
OSGi: Simplifying the IoT Gateway

Walt Bowers

Technical Solutions Architect -

Eurotech

Nov 5, 2015

Outline – Where we are headed

• Eurotech Overview

• IoT Gateway Complexity

• Making IoT Gateway’s Simple

• Use Case – Cold Chain

• How OSGi is leveraged

• Demo

2

Eurotech Overview

• One of the world top players in the Embedded Computers market

• 20+ Years of experience in “M2M” and distributed systems

• Behind the products of more than 20 Global 500 companies

• Strong vertical market competences:

– Industrial & Logistics

– Transportation

– Defense & Security

– Healthcare & Medical

 3

Eurotech‘s Essence

Eurotech Overview

• Active in Eclipse IoT

– One of founding member companies

• Contributors to Kura

– Contributed the original code from ESF

– https://www.eclipse.org/kura/

• OSGi Alliance

– Long time adopters/New Members

– IoT Expert Group

– http://osgi.org

Our Activity

The Eurotech IoT Approach
Overview

System

Infrastructure

Application

Integration

Layer

Application

Layer

Communication

Infrastructure

Field Infrastructure

MQTT

M2M / IoT

Integration

Platform

Device HW

Gateway, OS, Security

Gateway Application Framework

Certifications, Device Connections

Aggregators & On-

Premise Platforms

M2M Integration / IoT Application Enablement /

Device and Data Management Platform

SIM Management &

Communication Infrastructure

Optimum

M2M / IoT

Protocols

Public

Cloud

Private

Cloud

Sensors, HMIs, Actuators, etc.

aPaaS SaaS

Enterprise Applications

Big Data

Databases

Analytics

Enterprise IT

Mining

CEP

ERP CRM ….

IoT Gateway Software Development

Why is it so difficult?

• Locked In

Fragmentation

Protocols to Cloud

– MQTT

– LWM2M

– CoAP

– AllSeen

Sensor Protocols

– ZigBee

– Z-Wave

– CANBus

– MODBus

– Bluetooth

– BLE

– DECT

Hardware

– ARM

– Intel

 Standards

– oneM2M

– Thread

– AllSeen

– Industrial Internet Consortium

– IEEE

Complexity

Reliability

– Store and forward

– Best Effort

– Guaranteed

Lifecycle Management

– Deployment/Install

– Upgrade

– Provisioning/Configuration

Security

– Sensors

– Data

– Network

Network Management

– LAN

– WAN

– Cell

– Always on

– On Demand

– Usage

Lock-in

Hardware
Sensor(s)

Vertical Market

Protocol(s)

How to make it simple?

OSGi

Open

Source

Why Open Source IoT Gateway Stack?

IoT Gateway Challenges:

• Pressure to add value in

shrinking timeframes

• Velocity of technology changes

outstrips staffing

• Interoperability trumps

exclusive differentiation

• Quest for quality w/o lock-in

Open Source is the Answer!

Founded in 2012 by

• Now …

– 23 Members

– 15+ new projects

– 1M+ lines of source code

– The fastest growing Eclipse

workgroup
http://www.slideshare.net/blackducksoftware/io-t-and-open-source

Eclipse Kura
Open OSGi Framework for IoT Gateways

https://www.eclipse.org/kura/

https://iot.eclipse.org/java/

Kura Under the Covers

OpenJDK 7, Oracle Java SE 7 Embedded

OSGi Application Container (Eclipse Equinox, Concierge)

Device Abstraction

javax.comm / RS-485

Basic Gateway Services

DB Service

Clock Service

Device Profile

Watchdog

Network Configuration Network Configuration

Field Protocols Connectivity and Delivery

Data Services MQTT Paho

A
d

m
in

is
tr

a
ti

o
n

 G
U

I

Applications

Your Application

R
e

m
o

te
 M

a
n

a
g

e
m

e
n

t

C
o
n

fi
g

u
ra

ti
o

n

M
a

n
a

g
e

m
e

n
t

javax.usb + udev

Cloud Services

Your Application

Firewall,

Port Forwarding

Network

Monitors

Cellular, Wi-Fi,

Ethernet

GPS Position
GPIO / SPI / PWM / I2C

jdk.dio

ModBUS

CAN bus

Custom Protocols

U
p
d

a
te

s

M
a

n
a

g
e

m
e

n
t

R
e
m

o
te

 A
c
c
e

s
s

Java USB HID APIs javax.bluetooth / BLE javax.smartcardio

Security

Security Manager Certificate Manager SSL Manager Provisioning

Developer’s Experience

Emulate on PC Deploy on Target Cloud Managed

Start developing your IoT

/M2M application in the

comfort of your PC.

• Full Eclipse Integration

• Target Platform Definition

• Emulated Services

• Run/Debug from Eclipse

• Support Mac/Linux Hosts

When you are ready, deploy

your application on the

gateway.

• One-click Deployment

• Eclipse Plugin

• Remote Debugging

Provision and manage your

applications in field devices

from the Cloud.

• Remote OSGi

Management via MQTT

• Web-based Console

Industrial

M2M/IoT

Gateways

From Prototype to Production
Efficient Development & Investment Protection

Software portability

across HW Platforms

Open Hardware

Vertical Market Example Use Case
Use Case: Cool Chain Monitoring

Application:

The customer, a mid size company growing and selling vegetables required a

monitoring solution for their green houses (temperature, light, humidity) and for their

delivery trucks (temperature, cool chain monitoring).

The monitoring of both the green houses as well as the trucks is mainly to protect

the investments in terms of “goods”. The truck solution was especially appealing

because of the ability to react when a cooling system fails before the load is lost.

Key Success Factors:

Short time to market due to EDC approach

ESF

Simple dashboards provided by Eurotech

Alarms sent when reaching temperature thresholds

Flexible hardware platform

Product:

ReliaGATE 10-20

ReliaCELL 10-20

Cool Chain Monitoring

Wireless

Open/Closed Sensor

Transmit when door is

opened and closed.

Show door status on

web / mobile app

Wireless Temperature Sensor

Show interior cooler

temperature

Correlate to dashboard at

defined demo interval

Wireless Humidity Sensor

Show interior cooler humidity level

Correlate to dashboard at defined

demo interval

Monnit 900 MHz USB Wireless

Gateway – Inserted into

ReliaGATE 10-20 USB port.

Application bundle(s) running

locally – sensor reporting

intervals configured via ESF

Cold Chain Demo

Products involved:

• Small AC powered cooler

• Monnit Wireless Sensors & USB Gateway

• ReliaGATE 10-20 (or other)

• ReliaCELL for cellular connection

• ESF & EC

• Dashboard – should display via PC browser

and mobile browser

@

http://www.monnit.com

Process

• Install Kura on Raspberry Pi

• Hook up USB Dongle

• Use Kura USB services to access Monnit APN

• Use Kura Cloud service to publish

• Use Kura Configuration service for configuration

• In less than 2 days, publishing Temperature to the cloud.

What was the slowest part:

• Decoding bytes from the APN.

Frame=[c5,0e,04,55,24,f6,00,00,e2,e2,90,02,00,10,09,01,5c]

RSP=[55, 24, f6, 00, 00, e2, e2, 90, 02, 00, 10, 09, 01]

apRSSI:226

DeviceID:63012

sensorType:2

temperature:79.0

voltage:2.0

• Learning the instruction sequence

• Main gateway functions already provided.

OSGi Enablement:

• OSGi is the key that makes this so easy

– Modularity

– Services

• Some key OSGi services leveraged by Kura

– Declarative Services

– Metatype Service

– Configuration Admin Service

– Deployment Admin Service

The secret sauce

OSGi

on

Linux

Hardware

Java

Code

Declarative Services - CloudService
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"

 name="org.eclipse.kura.monnit.MonnitGateway"

 activate="activate"

 deactivate="deactivate"

 modified="updated"

 enabled="true"

 immediate="true"

 configuration-policy="require">

<implementation class="org.eclipse.kura.monnit.MonnitGateway"/>

<property name="service.pid" type="String" value="org.eclipse.kura.monnit.MonnitGateway"/>

 <service>

 <provide interface="org.eclipse.kura.monnit.MonnitGateway"/>

 </service>

 <reference name="CloudService"

 policy="static"

 bind="setCloudService"

 unbind="unsetCloudService"

 cardinality="1..1"

 interface="org.eclipse.kura.cloud.CloudService"/>

</scr:component>

Declarative Services - CloudService
public class MonnitGateway implements ConfigurableComponent, CloudClientListener

{

…

public void setCloudService(CloudService cloudService) {

 m_cloudService = cloudService;

 …

 m_cloudClient = m_cloudService.newCloudClient(APP_ID);

}

public void unsetCloudService(CloudService cloudService) {

 m_cloudService = null;

 }

public void doPublish()

{

// Publish the message

try {

//m_cloudClient.publish(topic, payload, qos, retain);

m_cloudClient.publish(pubTopic, payload, qos, retain);

s_logger.info("Published to {} message: {}", pubTopic, payload);

}

catch (Exception e) {

s_logger.error("Cannot publish topic: "+ pubTopic, e);

}

}

…

}

Metatype Service

<MetaData xmlns="http://www.osgi.org/xmlns/metatype/v1.2.0" localization="en_us">

 <OCD id="org.eclipse.kura.monnit.MonnitGateway"

 name="Monnit"

 description="Monnit Gateway Application. Configuration params for gateway, apn and

sensors. ">

 <Icon resource="http://eurotechinc-netlogix.rhcloud.com/images/images/usb.png" size="32"/>

 <AD id="reportingInterval"

 name="reportingInterval"

 type="Integer"

 cardinality="0"

 required="true"

 default="60"

 description="Reporting Interval. 0-43200 seconds Amount of time the sensors will wait

before sending a message when not in aware state."/>

Metatype Services – Automatic Admin GUI

Configuration Admin Service

public void updated(Map<String,Object> properties)

{

s_logger.info("Updated Monnit...");

System.out.println("Updated Monnit...");

// store the properties received

m_properties = properties;

for (String s : properties.keySet()) {

s_logger.info("Update - "+s+": "+properties.get(s));

System.out.println("Update - "+s+": "+properties.get(s));

 }

…

}

Demo
Here it is all together

www.eurotech.com

Thank You!

www.eurotech.com

Thank You!

