 .Case("blocks", LangOpts.Blocks) 00885 .Case("c_thread_safety_attributes", true) 00886 .Case("cxx_exceptions", LangOpts.CXXExceptions) 00887 .Case("cxx_rtti", LangOpts.RTTI) 00888 .Case("enumerator_attributes", true) 00889 .Case("memory_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Memory)) 00890 .Case("thread_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Thread)) 00891 .Case("dataflow_sanitizer", LangOpts.Sanitize.has(SanitizerKind::DataFlow)) 00892 // Objective-C features 00893 .Case("objc_arr", LangOpts.ObjCAutoRefCount) // FIXME: REMOVE? 00894 .Case("objc_arc", LangOpts.ObjCAutoRefCount) 00895 .Case("objc_arc_weak", LangOpts.ObjCARCWeak) 00896 .Case("objc_default_synthesize_properties", LangOpts.ObjC2) 00897 .Case("objc_fixed_enum", LangOpts.ObjC2) 00898 .Case("objc_instancetype", LangOpts.ObjC2) 00899 .Case("objc_modules", LangOpts.ObjC2 && LangOpts.Modules) 00900 .Case("objc_nonfragile_abi", LangOpts.ObjCRuntime.isNonFragile()) 00901 .Case("objc_property_explicit_atomic", 00902 true) // Does clang support explicit "atomic" keyword? 00903 .Case("objc_protocol_qualifier_mangling", true) 00904 .Case("objc_weak_class", LangOpts.ObjCRuntime.hasWeakClassImport()) 00905 .Case("ownership_holds", true) 00906 .Case("ownership_returns", true) 00907 .Case("ownership_takes", true) 00908 .Case("objc_bool", true) 00909 .Case("objc_subscripting", LangOpts.ObjCRuntime.isNonFragile()) 00910 .Case("objc_array_literals", LangOpts.ObjC2) 00911 .Case("objc_dictionary_literals", LangOpts.ObjC2) 00912 .Case("objc_boxed_expressions", LangOpts.ObjC2) 00913 .Case("arc_cf_code_audited", true) 00914 // C11 features 00915 .Case("c_alignas", LangOpts.C11) 00916 .Case("c_atomic", LangOpts.C11) 00917 .Case("c_generic_selections", LangOpts.C11) 00918 .Case("c_static_assert", LangOpts.C11) 00919 .Case("c_thread_local", 00920 LangOpts.C11 && PP.getTargetInfo().isTLSSupported()) 00921 // C++11 features 00922 .Case("cxx_access_control_sfinae", LangOpts.CPlusPlus11) 00923 .Case("cxx_alias_templates", LangOpts.CPlusPlus11) 00924 .Case("cxx_alignas", LangOpts.CPlusPlus11) 00925 .Case("cxx_atomic", LangOpts.CPlusPlus11) 00926 .Case("cxx_attributes", LangOpts.CPlusPlus11) 00927 .Case("cxx_auto_type", LangOpts.CPlusPlus11) 00928 .Case("cxx_constexpr", LangOpts.CPlusPlus11) 00929 .Case("cxx_decltype", LangOpts.CPlusPlus11) 00930 .Case("cxx_decltype_incomplete_return_types", LangOpts.CPlusPlus11) 00931 .Case("cxx_default_function_template_args", LangOpts.CPlusPlus11) 00932 .Case("cxx_defaulted_functions", LangOpts.CPlusPlus11) 00933 .Case("cxx_delegating_constructors", LangOpts.CPlusPlus11) 00934 .Case("cxx_deleted_functions", LangOpts.CPlusPlus11) 00935 .Case("cxx_explicit_conversions", LangOpts.CPlusPlus11) 00936 .Case("cxx_generalized_initializers", LangOpts.CPlusPlus11) 00937 .Case("cxx_implicit_moves", LangOpts.CPlusPlus11) 00938 .Case("cxx_inheriting_constructors", LangOpts.CPlusPlus11) 00939 .Case("cxx_inline_namespaces", LangOpts.CPlusPlus11) 00940 .Case("cxx_lambdas", LangOpts.CPlusPlus11) 00941 .Case("cxx_local_type_template_args", LangOpts.CPlusPlus11) 00942 .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus11) 00943 .Case("cxx_noexcept", LangOpts.CPlusPlus11) 00944 .Case("cxx_nullptr", LangOpts.CPlusPlus11) 00945 .Case("cxx_override_control", LangOpts.CPlusPlus11) 00946 .Case("cxx_range_for", LangOpts.CPlusPlus11) 00947 .Case("cxx_raw_string_literals", LangOpts.CPlusPlus11) 00948 .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus11) 00949 .Case("cxx_rvalue_references", LangOpts.CPlusPlus11) 00950 .Case("cxx_strong_enums", LangOpts.CPlusPlus11) 00951 .Case("cxx_static_assert", LangOpts.CPlusPlus11) 00952 .Case("cxx_thread_local", 00953 LangOpts.CPlusPlus11 && PP.getTargetInfo().isTLSSupported()) 00954 .Case("cxx_trailing_return", LangOpts.CPlusPlus11) 00955 .Case("cxx_unicode_literals", LangOpts.CPlusPlus11) 00956 .Case("cxx_unrestricted_unions", LangOpts.CPlusPlus11) 00957 .Case("cxx_user_literals", LangOpts.CPlusPlus11) 00958 .Case("cxx_variadic_templates", LangOpts.CPlusPlus11) 00959 // C++1y features 00960 .Case("cxx_aggregate_nsdmi", LangOpts.CPlusPlus14) 00961 .Case("cxx_binary_literals", LangOpts.CPlusPlus14) 00962 .Case("cxx_contextual_conversions", LangOpts.CPlusPlus14) 00963 .Case("cxx_decltype_auto", LangOpts.CPlusPlus14) 00964 .Case("cxx_generic_lambdas", LangOpts.CPlusPlus14) 00965 .Case("cxx_init_captures", LangOpts.CPlusPlus14) 00966 .Case("cxx_relaxed_constexpr", LangOpts.CPlusPlus14) 00967 .Case("cxx_return_type_deduction", LangOpts.CPlusPlus14) 00968 .Case("cxx_variable_templates", LangOpts.CPlusPlus14) 00969 // C++ TSes 00970 //.Case("cxx_runtime_arrays", LangOpts.CPlusPlusTSArrays) 00971 //.Case("cxx_concepts", LangOpts.CPlusPlusTSConcepts) 00972 // FIXME: Should this be __has_feature or __has_extension? 00973 //.Case("raw_invocation_type", LangOpts.CPlusPlus) 00974 // Type traits 00975 .Case("has_nothrow_assign", LangOpts.CPlusPlus) 00976 .Case("has_nothrow_copy", LangOpts.CPlusPlus) 00977 .Case("has_nothrow_constructor", LangOpts.CPlusPlus) 00978 .Case("has_trivial_assign", LangOpts.CPlusPlus) 00979 .Case("has_trivial_copy", LangOpts.CPlusPlus) 00980 .Case("has_trivial_constructor", LangOpts.CPlusPlus) 00981 .Case("has_trivial_destructor", LangOpts.CPlusPlus) 00982 .Case("has_virtual_destructor", LangOpts.CPlusPlus) 00983 .Case("is_abstract", LangOpts.CPlusPlus) 00984 .Case("is_base_of", LangOpts.CPlusPlus) 00985 .Case("is_class", LangOpts.CPlusPlus) 00986 .Case("is_constructible", LangOpts.CPlusPlus) 00987 .Case("is_convertible_to", LangOpts.CPlusPlus) 00988 .Case("is_empty", LangOpts.CPlusPlus) 00989 .Case("is_enum", LangOpts.CPlusPlus) 00990 .Case("is_final", LangOpts.CPlusPlus) 00991 .Case("is_literal", LangOpts.CPlusPlus) 00992 .Case("is_standard_layout", LangOpts.CPlusPlus) 00993 .Case("is_pod", LangOpts.CPlusPlus) 00994 .Case("is_polymorphic", LangOpts.CPlusPlus) 00995 .Case("is_sealed", LangOpts.MicrosoftExt) 00996 .Case("is_trivial", LangOpts.CPlusPlus) 00997 .Case("is_trivially_assignable", LangOpts.CPlusPlus) 00998 .Case("is_trivially_constructible", LangOpts.CPlusPlus) 00999 .Case("is_trivially_copyable", LangOpts.CPlusPlus) 01000 .Case("is_union", LangOpts.CPlusPlus) 01001 .Case("modules", LangOpts.Modules) 01002 .Case("tls", PP.getTargetInfo().isTLSSupported()) 01003 .Case("underlying_type", LangOpts.CPlusPlus) 01004 .Default(false); 01005 } 01006 01007 /// HasExtension - Return true if we recognize and implement the feature 01008 /// specified by the identifier, either as an extension or a standard language 01009 /// feature. 01010 static bool HasExtension(const Preprocessor &PP, const IdentifierInfo *II) { 01011 if (HasFeature(PP, II)) 01012 return true; 01013 01014 // If the use of an extension results in an error diagnostic, extensions are 01015 // effectively unavailable, so just return false here. 01016 if (PP.getDiagnostics().getExtensionHandlingBehavior() >= 01017 diag::Severity::Error) 01018 return false; 01019 01020 const LangOptions &LangOpts = PP.getLangOpts(); 01021 StringRef Extension = II->getName(); 01022 01023 // Normalize the extension name, __foo__ becomes foo. 01024 if (Extension.startswith("__") && Extension.endswith("__") && 01025 Extension.size() >= 4) 01026 Extension = Extension.substr(2, Extension.size() - 4); 01027 01028 // Because we inherit the feature list from HasFeature, this string switch 01029 // must be less restrictive than HasFeature's. 01030 return llvm::StringSwitch<bool>(Extension) 01031 // C11 features supported by other languages as extensions. 01032 .Case("c_alignas", true) 01033 .Case("c_atomic", true) 01034 .Case("c_generic_selections", true) 01035 .Case("c_static_assert", true) 01036 .Case("c_thread_local", PP.getTargetInfo().isTLSSupported()) 01037 // C++11 features supported by other languages as extensions. 01038 .Case("cxx_atomic", LangOpts.CPlusPlus) 01039 .Case("cxx_deleted_functions", LangOpts.CPlusPlus) 01040 .Case("cxx_explicit_conversions", LangOpts.CPlusPlus) 01041 .Case("cxx_inline_namespaces", LangOpts.CPlusPlus) 01042 .Case("cxx_local_type_template_args", LangOpts.CPlusPlus) 01043 .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus) 01044 .Case("cxx_override_control", LangOpts.CPlusPlus) 01045 .Case("cxx_range_for", LangOpts.CPlusPlus) 01046 .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus) 01047 .Case("cxx_rvalue_references", LangOpts.CPlusPlus) 01048 // C++1y features supported by other languages as extensions. 01049 .Case("cxx_binary_literals", true) 01050 .Case("cxx_init_captures", LangOpts.CPlusPlus11) 01051 .Case("cxx_variable_templates", LangOpts.CPlusPlus) 01052 .Default(false); 01053 } 01054 01055 /// EvaluateHasIncludeCommon - Process a '__has_include("path")' 01056 /// or '__has_include_next("path")' expression. 01057 /// Returns true if successful. 01058 static bool EvaluateHasIncludeCommon(Token &Tok, 01059 IdentifierInfo *II, Preprocessor &PP, 01060 const DirectoryLookup *LookupFrom, 01061 const FileEntry *LookupFromFile) { 01062 // Save the location of the current token. If a '(' is later found, use 01063 // that location. If not, use the end of this location instead. 01064 SourceLocation LParenLoc = Tok.getLocation(); 01065 01066 // These expressions are only allowed within a preprocessor directive. 01067 if (!PP.isParsingIfOrElifDirective()) { 01068 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II->getName(); 01069 return false; 01070 } 01071 01072 // Get '('. 01073 PP.LexNonComment(Tok); 01074 01075 // Ensure we have a '('. 01076 if (Tok.isNot(tok::l_paren)) { 01077 // No '(', use end of last token. 01078 LParenLoc = PP.getLocForEndOfToken(LParenLoc); 01079 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; 01080 // If the next token looks like a filename or the start of one, 01081 // assume it is and process it as such. 01082 if (!Tok.is(tok::angle_string_literal) && !Tok.is(tok::string_literal) && 01083 !Tok.is(tok::less)) 01084 return false; 01085 } else { 01086 // Save '(' location for possible missing ')' message. 01087 LParenLoc = Tok.getLocation(); 01088 01089 if (PP.getCurrentLexer()) { 01090 // Get the file name. 01091 PP.getCurrentLexer()->LexIncludeFilename(Tok); 01092 } else { 01093 // We're in a macro, so we can't use LexIncludeFilename; just 01094 // grab the next token. 01095 PP.Lex(Tok); 01096 } 01097 } 01098 01099 // Reserve a buffer to get the spelling. 01100 SmallString<128> FilenameBuffer; 01101 StringRef Filename; 01102 SourceLocation EndLoc; 01103 01104 switch (Tok.getKind()) { 01105 case tok::eod: 01106 // If the token kind is EOD, the error has already been diagnosed. 01107 return false; 01108 01109 case tok::angle_string_literal: 01110 case tok::string_literal: { 01111 bool Invalid = false; 01112 Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); 01113 if (Invalid) 01114 return false; 01115 break; 01116 } 01117 01118 case tok::less: 01119 // This could be a <foo/bar.h> file coming from a macro expansion. In this 01120 // case, glue the tokens together into FilenameBuffer and interpret those. 01121 FilenameBuffer.push_back('<'); 01122 if (PP.ConcatenateIncludeName(FilenameBuffer, EndLoc)) { 01123 // Let the caller know a <eod> was found by changing the Token kind. 01124 Tok.setKind(tok::eod); 01125 return false; // Found <eod> but no ">"? Diagnostic already emitted. 01126 } 01127 Filename = FilenameBuffer.str(); 01128 break; 01129 default: 01130 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); 01131 return false; 01132 } 01133 01134 SourceLocation FilenameLoc = Tok.getLocation(); 01135 01136 // Get ')'. 01137 PP.LexNonComment(Tok); 01138 01139 // Ensure we have a trailing ). 01140 if (Tok.isNot(tok::r_paren)) { 01141 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) 01142 << II << tok::r_paren; 01143 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 01144 return false; 01145 } 01146 01147 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); 01148 // If GetIncludeFilenameSpelling set the start ptr to null, there was an 01149 // error. 01150 if (Filename.empty()) 01151 return false; 01152 01153 // Search include directories. 01154 const DirectoryLookup *CurDir; 01155 const FileEntry *File = 01156 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile, 01157 CurDir, nullptr, nullptr, nullptr); 01158 01159 // Get the result value. A result of true means the file exists. 01160 return File != nullptr; 01161 } 01162 01163 /// EvaluateHasInclude - Process a '__has_include("path")' expression. 01164 /// Returns true if successful. 01165 static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II, 01166 Preprocessor &PP) { 01167 return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr); 01168 } 01169 01170 /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression. 01171 /// Returns true if successful. 01172 static bool EvaluateHasIncludeNext(Token &Tok, 01173 IdentifierInfo *II, Preprocessor &PP) { 01174 // __has_include_next is like __has_include, except that we start 01175 // searching after the current found directory. If we can't do this, 01176 // issue a diagnostic. 01177 // FIXME: Factor out duplication wiht 01178 // Preprocessor::HandleIncludeNextDirective. 01179 const DirectoryLookup *Lookup = PP.GetCurDirLookup(); 01180 const FileEntry *LookupFromFile = nullptr; 01181 if (PP.isInPrimaryFile()) { 01182 Lookup = nullptr; 01183 PP.Diag(Tok, diag::pp_include_next_in_primary); 01184 } else if (PP.getCurrentSubmodule()) { 01185 // Start looking up in the directory *after* the one in which the current 01186 // file would be found, if any. 01187 assert(PP.getCurrentLexer() && "#include_next directive in macro?"); 01188 LookupFromFile = PP.getCurrentLexer()->getFileEntry(); 01189 Lookup = nullptr; 01190 } else if (!Lookup) { 01191 PP.Diag(Tok, diag::pp_include_next_absolute_path); 01192 } else { 01193 // Start looking up in the next directory. 01194 ++Lookup; 01195 } 01196 01197 return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile); 01198 } 01199 01200 /// \brief Process __building_module(identifier) expression. 01201 /// \returns true if we are building the named module, false otherwise. 01202 static bool EvaluateBuildingModule(Token &Tok, 01203 IdentifierInfo *II, Preprocessor &PP) { 01204 // Get '('. 01205 PP.LexNonComment(Tok); 01206 01207 // Ensure we have a '('. 01208 if (Tok.isNot(tok::l_paren)) { 01209 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II 01210 << tok::l_paren; 01211 return false; 01212 } 01213 01214 // Save '(' location for possible missing ')' message. 01215 SourceLocation LParenLoc = Tok.getLocation(); 01216 01217 // Get the module name. 01218 PP.LexNonComment(Tok); 01219 01220 // Ensure that we have an identifier. 01221 if (Tok.isNot(tok::identifier)) { 01222 PP.Diag(Tok.getLocation(), diag::err_expected_id_building_module); 01223 return false; 01224 } 01225 01226 bool Result 01227 = Tok.getIdentifierInfo()->getName() == PP.getLangOpts().CurrentModule; 01228 01229 // Get ')'. 01230 PP.LexNonComment(Tok); 01231 01232 // Ensure we have a trailing ). 01233 if (Tok.isNot(tok::r_paren)) { 01234 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II 01235 << tok::r_paren; 01236 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 01237 return false; 01238 } 01239 01240 return Result; 01241 } 01242 01243 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded 01244 /// as a builtin macro, handle it and return the next token as 'Tok'. 01245 void Preprocessor::ExpandBuiltinMacro(Token &Tok) { 01246 // Figure out which token this is. 01247 IdentifierInfo *II = Tok.getIdentifierInfo(); 01248 assert(II && "Can't be a macro without id info!"); 01249 01250 // If this is an _Pragma or Microsoft __pragma directive, expand it, 01251 // invoke the pragma handler, then lex the token after it. 01252 if (II == Ident_Pragma) 01253 return Handle_Pragma(Tok); 01254 else if (II == Ident__pragma) // in non-MS mode this is null 01255 return HandleMicrosoft__pragma(Tok); 01256 01257 ++NumBuiltinMacroExpanded; 01258 01259 SmallString<128> TmpBuffer; 01260 llvm::raw_svector_ostream OS(TmpBuffer); 01261 01262 // Set up the return result. 01263 Tok.setIdentifierInfo(nullptr); 01264 Tok.clearFlag(Token::NeedsCleaning); 01265 01266 if (II == Ident__LINE__) { 01267 // C99 6.10.8: "__LINE__: The presumed line number (within the current 01268 // source file) of the current source line (an integer constant)". This can 01269 // be affected by #line. 01270 SourceLocation Loc = Tok.getLocation(); 01271 01272 // Advance to the location of the first _, this might not be the first byte 01273 // of the token if it starts with an escaped newline. 01274 Loc = AdvanceToTokenCharacter(Loc, 0); 01275 01276 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of 01277 // a macro expansion. This doesn't matter for object-like macros, but 01278 // can matter for a function-like macro that expands to contain __LINE__. 01279 // Skip down through expansion points until we find a file loc for the 01280 // end of the expansion history. 01281 Loc = SourceMgr.getExpansionRange(Loc).second; 01282 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); 01283 01284 // __LINE__ expands to a simple numeric value. 01285 OS << (PLoc.isValid()? PLoc.getLine() : 1); 01286 Tok.setKind(tok::numeric_constant); 01287 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) { 01288 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a 01289 // character string literal)". This can be affected by #line. 01290 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 01291 01292 // __BASE_FILE__ is a GNU extension that returns the top of the presumed 01293 // #include stack instead of the current file. 01294 if (II == Ident__BASE_FILE__ && PLoc.isValid()) { 01295 SourceLocation NextLoc = PLoc.getIncludeLoc(); 01296 while (NextLoc.isValid()) { 01297 PLoc = SourceMgr.getPresumedLoc(NextLoc); 01298 if (PLoc.isInvalid()) 01299 break; 01300 01301 NextLoc = PLoc.getIncludeLoc(); 01302 } 01303 } 01304 01305 // Escape this filename. Turn '\' -> '\\' '"' -> '\"' 01306 SmallString<128> FN; 01307 if (PLoc.isValid()) { 01308 FN += PLoc.getFilename(); 01309 Lexer::Stringify(FN); 01310 OS << '"' << FN.str() << '"'; 01311 } 01312 Tok.setKind(tok::string_literal); 01313 } else if (II == Ident__DATE__) { 01314 Diag(Tok.getLocation(), diag::warn_pp_date_time); 01315 if (!DATELoc.isValid()) 01316 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 01317 Tok.setKind(tok::string_literal); 01318 Tok.setLength(strlen("\"Mmm dd yyyy\"")); 01319 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), 01320 Tok.getLocation(), 01321 Tok.getLength())); 01322 return; 01323 } else if (II == Ident__TIME__) { 01324 Diag(Tok.getLocation(), diag::warn_pp_date_time); 01325 if (!TIMELoc.isValid()) 01326 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 01327 Tok.setKind(tok::string_literal); 01328 Tok.setLength(strlen("\"hh:mm:ss\"")); 01329 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), 01330 Tok.getLocation(), 01331 Tok.getLength())); 01332 return; 01333 } else if (II == Ident__INCLUDE_LEVEL__) { 01334 // Compute the presumed include depth of this token. This can be affected 01335 // by GNU line markers. 01336 unsigned Depth = 0; 01337 01338 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 01339 if (PLoc.isValid()) { 01340 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 01341 for (; PLoc.isValid(); ++Depth) 01342 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 01343 } 01344 01345 // __INCLUDE_LEVEL__ expands to a simple numeric value. 01346 OS << Depth; 01347 Tok.setKind(tok::numeric_constant); 01348 } else if (II == Ident__TIMESTAMP__) { 01349 Diag(Tok.getLocation(), diag::warn_pp_date_time); 01350 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be 01351 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. 01352 01353 // Get the file that we are lexing out of. If we're currently lexing from 01354 // a macro, dig into the include stack. 01355 const FileEntry *CurFile = nullptr; 01356 PreprocessorLexer *TheLexer = getCurrentFileLexer(); 01357 01358 if (TheLexer) 01359 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); 01360 01361 const char *Result; 01362 if (CurFile) { 01363 time_t TT = CurFile->getModificationTime(); 01364 struct tm *TM = localtime(&TT); 01365 Result = asctime(TM); 01366 } else { 01367 Result = "??? ??? ?? ??:??:?? ????\n"; 01368 } 01369 // Surround the string with " and strip the trailing newline. 01370 OS << '"' << StringRef(Result).drop_back() << '"'; 01371 Tok.setKind(tok::string_literal); 01372 } else if (II == Ident__COUNTER__) { 01373 // __COUNTER__ expands to a simple numeric value. 01374 OS << CounterValue++; 01375 Tok.setKind(tok::numeric_constant); 01376 } else if (II == Ident__has_feature || 01377 II == Ident__has_extension || 01378 II == Ident__has_builtin || 01379 II == Ident__is_identifier || 01380 II == Ident__has_attribute || 01381 II == Ident__has_cpp_attribute) { 01382 // The argument to these builtins should be a parenthesized identifier. 01383 SourceLocation StartLoc = Tok.getLocation(); 01384 01385 bool IsValid = false; 01386 IdentifierInfo *FeatureII = nullptr; 01387 IdentifierInfo *ScopeII = nullptr; 01388 01389 // Read the '('. 01390 LexUnexpandedToken(Tok); 01391 if (Tok.is(tok::l_paren)) { 01392 // Read the identifier 01393 LexUnexpandedToken(Tok); 01394 if ((FeatureII = Tok.getIdentifierInfo())) { 01395 // If we're checking __has_cpp_attribute, it is possible to receive a 01396 // scope token. Read the "::", if it's available. 01397 LexUnexpandedToken(Tok); 01398 bool IsScopeValid = true; 01399 if (II == Ident__has_cpp_attribute && Tok.is(tok::coloncolon)) { 01400 LexUnexpandedToken(Tok); 01401 // The first thing we read was not the feature, it was the scope. 01402 ScopeII = FeatureII; 01403 if ((FeatureII = Tok.getIdentifierInfo())) 01404 LexUnexpandedToken(Tok); 01405 else 01406 IsScopeValid = false; 01407 } 01408 // Read the closing paren. 01409 if (IsScopeValid && Tok.is(tok::r_paren)) 01410 IsValid = true; 01411 } 01412 } 01413 01414 int Value = 0; 01415 if (!IsValid) 01416 Diag(StartLoc, diag::err_feature_check_malformed); 01417 else if (II == Ident__is_identifier) 01418 Value = FeatureII->getTokenID() == tok::identifier; 01419 else if (II == Ident__has_builtin) { 01420 // Check for a builtin is trivial. 01421 Value = FeatureII->getBuiltinID() != 0; 01422 } else if (II == Ident__has_attribute) 01423 Value = hasAttribute(AttrSyntax::Generic, nullptr, FeatureII, 01424 getTargetInfo().getTriple(), getLangOpts()); 01425 else if (II == Ident__has_cpp_attribute) 01426 Value = hasAttribute(AttrSyntax::CXX, ScopeII, FeatureII, 01427 getTargetInfo().getTriple(), getLangOpts()); 01428 else if (II == Ident__has_extension) 01429 Value = HasExtension(*this, FeatureII); 01430 else { 01431 assert(II == Ident__has_feature && "Must be feature check"); 01432 Value = HasFeature(*this, FeatureII); 01433 } 01434 01435 OS << Value; 01436 if (IsValid) 01437 Tok.setKind(tok::numeric_constant); 01438 } else if (II == Ident__has_include || 01439 II == Ident__has_include_next) { 01440 // The argument to these two builtins should be a parenthesized 01441 // file name string literal using angle brackets (<>) or 01442 // double-quotes (""). 01443 bool Value; 01444 if (II == Ident__has_include) 01445 Value = EvaluateHasInclude(Tok, II, *this); 01446 else 01447 Value = EvaluateHasIncludeNext(Tok, II, *this); 01448 OS << (int)Value; 01449 if (Tok.is(tok::r_paren)) 01450 Tok.setKind(tok::numeric_constant); 01451 } else if (II == Ident__has_warning) { 01452 // The argument should be a parenthesized string literal. 01453 // The argument to these builtins should be a parenthesized identifier. 01454 SourceLocation StartLoc = Tok.getLocation(); 01455 bool IsValid = false; 01456 bool Value = false; 01457 // Read the '('. 01458 LexUnexpandedToken(Tok); 01459 do { 01460 if (Tok.isNot(tok::l_paren)) { 01461 Diag(StartLoc, diag::err_warning_check_malformed); 01462 break; 01463 } 01464 01465 LexUnexpandedToken(Tok); 01466 std::string WarningName; 01467 SourceLocation StrStartLoc = Tok.getLocation(); 01468 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'", 01469 /*MacroExpansion=*/false)) { 01470 // Eat tokens until ')'. 01471 while (Tok.isNot(tok::r_paren) && Tok.isNot(tok::eod) && 01472 Tok.isNot(tok::eof)) 01473 LexUnexpandedToken(Tok); 01474 break; 01475 } 01476 01477 // Is the end a ')'? 01478 if (!(IsValid = Tok.is(tok::r_paren))) { 01479 Diag(StartLoc, diag::err_warning_check_malformed); 01480 break; 01481 } 01482 01483 // FIXME: Should we accept "-R..." flags here, or should that be handled 01484 // by a separate __has_remark? 01485 if (WarningName.size() < 3 || WarningName[0] != '-' || 01486 WarningName[1] != 'W') { 01487 Diag(StrStartLoc, diag::warn_has_warning_invalid_option); 01488 break; 01489 } 01490 01491 // Finally, check if the warning flags maps to a diagnostic group. 01492 // We construct a SmallVector here to talk to getDiagnosticIDs(). 01493 // Although we don't use the result, this isn't a hot path, and not 01494 // worth special casing. 01495 SmallVector<diag::kind, 10> Diags; 01496 Value = !getDiagnostics().getDiagnosticIDs()-> 01497 getDiagnosticsInGroup(diag::Flavor::WarningOrError, 01498 WarningName.substr(2), Diags); 01499 } while (false); 01500 01501 OS << (int)Value; 01502 if (IsValid) 01503 Tok.setKind(tok::numeric_constant); 01504 } else if (II == Ident__building_module) { 01505 // The argument to this builtin should be an identifier. The 01506 // builtin evaluates to 1 when that identifier names the module we are 01507 // currently building. 01508 OS << (int)EvaluateBuildingModule(Tok, II, *this); 01509 Tok.setKind(tok::numeric_constant); 01510 } else if (II == Ident__MODULE__) { 01511 // The current module as an identifier. 01512 OS << getLangOpts().CurrentModule; 01513 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule); 01514 Tok.setIdentifierInfo(ModuleII); 01515 Tok.setKind(ModuleII->getTokenID()); 01516 } else if (II == Ident__identifier) { 01517 SourceLocation Loc = Tok.getLocation(); 01518 01519 // We're expecting '__identifier' '(' identifier ')'. Try to recover 01520 // if the parens are missing. 01521 LexNonComment(Tok); 01522 if (Tok.isNot(tok::l_paren)) { 01523 // No '(', use end of last token. 01524 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) 01525 << II << tok::l_paren; 01526 // If the next token isn't valid as our argument, we can't recover. 01527 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 01528 Tok.setKind(tok::identifier); 01529 return; 01530 } 01531 01532 SourceLocation LParenLoc = Tok.getLocation(); 01533 LexNonComment(Tok); 01534 01535 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 01536 Tok.setKind(tok::identifier); 01537 else { 01538 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) 01539 << Tok.getKind(); 01540 // Don't walk past anything that's not a real token. 01541 if (Tok.is(tok::eof) || Tok.is(tok::eod) || Tok.isAnnotation()) 01542 return; 01543 } 01544 01545 // Discard the ')', preserving 'Tok' as our result. 01546 Token RParen; 01547 LexNonComment(RParen); 01548 if (RParen.isNot(tok::r_paren)) { 01549 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) 01550 << Tok.getKind() << tok::r_paren; 01551 Diag(LParenLoc, diag::note_matching) << tok::l_paren; 01552 } 01553 return; 01554 } else { 01555 llvm_unreachable("Unknown identifier!"); 01556 } 01557 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation()); 01558 } 01559 01560 void Preprocessor::markMacroAsUsed(MacroInfo *MI) { 01561 // If the 'used' status changed, and the macro requires 'unused' warning, 01562 // remove its SourceLocation from the warn-for-unused-macro locations. 01563 if (MI->isWarnIfUnused() && !MI->isUsed()) 01564 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); 01565 MI->setIsUsed(true); 01566 }