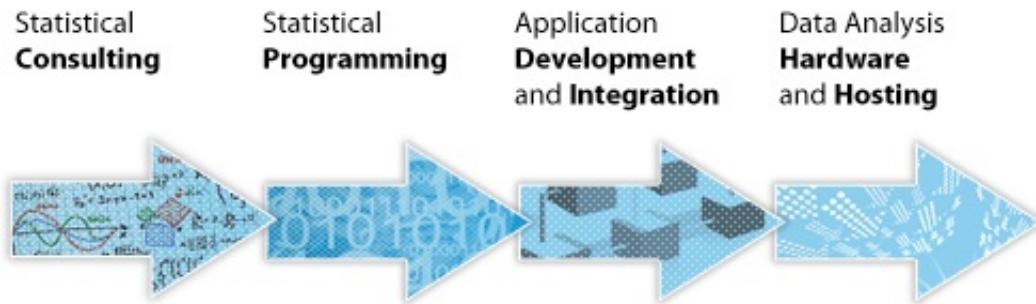


Eclipse and the World of Data Science


Tobias Verbeke (Open Analytics NV)
November 4, 2015

Open Analytics

Data Science Company

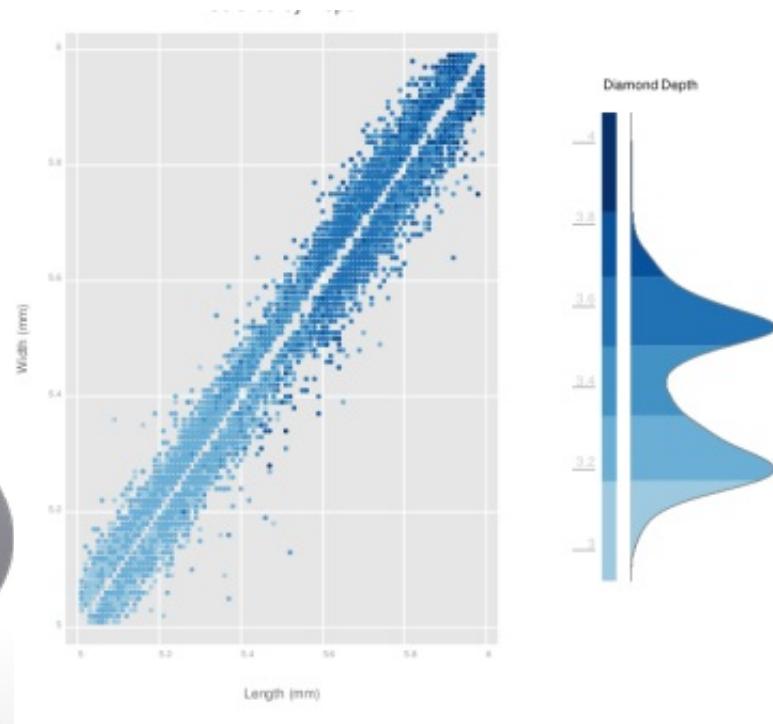
Data Science Company

Data Science

What is a Data Scientist?

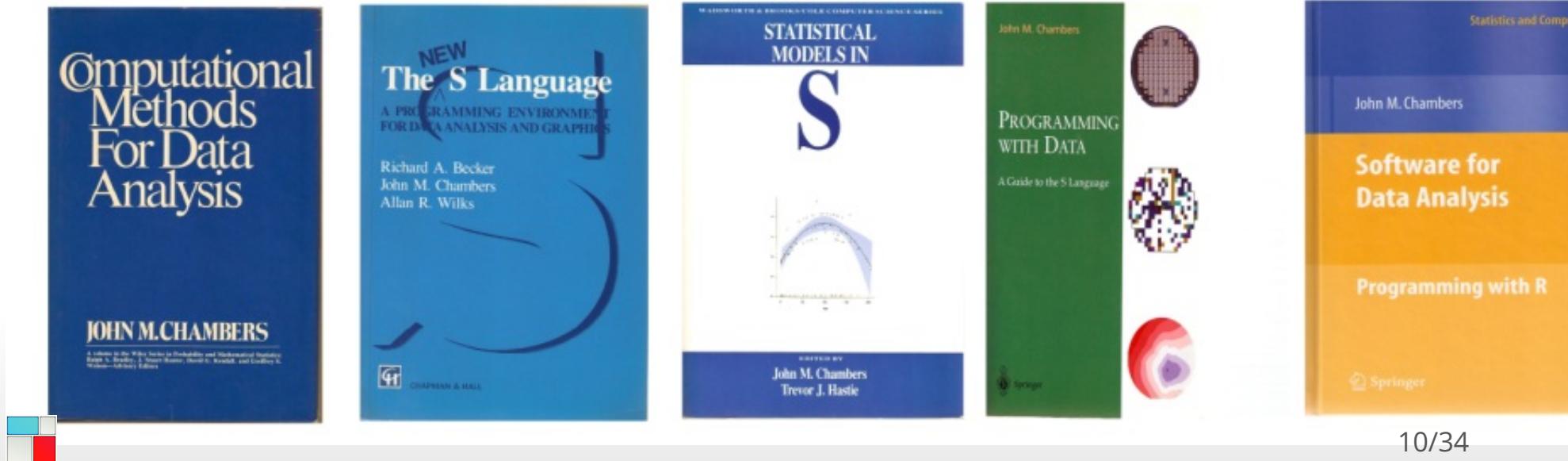
- "statistician who lives in Silicon Valley"
- "[...] a sexed up term for a statistician... Statistics is a branch of science. Data scientist is slightly redundant in some way and people shouldn't berate the term statistician" (Nate Silver)
- "someone who is better in statistics than any software engineer and better at software engineering than any statistician" (Josh Wils)

What is a Data Scientist?


- "statistician who uses Eclipse" (Tobias Verbeke)
- we don't push buttons, we write code
- we use certain languages
- we need certain data structures and certain interfaces
- we produce certain output in certain ways

Languages

R


- environment for statistical computing and data analysis
- full-blown programming language, open source
- language designed with the modeler in mind
- model for a lot of the data science tools in other languages

History of R


- S language at AT&T Bell Labs
- pioneering for interactive statistics (1975-1976)
- four landmark book publications (conceptual integrity)
- ACM Award 1998

"For the S system which has forever altered how people analyze, visualize and manipulate data"

Who uses R?

- everyone (including Oracle, Microsoft, Google, HP, facebook, Pfizer, Bayer, Morgan Stanley, Ford, New York Times, John Deere, etc.)

Data Structures

data.frame

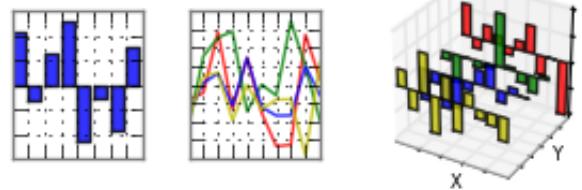
- not just arrays, but observations, labels, categorical data, ordinal data, numeric data
- built-in support for missing data (three-valued logic)
- neat indexing facilities

```
head(warpbreaks, n = 2)
```

```
## breaks wool tension
## 1 26 A L
## 2 30 A L
```

```
warpbreaks[warpbreaks$wool == "B" & warpbreaks$breaks < 15, 1:2]
```

```
## breaks wool
## 29 14 B
## 50 13 B
```



Python DataFrame

- pandas library for data manipulation and statistics
- defines a DataFrame object with integrated indexing

pandas

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$


```
In [10]: df2 = pd.DataFrame({ 'A' : 1.,
....: 'B' : pd.Timestamp('20130102'),
....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
....: 'D' : np.array([3] * 4,dtype='int32'),
....: 'E' : pd.Categorical(["test","train","test","train"]),
....: 'F' : 'foo' })
```

```
In [11]: df2
```

```
Out[11]:
```

	A	B	C	D	E	F
0	1	2013-01-02	1	3	test	foo
1	1	2013-01-02	1	3	train	foo
2	1	2013-01-02	1	3	test	foo
3	1	2013-01-02	1	3	train	foo

Spark DataFrame API

Quote from the 2015 Bossies:

The sweet spot for Spark continues to be machine learning. Highlights since last year include the replacement of the SchemaRDD with a Dataframes API, similar to those found in R and Pandas, making data access much simpler than with the raw RDD interface.

In the mean time, one can also use Spark interactively from an R terminal.

DSL for modeling

Turn Ideas into Software

- from mathematical idea to software

response ~ predictors

Fuel ~ Power + Weight

Fuel ~ Weight + sqrt(Power)

Fuel ~ poly(Weight, 3) + sqrt(Power)

Fuel ~ Power + sqrt(Weight) + Power:sqrt(Weight)

Fuel ~ Power * sqrt(Weight)

Fuel ~ Power * sqrt(Weight) + Type

Fuel ~ s(Power) + s(Weight)

- interfaces designed with the modeler in mind ('formula interface')

Turn Ideas into Software (contd.)

```
lm(weight ~ group)
glm(lot1 ~ log(u), data = clotting, family = Gamma)
rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)
gam(y ~ s(x0) + s(x1) + s(x2), family = poisson)
gee(breaks ~ tension, id = wool, data = warpbreaks, corstr = "AR-M", Mv = 1)
lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
```


Python

- statsmodels library, depends on patsy library

The screenshot shows the patsy documentation website. The top navigation bar is blue with the patsy logo and the word "latest". Below the navigation bar, there is a search bar labeled "Search docs". The main content area has a dark header with "Overview", "Quickstart", and "How formulas work" links. The main title is "patsy - Describing statistical models in Python". Below the title is a "Contents:" section. The URL in the address bar is "Docs » patsy - Describing statistical models in Python". There is also a "Edit on GitHub" button.

```
ModelDesc.from_formula("Fuel ~ Power + Weight + Power:Weight")
```

Apache Mahout DSL

- a little deeper than the formula interface
- distributed machine learning, moving away from MapReduce

Scala DSL

- **Scala** as programming/scripting environment
- **R-like DSL** :

$$G = BB^T - C - C^T + \xi^T \xi s_q^T s_q$$

```
val G = B %*% B.t - C - C.t + (ksi dot ksi) * (s_q cross s_q)
```

(Courtesy of Sebastian Schelter)

Demo

Reproducible Research

Reproducible research

- literate programming transposed to statistical practice
- analysis code and description of the analysis and results ("comments") in one single document
- push the button and the computer conducts the analysis, generates graphs and tables, includes these in the report and you're done

Notebooks

- interactive form of a reproducible document
- code cells and non-code cells, interacts with R sessions etc.
- Jupyter notebook most successful implementation

Demo

Science Working Group

Building Blocks

- top-down: dawnsci, chemclipse, ICE
- bottom-up: triquetrum for scientific workflow engines, datasets, advanced visualization
- data science is the science of analyzing data independently of the scientific application domain
- room for more tooling that focuses on generic data science building blocks

Some Examples

- Datasets project inspired on Numpy NDArray
- pandas, on top of Numpy, implements the data frames idea, could be the next step
- Scientific Reporting Mylyn docs extended to support Rmd documents, could be extended to pymd documents for reproducible reporting using Python

IP in Science

- contributing back is in the researcher's DNA
- R is GPL, Python has a GPL-compatible license, a lot of LGPL out there etc.
- to build on the shoulders of giants, new ways need to be found to cohabit with these communities

Conclusions

Conclusions

- chances are you will see more and more data scientists
- by definition, they use Eclipse
- they will in all likelihood speak a mouthful of R
- time for woRld domination...

Acknowledgements

- Stephan Wahlbrink (WalWare)
- Science WG Members

Questions?

tobias.verbeke@openanalytics.eu

Thanks!

eclipsecon Europe

Ludwigsburg, Germany, 3 - 5 November 2015

Evaluate the sessions at www.eclipsecon.org

+1

0

-1

