Shoot A Pi!
with Eclipse Kura

@ EU ROTECH David Woodard @ Eurotech

Imagine. Build. Succeed. Luca Da.Zl @ Eurotech

+
Agenda

Presentation of Kura architecture for Java and OSGi based
multi service gateway platforms. (Dave, 20 mins)
Presentation of the Shoot-A-Pi arcade game simulator, game
logic explanation, MQTT topics and metrics (Luca, 15 mins)
Hardware setup on the Raspberry Pi B+ (15 mins)

Assisted creation of the Shoot-A-Pi bundle (90 mins)

Tests (15 mins)

Dashboard showcase and final game (15 mins)

Q&A

+
Before starting...

 Power on the Raspberry Pi with the micro USB cable

* Connect the Raspbery Pi to an ethernet port on your PC

 Connect your PC to the WiFi network named ‘ShootAPi’
Password: KuraTutforial

* Set the IP Address of your ethernet to 192.168.2.1

e Start VirtualBox and import the tutorial image (shootapi.ova)

« Start the newly imported EclipseCon VM

« Start the Terminal Emulator

* Access the Raspberry Pi with ssh at address 192.168.2.10
ssh pi@192.168.2.10
Password: raspberry

-+

Share your WiF1 with the Pi1

Linux/Mac users

Open the Kura Web Console on a browser (/92.168.2.10)
Navigate to the Network panel and set ethO on DHCP
Share your WiFi with the Ethernet interface
Do an ifconfig on the terminal and take note of the IP address
assigned to ethO (defaults to /0.42.0. 1 on Ubuntu)
Scan for the IP of the Pi using nmap

nmap 10.42.0.0-255

Windows users

Share your WiFi with the Ethernet interface
Set the IP address of the Ethernet interface to 192.168.2. 1
The Raspberry Pi will be available at address /92.168.2.10

* Share your WiFi with the Pi
Windows

* Right-click on the Network icon in the taskbar

* Open Network and Sharing Center

* Click on Change adapter settings

* Right-click on WiFi, open the Properties

* Activate the Sharing tab

* Check the Allow other network users to connect checkbox
* Select Ethernet from the combo box below

 Apply and close

' Share your WiFi with the Pi
Ubunitu

 Click on the network icon, then Edit Connections...

 Double click on the Wireless Connection

* Open the IPv4 Settigns tab

* Select Shared with other computers on the Method combo box

* Apply and exit. Once the Piis connected and set to DHCP click on
the Wired Network so to renew the DHCP lease

IoT Gateways

Revolution: Towards Real-time Actionable Data

Business
Application

KURA is the open source Java and OSGi-based
Application Framework for M2M Service
Gateways in the Eclipse IOT Working Group.

Purpose i k n
Simplify the design, deployment and remote : UrQ

management of embedded applications.

It provides
*Cohesive and integrated app environment Java/OSGi
*Modular software components
*HW abstraction layer _
*Field protocol libraries Linux OS
*Cloud connectivity

Industrial

,0 =7

Embedded App

*Remote app and device management
*Local app and device management
*Built-in Security

*Development tools

*Raspberry PI
M2M *BeagleBone

gateways Black

Smart
Sensors

+
Encapsulating complexity

Increase productivity and decrease cultural barriers

Kura helps customer
focusing on their core
business

} # KUra

Dev elo

NEVERYAY

Linux
Hardware

Kura Developers’ Experience

Designed from ground-up for developers

Emulate on PC

Deploy on Target

=

Cloud Managed

ey
- \

_l"f-

T
JII

Start developing your M2M
application in the comfort
of your PC.

*Full Eclipse Integration
*Target Platform Definition
*Emulated Services
*Run/Debug from Eclipse
*Support Mac/Linux Hosts

When you are ready, deploy
your application on the
gateway.

*One-click Deployment
*Eclipse Plugin
*Remote Debugging

Provision your application
to field devices from the
Cloud.

Manage your application
configuration and lifecycle
from a Cloud infrastructure.
No more field visits!

*Web-based Console
*REST API Integration
Smart Alerts

...o.
SN HU r Q Eclipse Open IoT Stack for Java

Applications & HUfQ

@
8 System
2 Your Application Your Application ", T,
2
S =
£ e DoV
o 2
Connectivity and Delivery Field Protocols B Neswoc
= Cloud Services Data Services MQTT Paho e
n O Modbus =7
9 E ‘:v Packages
B g % Network Confi ti
5 ;%' g etwor. oniiguration — by Settngs
g = Cellular, Wi-Fi, Firewall, Port Link g Services
Ethernet Forwardin Monitors Y -
8’ g g Q-J ClockSeanics
§ 5= =t
< g i]:) g - CloudServics
& < £ Basic Gateway Services A
Qo = % g u DtaSondcs
o) g g DB Service Device Profile E
g g ‘EU . CuStom PIOtOCOIS lU ﬁx MagiDesa Transgon
& O Clock Service Watchdog i -
\‘d PostionServics
Device Abstraction 9 SeManageSanics
i it K~ M CngSanice
javax.comm javax.usb GPS Position GPIO / SPI / PWM / I2C ! w B
/ ud jdk.dio e
Java HID APIs W/ ncevaceess javax.bluetooth / BLE J Your Application

OSGi Application Container (Eclipse Equinox, Concierge)

Java SE 7 / 8 (Open]DK)

Shoot-A-Pi Arcade Shooter Simulator I

Architecture

Web
Dashboards

Eclipse Equinox OSGi

Java VM

Linux

Hardware

O

Device/Gateway
(data collection) _

Laser

Human Interface Device

Shoot-A-Pi Arcade Shooter Simulator I

MQTT Topics and Metrics

- Timestamp
- Metrics: Remaining rounds

- Timestamp
- Metrics: Current score

- Timestamp
- Metrics: Realod flag

- Timestamp - Timestamp .
- Metrics: Game ID - Metrics: Realoding status reloadlng

+ Shoot-A-Pi Arcade Shooter Simulator

Game Logic

/ Shoot-A-Pi \

HID Worker s [12C Worker GPIO Actuator

Y

250 ms

shot

score

"------

250 ms

-----"
- OE E E .

Shoot-A-Pi Arcade Shooter Simulator I

Hardware Setup

12C Raspberry Pi B+ |8 Header GPIO

| 5v DC Power |
| 5v DC Power | == = == - -I
[Ground |

| GPlOo18 | 1
[Ground }

d RF Dongle

Class Diagram

LaserPenWorker
Runnable

/ PenDetectListener

DigitalLightSensorWorker
Runnable

LightSensorChangelListener
GPIOActuator

Runnable

GameLogic

v
I I......*I I*I

+
Setting up the Laser Tag

The LP-170 Laser Tag has two working modes.

A
B
C

Q @ w x>

Pen Function
Mode Switch
Page Down

Page Up

Pen Function
Mode Switch
Start Slideshow
Stop Slideshow
Hide Slideshow

Shoot A Pi Function
None

None

Shoot A Pi Function
Reload
Reload

Shoot

Payload
NONE
0x00004e
0x00004b

Payload
NONE
0x02003e
0x000029
0x000005

A.
B.
C
D.
E.

Mode Switching
Reload

. Fire

Only laser
RF USB Dongle

Helpers

+
Setting up the Laser Tag |I

We will use a helper class to trace the commands received from the pen

public static enum PenCommand {
CMD LASER NO REPEAT("000005", "Shooting Laser!"),
CMD LASER REPEAT("00004b", "Scrolling down..."),
CMD RELOAD REPEAT("00004e", "Scrolling up..."),
CMD RELOAD NO REPEAT A("02003e", "Reload 1"),
CMD RELOAD NO REPEAT B("000029", "Reload 2"),
CMD UNKNOWN_COMMAND ("000000", "Unknown command");

Stub file: PenCommandsEnum.stub.java

Setting up the Laser Tag

Worker

Reading from the pen will be handled by a Runnable class, which will

constantly poll the pen for input using HID APIs provided by Kura.
A listener is passed in the constructor, so that when the worker detects a

command, it can wake up the caller.

public class LaserPenWorker implements
Runnable ({

private static final int PEN VENDOR ID =
4643,
private static final int PEN PRODUCT ID =
16230,

private static HIDDevice thePen = null;

private static PenDetectlistener callback;,

public LaserPenWorker (PenDetectListener
callback) {
LaserPenWorker.callback = callback;,

}

Stub file: LaserPenWorker.stub.java

public void run() {
byte[] data = new byte[3];
try {
if (null == thePen) {
thePen= HIDManager.getlInstance ().openById/(
PEN_VENDOR_ID,
PEM_PRODUCﬂ_ID, null),
}
while (true) {
thePen.read(data) ;
// Convert data to string and put in result
if ('result.toString() .isEmpty ()
&& !result.toString() .equals ("000000™)) {
fireChangeEvent (result.toString());
}
}
} catch (HIDDeviceNotFoundException ex) ({
} catch (IOException ex) {
} finally { }

Deploying the Bundle

mToolkit

m Export the bundle using Export -> Plug-in development -> Deployable
plug-in and fragments

m Open the mToolkit Frameworks view using Window -> Show View ->
Others...

m Activate the Frameworks tab and create a new Framework using the IP
Address of the Pi

m Start the newly created framework
m Right-click on Bundles
m Click on «Install new...» and select the plug-in you exported before

m Connect to the Pi and see the Bundle in action!

+
Debugging and Logging

m After accessing the Pi through ssh you will be able to inspect
the log files and control Kura using these commands:

tail —f /var/log/kura.log will show the realtime kura log

IS VA4 oA il Eelolatlol CHIsTe M will show the System.err log

telnet 127.0.0.1 5002 will open the OSGi telnet terminal

Will restart Kura. Bundles installed with

sudo /etc/init.d/kura restart mToolkit will be removed.

Setting up the Digital Light Sensor
Enable I2C on the Raspberry Pi

The Rapsberry Pi ships with the I2C disabled.

In order to communicate with the Grove Digital Light Sensor we have to enable the
Linux modules that will enable I2C communication on the Pi.

Enter the following commands in the Pi command line:

sudo nano /etc/modules

And add these two lines to the file:

12c-bcm2708

i12c-dev

Then save the file and reboot the Pi

+
Setting up the Digital Light Sensor

Worker overview

m Detecting luminosity changes will be demanded to a separate Runnable

m The I2C Digital Light Sensor is acquired and managed using Open]JDK
Device I/0 APIs, provided by Kura

m The worker will be constantly polling the Light Sensor reading the
luminosity and will trigger listeners when it needs to.

m The change in luminosity between polls is evaluated using several
thresholds, programmable through the Kura Web UL

m The LUX value is calculated using an helper method, provided in the stub.

Stub file: LuxCalculation.stub.java

+
Setting up the Digital Light Sensor
Managing I2C

I2C Devices are accessed using jdk.dio.I2CDevice and jdk.dio.I2CDeviceConfig
classes.
Reads and writes on the sensor can be atomic or transacted.

private static void initDevice() ({
try {
I2CDeviceConfig config = new I2CDeviceConfig (
1,
LIGHT SENSOR_ADDRESS,
7,
400000
)/
s light sensor = (IZCDevice) DeviceManager.open (IZCDevice.class, config);
// INIT
s light sensor.begin();
s light sensor.write(0x80); s light sensor.write (0x03);
s light sensor.write(0x81),; s light sensor.write (0Ox11);
s light sensor.write(0x86); s light sensor.write (0x00) ;
s light sensor.end();
catch (UnavailableDeviceException e) {
catch (DeviceNotFoundException e) {
catch (ClosedDeviceException e) {
catch (IOException ex) ({

[N

Refer to Open]DK Device I/0 APIs for further info

+
Setting up the Digital Light Sensor
Worker

Another Runnable is used to implement the Digital Light Sensor logic

public class DigitallLightSensorWorker implements Runnable {
public void run() {
if (null == s light sensor || !s_light sensor.isOpen()) { initDevice(); }
try {
while (true) {
s light sensor.write (0x8C); Thread.sleep(5);
L0 = s light sensor.read(),; Thread.sleep(5);
s light sensor.write (0x8D); Thread.sleep(5);
HO = s light sensor.read(),; Thread.sleep(5);
s light sensor.write (0x8E); Thread.sleep(5);
L1 = s light sensor.read(),; Thread.sleep(5);
s light sensor.write (0x8F); Thread.sleep(5);
H1 = s light sensor.read();

int ch0 = (((HO & Oxff) * 0x100) + LO) & Oxffff;
int chl = (((H1 & Oxff) * 0x100) + Ll1) & Oxffff;
int lux = Utilities.calculateLux(ch0O, chl);,

if (lux > PROP_THRESHOLD LUX MAX) {
fireChange (lux) ;
}
Thread.sleep(REAQ_RESOLUTION);
}
} catch (IOException ex) {
} catch (InterruptedException ex) {
} finally {
closeDevice (),

}
Stub file: LightSensorWorker.stub.java

+
Setting up the Digital Light Sensor
Wake-up / Sleep logic

A simple wake-up / sleep logic is implemented in the worker in order to have it
fire lux change events only when needed.

public class DigitallightSensorWorker implements Runnable {

private static LightSensorChangelistener callback;,
private static boolean s listen = false;

public DigitallLightSensorWorker (LightSensorChangelListener callback) ({
DigitalLightSensorWorker.callback = callback;

}

public static void startListeningForLaser() {s listen = true,}
public static void stopListeningForLaser() {s listen = false;}
public static boolean isAcquiring() {return s listen,}

private void fireChange (int lux) ({
if (s_listen) {
callback.lightSensorChangeDetected (lux) ;
stopListeningForLaser () ;
1
1

The startlisteningForLaser() method is called when the Laser Tag Worker
detects a Shot command

Stub file: LightSensorWorker.stub.java

+
GPIO Actuator

The GPIO Actuator is yet another runnalbe. This time it is a simple class
delegated to work on the GPIOs using jdk.dio. GPIOPin.
In this class Device I/0 features are loaded using the default configuration.

public class GPIOActuator implements Runnable ({
private static final int ledPinGPIO = 17;
private static GPIOPin led;

public GPIOActuator () {
try {
Device<?> d = DeviceManager.open (ledPinGPIO) ;
led = (GPIOPin) d;
led.setValue (false),
} catch (IOException e) {}
}
public static void closeGPIOs () {
try{
led.close (),
}catch (IOException ex) {}
1

public void run() {
try {
led.setValue (true),; Thread.sleep(1000),; led.setValue (false),
} catch (IOException e) {
} catch (InterruptedException e) ({}
1

Stub file: GPIOActuator.stub.java

Game Logic
Overview

m When the game starts, player must be set to 0 scored points and must have a
programmable amount of rounds (default 12)

m When the player fires a round (C button) the game starts listening for lux
change on the DLS for a programmable time window (default 200ms)

m Available rounds are decreased by 1. If the lux change is detected in the time frame, 1
point is scored, led and buzzer get activated

m Lux variance threshold is programmable. Defaults to 300lux

m Once the clip is empty the player should reload the gun (B button). Reload
will take a programmable amount of time (default 5s) during which no point
can be scored.

m Game should subscribe to a Commands topic, listening for «NewGame» and
«StopGame» commands.

m When receiving a «NewGamey it should reset score and available rounds

m When receiving a «StopGamey it should stop scoring points until a «NewGamey is
received

Game Logic

Implementation

public class Gamelogic {

private static int s_score;

private static int s clip;

private static boolean s reloading = false;
private static boolean s game stopped = false;

public static void startGame () ({
s game stopped = false;
s score = 0;
s clip = PROP CLIP SIZE;
}
public static void stopGame () {
s game stopped = true;
}
public static void shoot() {
if (s_game stopped){ return; }
if (isReloading()){ return; }
if (s_clip == 0) {
ShootAPi.doPublish ("NeedsReload", true);,
} else {
s clip--;
ShootAPi.doPublish ("Shot!", s clip);
}
}
public static boolean isReloading() {
return s_reloading;

}

Stub file: GamelLogic.stub.java

public static void scorePoint() {
if (s_game stopped){ return;}
if (s_clip > 0) {
s _score++;
ShootAPi.doPublish ("Score", s score);

}

}
public static void reload() ({

if (s_game stopped){ return;}
s clip = PROP_CLIP SIZE;
Thread reloadThread = new Thread (
new Runnable () {
public void run() {
try {
ShootAPi.doPublish(
"Reloading", true);,
s reloading = true;
Thread.sleep(PROR_RELOAQ_DELAY);
ShootAPi.doPublish(
"Reloading", false);,
} catch (InterruptedException ex) ({
} finally {
s reloading = false;,
}
}
1)
if (!s_reloading) f{
reloadThread.start () ;
}

+ .
Shoot A Pi

Main class overview

The ShootAPi class is responsible for managing the whole application

m Implements ConfigurableComponent

m It exposes a component in the Kura Web UI, letting the user change configuration
parameters from any browser

m Acquires the CloudService
m Publishes data to the MQTT Broker using the MQTTDataTransport

m Implements CloudClientListener

m Listens for requests on the Commands MQTT topic

m Manages the Executors

m It starts, stops and cancels the runnables and wires everything together

+ .
Shoot A Pi

ConfigurableComponent and OSGi Component configuration

The ConfigurableComponent interface provides no methods. It will instead make
the class appear as a Web Ul component. The class will also exported as a OSGi

Declarative Service

public class ShootAPi implements ConfigurableComponent, CloudClientListener {
private static final String APP_ID = "Shoot A Pi Demo"; // Cloud App identifier
// Publishing Property Names

private static final String PUBLISH TOPIC PROP NAME = '"publish.appTopic";
private static final String PUBLISH QOS PROP NAME = '"publish.qgos';

private static final String PUBLISH RETAIN PROP NAME = '"publish.retain';

// Configurable Properties Names

private static final String PROP_CLIP SIZE = “clip.size';

private static final String PROP_DETECTION WINDOW = "“dls.detect.window';
private static final String PROP_DETECTION THRESHOLD = “dls.detect.threshold";
private static final String PROP_DETECTION THRESHOLD = “dls.detect.threshold";
private static Map<String, Object> m properties;

public void updated (Map<String, Object> properties) {
// store the properties received
m _properties = properties;
for (String s : properties.keySet()) {
s _logger.info("Update - " + s + ": " + properties.get(s));
}
// try to kick off a new job
doUpdate () ;
}

Stub file: Main.stub.java

+ .
Shoot A Pi

CloudService and CloudClientListener

The CloudService will be used to publish data to the Broker, while the
CloudClientListener will listen for MQTT messages on the «Commands» topic

public class ShootAPi implements

ConfigurableComponent, CloudClientListener {
private CloudService m_cloudService;
private static CloudClient m _cloudClient;

public void setCloudService (CloudService
cloudService) {
m_cloudService = cloudService;

}

public void unsetCloudService (CloudService
cloudService) {
m cloudService = null;
1
protected void activate (ComponentContext
componentContext, Map<String, Object> properties) {
try {
m cloudClient =
m cloudService.newCloudClient (APP_ID);
m cloudClient.addCloudClientListener (this);
doUpdate () ;
} catch (Exception e) {
1
1

Stub file: Main.stub.java

public void onConnectionEstablished() {
try {
m cloudClient.subscribe ("Commands/#", 0);
} catch (KuraException ex) {}

}

public void onMessageArrived(String deviceld,
String appTopic,
KuraPayload msg, int gos, boolean retain) ({
Object command = msg.getMetric ("Command") ;
if (command '= null) {
switch (command.toString()) ({
case "NewGame'":
Gamelogic.startGame () ;
break;
case "StopGame":
GameLogic.stopGame () ;
break;

+ .
Shoot A Pi

Executors

Executors are used to start the Runnables.

public class ShootAPi implements ConfigurableComponent,
CloudClientListener {

// Executors

private static ScheduledExecutorService s pen poller;
private static ScheduledExecutorService s light sensor;,
private static ExecutorService s _activator;

// Handles
private static
private static
private static

ScheduledFuture<?> s pen handle;
ScheduledFuture<?> s sensor_ handle;
Future<?> s _activator_ handle;

public ShootAPi () ({
s pen poller =
Executors.newSingleThreadScheduledExecutor () ;
s light sensor =
Executors.newSingleThreadScheduledExecutor () ;
s _activator =
Executors.newSingleThreadExecutor () ;
}
protected void deactivate (ComponentContext
componentContext) ({
s _activator.shutdown () ;
s light sensor.shutdown () ;
s pen poller.shutdown () ;

}

Stub file: Main.stub.java

private void doUpdate() {
// cancel a current worker handle
if (s_pen handle != null) {
s _pen handle.cancel (true),;
}
if (s_activator_handle != null) {
s _activator handle.cancel (true);
}
if (s_sensor_handle != null) {
s _sensor handle.cancel (true);
}
penWorkerRunnable =
new LaserPenWorker (penButtonPressed)
s _pen handle =
s pen poller.scheduleWithFixedDelay (
penWorkerRunnable,
1, 2, TimeUnit.SECONDS) ,

sensorWorkerRunnable =
new DigitallLightSensorWorker (laserDetected) ;
s _sensor handle =
s 1light sensor.scheduleWithFixedDelay (
sensorWorkerRunnable,
1, 2, TimeUnit.SECONDS) ,

Gamelogic.startGame () ;

}

+ Shoot-A-Pi Arcade Shooter Simulator

Web Dashboard Architecture

Web Dashboard

MQTT
Broker

LLOV\'\

Shoot A Pi

PAHO for JavaScript

ByteBuffer

JSX Compressor

Google Protocol Buffers

Dashboard Logic

Complete dashboard in the Dashboard folder

You are important!
Kura helps you ... Kura needs you

I was lucky to be
involved and get to
contribute to
something that was

important, which is
empowering people
with software. (By Bill
Gates)

o OBO0O0KOO 2015

ecllpsecon

Evaluate the sessions

Sign in: www.eclipsecon.org

=1

