
The Power of DTrace

Roy Cecil

Sun Microsystems, Inc.

March 2007

Copyright © 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights
reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms.
This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is
a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
X/Open is a registered trademark of X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Solaris, OpenSolaris, and Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws
in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities
identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated
nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE
EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

The Power of DTrace 2

Table of Contents
Overview..4
Key Features of DTrace...4
How Does DTrace Work?..5
About Probes..5
An Example to Illustrate the Power of DTrace..7
Anatomy of a D Program...8
D Program Examples...10

Hello World...10
All Calls...11

Aggregation..11
Built-In Variables and Thread-Local Variables...12
DTrace Resources..14
Author Profile..14

The Power of DTrace 3

Overview
Dynamic Tracing (DTrace) is a debugging tool introduced in the SolarisTM 10 Operating System to help
debug systemic problems that are difficult to diagnose using traditional debugging tools and
mechanisms. This tool takes advantage of points of instrumentation in the Solaris OS to present
information useful for debugging errors and investigating performance issues in applications running
on the Solaris platform.

This article covers the following topics:

• Key Features of DTrace

• How Does DTrace Work?

• About Probes

• Example That Illustrates the Power of DTrace

• Anatomy of a D Program

• D Program Examples

• Aggregation

• Built-In Variables and Thread Local Variables

• DTrace Resources

• Author Profile

Key Features of DTrace
DTrace is designed to offer these features:

• No production risk. DTrace is considered the only debugging tool currently available that is
safe to use on production systems. By design, DTrace does not allow constructs that can bring
down the system through careless programming, such as loops and pointers. The absence of
looping prevents users from leaving an unending loop that results in nightmarish system
downtime. The absence of pointers prevents DTrace users from affecting memory allocated to
kernel or application processes. Though it is possible to cause problems to production systems
with DTrace, a user has to do so intentionally. Casual usage cannot interfere with production
activities.

• No implications. The Solaris 10 OS includes nearly 40,000 probes that are points of
instrumentation in the Solaris kernel. This instrumentation can be turned on and off at will,
leaving no overhead when the tracing is turned off. This feature is very important as it helps you
troubleshoot live production systems. You can use DTrace to query these probes and develop a
picture of how an application is utilizing the kernel.

• Extensibility. You can combine queries to create custom probes. A framework is provided to
trace user land functions. In addition, you can create custom probes in user applications to
provide the ability to use DTrace to obtain information specific to the application during
runtime within the semantics of the application.

The Power of DTrace 4

How Does DTrace Work?
Figure 1 illustrates the DTrace system. The dtrace(1M) command uses a library named libdtrace
as entry points into the various "DTrace providers" within the kernel, each of which gives a logical
view of some kernel subsystem. The binary that you can use for this function is named dtrace. The
binary can be used directly with various command-line options, or it can be used as a shell written in D
language just as a developer might use a Korn or Perl script.

Figure 1: Overview of the DTrace Architecture and Components

When executed, D language programs are compiled "on the fly" into byte code that runs on a D byte-
code interpreter embedded inside the kernel. The DTrace virtual machine runs the byte code to ensure
its safety. If the code is safe and you have sufficient privileges, the code is patched into the kernel
dynamically and executed as kernel-level code. This is why probes that are not enabled do not create
any overhead.

Inside the kernel, various providers provide a logical view of the kernel subsystems and expose the
information reported by DTrace.

About Probes
Probes are points of instrumentation in the Solaris 10 kernel. In short, a probe is a specific point in the
kernel's source code. When a program execution passes one of these points, the probe that enabled it is
referred to as having fired.

For example, in the libc library, in the function that allocates memory (malloc), a probe may be
defined each time malloc is called or whenever malloc returns control to the calling routines,
which are named entry and return, respectively. Therefore, if DTrace is being used to watch when
malloc returns a value, occasions when this happens are said to have fired the libc:malloc:
return probe.

The Power of DTrace 5

Each probe is uniquely identified by a 4-tuple. This avoids name clashes in the kernel, which is a code
base of millions of lines of code. Unique names also help you to more easily recognize the probes that
might be of interest. A 4-tuple comprises four components:

• Provider. The provider is a logical name used to group probes and can give you a sense of
logical subsystems in the kernel. For example, the fbt provider puts a probe in each and every
function entry and exit point.

• Module. The module corresponds to Solaris kernel modules. In the case of custom probes built
into applications, the module may be the class or code module where the probe is defined.

• Function. The function refers to the function or subprocedure where the probe is defined,
regardless of whether the probe is one of the existing kernel probes or a custom probe built into
an application.

• Name. A name refers to a unique point in the execution of a function. Two ubiquitous names
are entry and return. The entry point refers to the first instruction in a function's
execution after it is called, and return refers to the last point in a function before control goes
back to the calling routine. The entry probe should make all incoming parameters to the
function available, and the return probe should make any return values available.

In a DTrace script, a 4-tuple is expressed as follows:

provider:module:function:name

For example, you can use the pid provider to look at the inner workings of user processes. Modules
for the pid provider are typically the names of libraries a process is using. Functions used with the
pid provider can be any function in an executable or in the library that a process is using. Finally, the
names to use with pid are points in the execution of a function where you are interested in observing
some useful information. For example, you can define a name entry if you are interested in knowing
when control passes to the function.

So, to look at the entry information for the malloc function found in the libc library for a process
currently running on a system as PID 456, the 4-tuple to specify in DTrace is:

pid456:libc:malloc:entry

To examine the return values from the main function in the same process, use:

pid456:a.out:main:return

Execute the malloc probe as follows:

dtrace -n pid456:libc:malloc:entry

The Power of DTrace 6

Tip: Use the command dtrace -l
to list the available 4-tuples.

The output might look like this:

dtrace: description 'pid456:libc:malloc:entry' matched 1 probe
CPU ID FUNCTION:NAME
 0 61082 malloc:entry
 0 61082 malloc:entry

An Example to Illustrate the Power of DTrace
DTrace is not a cure for all your problems; rather it is a means to identify the cause of problems.
Making that identification requires that you ask the right questions, however. So, DTrace is not a
substitute for your knowledge of the system.

If you do not have detailed knowledge of the Solaris OS internals, do not despair. There are many
ready-made, useful scripts available on the Web contributed by DTrace enthusiasts. The DTrace
Resources section at the end of this guide provides references to script libraries.

This guide illustrates the use of DTrace by example. Everyone who has used a UNIX machine is
familiar with the stat tools available to monitor system usage. The tool mpstat is used to monitor
CPU usage. A typical mpstat output is as follows:

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
0 0 0 524 741 128 3 0 1 0 0 1 4 6 0 90
1 0 0 658 453 6 3 0 1 0 0 21 5 6 0 89

Each of the columns supplies valuable information about the system. This data is collected in counters
in the operating system and mpstat displays the data for the intervals specified. As useful as this data
is, it still does not give good insight into which process is responsible for these values.

For example, the xcal column in the mpstat output shows the number of xcalls, or cross calls, made
over an interval of 5 seconds. Cross calls in a multiprocessor system are special interrupts made by one
CPU to another CPU when the first CPU wants the second CPU to do some work on its behalf. This
process can result is significant performance problems.

Now, assume a production system is experiencing a serious performance degradation yet the test or
development system is not. Using mpstat, it is determined that the only difference is that the
production system is experiencing more cross calls than the development system. It is clear that
something is wrong in the production system, but it is not clear which process or processes are
responsible for the extra cross calls.

Prior to DTrace, there was no way to tell in any UNIX system which process was the culprit. However,
using DTrace, a simple script can make it clear which process is causing the problem.

The Power of DTrace 7

Note: DTrace must be used by root
unless special privileges are set
through Role Based Access Control
(RBAC).

Create a file named xcall.d and enter the following text into the file:

#!/usr/sbin/dtrace -s

sysinfo:::xcalls

{
 @[execname] = count();
}

This script, when executed, uses the dtrace binary to query the sysinfo provider on all its modules
and functions and any specific probe named xcalls. The requested output is a count by executable
name of all of the values associated with the probes matched.

Execute this script by setting the file privileges such that the file xcall.d is executable (mode 700,
750, or 755) and run the file at the command line:

./xcall.d

The initial output of the script will indicate how many probes the specified 4-tuple
(sysinfo:::xcalls) matched.

dtrace: description 'sysinfo:::xcalls' matched 2 probes

DTrace will begin to execute and gather information on the cross calls being issued on behalf of the
processes running on the system. Wait as long as desired and break the DTrace execution with an
interrupt (typically by pressing Ctrl-D). DTrace will then report its findings:

bash 2
cron 9
uname 24
sched 423
dtrace 7415
java 50345

Based on this output, it is clear that the java process is causing the cross calls. Since a java process
can run for a variety of reasons, it is necessary now to use the pid provider to investigate each java
process to determine which specific process is causing the problem. Once that is determined, the
affected JavaTM applications can be individually debugged to determine which functions are causing the
problem. Once you are armed with this information, the Java code can be adjusted or the vendor of the
code can be told precisely where to find and fix the problem.

Anatomy of a D Program
To realize the full power of DTrace, you should understand the structure and syntax of D-language
scripts. D language is a powerful combination of the syntax of awk and C++. The general structure of a
D program is as follows.

The Power of DTrace 8

Note: Depending on your PATH variable setting, the example
command execution may not work. Specify any path
component necessary to run the script.

#!/usr/sbin/dtrace -s

probe-description_1
/ predicate_1 /
{
 action_1
 action_2
 .
 .
 .
 action_n
}

probe-description_2
/ predicate_2 /
{
 action_1
 action_2
 .
 .
 .
 action_n
}

.

.

.
probe-description_n
/ predicate_n /
{
 action_1
 action_2
 .
 .
 .
 action_n
}

The previous pseudo code illustrates how a D program is laid out:

• The first line forces the program to execute using the dtrace binary as the command
interpreter.

• The D language itself is organized into several clauses of probe descriptions followed by
actions requested when the probes are fired.

• Results are captured whenever events occur that match the probe description.

• Finally, you can use predicates to limit the capture of data based on conditions that must be true
when a probe event fires.

For example, suppose you want to know the system calls on a machine but only for a process with a
PID of 3456. The D-language probe description for this would be as follows:

syscall:::entry
/ pid == 3456 /
{
 action_1;

The Power of DTrace 9

 action_2;
 .
 .
 .
 action_n
}

This clause would execute actions 1 through n each time a probe named entry in any module and a
function organized in the syscall provider were passed during the execution of the process
identified as number 3456. DTrace will not account for the system calls made by other processes in the
system because the predicate has the effect of filtering the result set. But DTrace is "smarter" -- for
system calls made in other processes, the probes do not fire at all.

As part of a D program, various actions can be performed when a probe fires. The actions are grouped
by curly braces ({ }) and separated by semi-colons (;). These actions may aggregate results, print
messages, or other perform behaviors that help structure the program output.

Other than this, D language does not use any flow control code. In particular, D language does not have
syntactic structures, such as loops (for example, while and for) or branches (for example, if,
switch/case, and so on).

D Program Examples
Now that you are armed with the knowledge of the D language, here are a few simple D programs.

Hello World

This example displays a simple string as a result of execution.

#!/usr/sbin/dtrace -qs
Hello World! The DTrace way!

BEGIN
{
 printf("Hello World!\n") ;
 exit(0) ;
}

END
{
 printf("Goodbye Cruel World!\n");
}

This program uses two special probes called BEGIN and END that fire whenever a D-script is executed
and terminated, respectively. One of the actions, exit(0) in the BEGIN probe clause, causes the
script to terminate, thereby causing the END probe to fire.

This program produces the following output:

$./hello.d

Hello World!

Goodbye Cruel World!

The Power of DTrace 10

All Calls

Next, suppose there is an interest to know the system calls used by bash. The following script will
display all the system calls made by bash while the script is executing.

#!/usr/sbin/dtrace -qs
#Show me the system calls!

syscall:::entry
/ execname == "bash" /
{
 printf(" bash with pid %d called %s \n", pid, probefunc) ;
}

This script uses the syscall provider and enables any probe named entry for any module or
function in the syscall provider. The predicate limits the data capture to cases where bash is the
executable that causes the probe to fire. This script will generate output as follows:

$./syscall.d

bash with pid 109 called write
bash with pid 112 called open
.
.
.

Aggregation
Formatted strings are printed via the printf() function. However, data can be collected and
processed before outputting as well. There is no need in D language to declare the type of a variable
before using it. In this respect, D language is more like Perl. D language provides integer, floating
point, char, and string data types that are all automatically determined at runtime.

In addition, D language provides arithmetic operators, such as + (add), - (subtract), * (multiply), /
(divide), and % (mod). Logical operators, such as && (AND), || (OR), and ^^ (XOR), are also
available. But the real power of D language is with aggregation. D language treats aggregation like a
table, which is very useful when summarizing query results.

Aggregation is a special case with specific syntax. An aggregation is declared in D language as follows,
where:

• name stands for the name of the aggregation.
• @ indicates that name is really an aggregation (imagine a table).
• aggfunc is an aggregation function such as, count(), sum(), avg(), max(), min(),

and so on.
• args are the arguments to the aggregation function.

Here's an example (note: keys are the indices upon which we are aggregating the data):

@name[keys] = aggfunc(args) ;

The Power of DTrace 11

Tip: Leaving an element of the 4-tuple blank is the
same as using a wildcard.

The Solaris OS is a time-sharing system. In other words, the Solaris OS attempts to allocate time to
work in small chunks in an effort to get as much work done as possible system-wide. Specific tasks or
processes do not occupy all of the system's resources at any one time.

Processes are scheduled on a CPU for a specified time slot and moved off the CPU at the end of that
time slot. A process can also go off CPU when the process needs a certain resource but that resource is
blocked for some reason. Aggregation allows you to obtain and summarize pertinent data about a
process over time, which might be more important than knowing how the process is doing in any one
time slot.

It is possible to write a small D program to show which processes are going off the CPU. Using
aggregation, this information can be printed in the form of a table. A two-column table with the process
name in one column and the number of times it moved off the CPU in another column is a good way to
use aggregation to provide a visual idea of how the process is doing in competition with other
processes. In this case, we aggregate or summarize the count() of times when processes move off of
CPU.

#!/usr/sbin/dtrace -qs

sysinfo:::pswitch
{
 @myTable[execname] = count() ;
}

END
{
 printa(@myTable) ;
}

The data is collected into the table called myTable and printed using the printa() function.
Because there are no loops in D language, output from this program is displayed in its entirety when
the program ends. The printa() function is a special function that loops through an aggregation and
prints the values.

$./aggr.d

soffice.bin 4
dtrace 12
java 28
sched 56

Built-In Variables and Thread-Local Variables
Often, it is useful to determine the time spent in a certain function, for example, when profiling an
application. When profiling, knowing which functions took the most time is the most interesting aspect.
In the following example, the goal is to find out how much time the system spends reading data from
the disk for a given application. If the application is multithreaded, and each thread reads data from the
disk, a mechanism is required to pull that information together.

Therefore, it is necessary to obtain the timestamp when a read system call is issued and to ensure that
subsequent reads by the same thread do not change that timestamp. D language provides a mechanism

The Power of DTrace 12

to do this through the built-in variable timestamp. This variable holds the number of nanoseconds
since the epoch time (1/1/1970).

The value of timestamp can be captured whenever a read system call is entered using a thread-
local variable. This ensures that cases where the probe fires later do not cause the timestamp to be
overwritten. The next two scripts demonstrate this concept. The first script, error.d, illustrates
erroneous usage and the second script, correct.d, illustrates correct usage.

#!/usr/bin/dtrace -qs
error.d: This is the wrong way to use built-in variables

syscall::read:entry
/ execname == "java" /
{
 startTime = timestamp ;
}

syscall::read:return
/execname == "java" /
{
 @[pid] = sum (startTime - timestamp) ;
}

END
{
 printa(@) ;
}

Assume there are two threads, thread1 and thread2. After thread1 issues a read call and
before it returns, thread2 issues a read call. So before syscall::read:return ever fires,
syscall::read:entry is fired twice. This can cause the data in startTime to be overwritten
and result in an erroneous calculation. This can be rectified as follows:

#!/usr/bin/dtrace -qs
#correct.d: This is the correct way to use built-in variables

syscall::read:entry
/ execname == "java" /
{
 self->startTime = timestamp ;
}

syscall::read:return
/ execname == "java" /
{
 @[pid] = sum (self->startTime - timestamp) ;
 self->startTime = 0 ;
}

END
{
 printa(@) ;
}

The Power of DTrace 13

The keyword self indicates that the variable startTime is a thread-local variable. A list of other
useful built-in variables is as follows:

• arg0...arg9 -- Arguments to functions represented in the int_64 format
• cpu -- Current CPU ID
• pid, ppid, tid -- Process ID, parent process ID, and thread ID
• probeprov -- Probe provider
• probemod -- Probe module
• probefunc -- Probe function
• timestamp -- Timestamp in nanoseconds since epoch

DTrace Resources
• Using DTrace from a Solaris 10 System is a helpful how-to guide on sun.com.
• The Solaris Dynamic Tracing Guide is a complete reference for DTrace available on

docs.sun.com.
• The DTrace web page on the BigAdmin sys admin portal has a lot of useful information.
• The OpenSolaris Community: DTrace offers several useful scripts, tools, and a vibrant

community of users.
• The DTraceToolkit at OpenSolaris.org contains several useful scripts.
• For a better understanding of the internal workings of the Solaris OS, read the excellent book

Solaris Internals by Richard McDougall and Jim Mauro.
• Chime is an open source DTrace visualization tool written in the Java programming language.

You can find more details on the OpenSolaris site.
• The Java DTrace API is a work in progress to write user-defined probes in the Java Virtual

Machine (JVM); for more information, refer to the OpenSolaris web site.

If you have any doubts about DTrace, participate in the OpenSolaris discussion forums and ask
questions. The people are very friendly, they love questions, and they are extremely helpful.

Author Profile
Roy Cecil is a Member of Technical Staff with the Market Development Engineering Department at
Sun Microsystems. He holds a Masters Degree in Computer Applications and works with Sun partners
to ensure that their products run best on Sun platforms.

Licensing Information
Unless otherwise specified, the use of this software is authorized pursuant to the terms of the license found at
http://developers.sun.com/berkeley_license.html

The Power of DTrace 14

http://www.sun.com/software/solaris/howtoguides/dtracehowto.jsp
http://www.sun.com/bigadmin/content/dtrace
http://www.sun.com/bigadmin/content/dtrace
http://developers.sun.com/berkeley_license.html
http://www.opensolaris.org/os/project/dtrace-chime/java_dtrace_api/
http://www.opensolaris.org/os/project/dtrace-chime/
http://www.solarisinternals.com/si/index.php
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit
http://www.opensolaris.org/os/community/dtrace
http://docs.sun.com/app/docs/doc/817-6223

	Overview
	Key Features of DTrace
	How Does DTrace Work?
	About Probes
	An Example to Illustrate the Power of DTrace
	Anatomy of a D Program
	D Program Examples
	Hello World
	All Calls

	Aggregation
	Built-In Variables and Thread-Local Variables
	DTrace Resources
	Author Profile
	Licensing Information

