
+

Shoot A Pi!

with Eclipse Kura

David Woodard @ Eurotech

Luca Dazi @ Eurotech

+
Agenda

• Presentation of Kura architecture for Java and OSGi based

multi service gateway platforms. (Dave, 20 mins)

• Presentation of the Shoot-A-Pi arcade game simulator, game

logic explanation, MQTT topics and metrics (Luca, 15 mins)

• Hardware setup on the Raspberry Pi B+ (15 mins)

• Assisted creation of the Shoot-A-Pi bundle (90 mins)

• Tests (15 mins)

• Dashboard showcase and final game (15 mins)

• Q&A

+
Before starting...

• Power on the Raspberry Pi with the micro USB cable

• Connect the Raspbery Pi to an ethernet port on your PC

• Connect your PC to the WiFi network named ‘ShootAPi’

Password: KuraTutorial
• Set the IP Address of your ethernet to 192.168.2.1

• Start VirtualBox and import the tutorial image (shootapi.ova)

• Start the newly imported EclipseCon VM

• Start the Terminal Emulator

• Access the Raspberry Pi with ssh at address 192.168.2.10

ssh pi@192.168.2.10
Password: raspberry

+
Share your WiFi with the Pi

Linux / Mac users
• Open the Kura Web Console on a browser (192.168.2.10)

• Navigate to the Network panel and set eth0 on DHCP

• Share your WiFi with the Ethernet interface

• Do an ifconfig on the terminal and take note of the IP address

assigned to eth0 (defaults to 10.42.0.1 on Ubuntu)

• Scan for the IP of the Pi using nmap

nmap 10.42.0.0-255

Windows users
• Share your WiFi with the Ethernet interface

• Set the IP address of the Ethernet interface to 192.168.2.1
• The Raspberry Pi will be available at address 192.168.2.10

+ Share your WiFi with the Pi

Windows
• Right-click on the Network icon in the taskbar

• Open Network and Sharing Center

• Click on Change adapter settings

• Right-click on WiFi, open the Properties

• Activate the Sharing tab

• Check the Allow other network users to connect checkbox

• Select Ethernet from the combo box below

• Apply and close

+
Share your WiFi with the Pi

Ubuntu
• Click on the network icon, then Edit Connections...

• Double click on the Wireless Connection

• Open the IPv4 Settigns tab

• Select Shared with other computers on the Method combo box

• Apply and exit. Once the Pi is connected and set to DHCP click on

the Wired Network so to renew the DHCP lease

+

Business

Application

IoT Gateways
Revolution: Towards Real-time Actionable Data

MQTT

Broker

+

Linux OS

Embedded App

KURA is the open source Java and OSGi-based

Application Framework for M2M Service

Gateways in the Eclipse IOT Working Group.

Purpose

Simplify the design, deployment and remote

management of embedded applications.

It provides

•Cohesive and integrated app environment

•Modular software components

•HW abstraction layer

•Field protocol libraries

•Cloud connectivity

•Remote app and device management

•Local app and device management

•Built-in Security

•Development tools

Java/OSGi

M2M

gatewaysSmart

Sensors

Industrial

HW
Open HW

•Raspberry PI

•BeagleBone

Black

+
Encapsulating complexity
Increase productivity and decrease cultural barriers

OSGi

on

Linux

Hardware

Java VM

Code
Code

Code

Kura helps customer

focusing on their core

business

Kura Developers’ Experience
Designed from ground-up for developers

Emulate on PC Deploy on Target Cloud Managed

Start developing your M2M

application in the comfort

of your PC.

•Full Eclipse Integration

•Target Platform Definition

•Emulated Services

•Run/Debug from Eclipse

•Support Mac/Linux Hosts

When you are ready, deploy

your application on the

gateway.

•One-click Deployment

•Eclipse Plugin

•Remote Debugging

Provision your application

to field devices from the

Cloud.

Manage your application

configuration and lifecycle

from a Cloud infrastructure.

No more field visits!

•Web-based Console

•REST API Integration

•Smart Alerts

Java SE 7 / 8 (OpenJDK)

OSGi Application Container (Eclipse Equinox, Concierge)

Device Abstraction

javax.comm

Basic Gateway Services

DB Service

Clock Service

Device Profile

Watchdog

Network ConfigurationNetwork Configuration

Field ProtocolsConnectivity and Delivery

Data Services MQTT Paho

A
d

m
in

is
tr

a
ti

o
n

 G
U

I

Applications

Your Application

R
e

m
o

te
 M

a
n

a
g

e
m

e
n

t

C
o

n
fi

g
u

ra
ti

o
n

M
a

n
a

g
e

m
e

n
t

javax.usb

w/ udev access

Cloud Services

Your Application

Firewall, Port

Forwarding

Link

Monitors

Cellular, Wi-Fi,

Ethernet

GPS Position GPIO / SPI / PWM / I2C

jdk.dio

Modbus

CANBus

Custom Protocols

U
p

d
a

te
s

M
a

n
a

g
e

m
e

n
t

R
e

m
o

te
 A

c
c

e
ss

Java HID APIs javax.bluetooth / BLE

..
.

Your Application

Eclipse Open IoT Stack for Java

Shoot-A-Pi Arcade Shooter Simulator
Architecture

Eclipse Equinox OSGi

Java VM

Linux

Hardware

Device/Gateway

(data collection)

MQTT

Broker

MQTT Websockets

REST APIs

Web

Dashboards

I2C

Human Interface Device

RF

GPIO

Laser

Shoot-A-Pi Arcade Shooter Simulator
MQTT Topics and Metrics

shootapi/

COMMAND/ DATA/

reset

new

stop

shot

score

reload

reloading
- Timestamp

- Metrics: Game ID

- Timestamp

- Metrics: Remaining rounds

- Timestamp

- Metrics: Current score

- Timestamp

- Metrics: Realod flag

- Timestamp

- Metrics: Realoding status

+ Shoot-A-Pi Arcade Shooter Simulator
Game Logic

Shoot-A-Pi

HID Worker I2C Worker GPIO Actuator Game Logic

250 ms

250 ms

shot

score

SDA1 - I2C

SCL1 - I2C

Ground

GPIO17

5v DC Power

Ground

GPIO18

Ground

5v DC Power3.3v DC Power

Shoot-A-Pi Arcade Shooter Simulator
Hardware Setup

Raspberry Pi B+ J8 HeaderI2C GPIO

RF Dongle

+
Class Diagram

LightSensorChangeListener

PenDetectListener

ShootAPi
DigitalLightSensorWorker

Runnable

GameLogic

GPIOActuator

Runnable

LaserPenWorker

Runnable

U
ti

li
ti

e
s

+
Setting up the Laser Tag

A. Mode Switching

B. Reload

C. Fire

D. Only laser

E. RF USB Dongle

The LP-170 Laser Tag has two working modes.

Mode A

Pen Function Shoot A Pi Function Payload

A Mode Switch - NONE

B Page Down None 0x00004e

C Page Up None 0x00004b

Mode B

Pen Function Shoot A Pi Function Payload

A Mode Switch - NONE

B Start Slideshow Reload 0x02003e

B Stop Slideshow Reload 0x000029

C Hide Slideshow Shoot 0x000005

+
Setting up the Laser Tag
Helpers

public static enum PenCommand{

CMD_LASER_NO_REPEAT("000005", "Shooting Laser!"),

CMD_LASER_REPEAT("00004b", "Scrolling down..."),

CMD_RELOAD_REPEAT("00004e", "Scrolling up..."),

CMD_RELOAD_NO_REPEAT_A("02003e", "Reload 1"),

CMD_RELOAD_NO_REPEAT_B("000029", "Reload 2"),

CMD_UNKNOWN_COMMAND("000000", "Unknown command");

.

.

.

}

We will use a helper class to trace the commands received from the pen

Stub file: PenCommandsEnum.stub.java

+
Setting up the Laser Tag
Worker

Reading from the pen will be handled by a Runnable class, which will

constantly poll the pen for input using HID APIs provided by Kura.

A listener is passed in the constructor, so that when the worker detects a

command, it can wake up the caller.

Stub file: LaserPenWorker.stub.java

public class LaserPenWorker implements

Runnable {

private static final int PEN_VENDOR_ID =

4643;

private static final int PEN_PRODUCT_ID =

16230;

private static HIDDevice thePen = null;

private static PenDetectListener callback;

public LaserPenWorker(PenDetectListener

callback){

LaserPenWorker.callback = callback;

}

.

.

.

public void run() {

byte[] data = new byte[3];

try {

if (null == thePen) {

thePen= HIDManager.getInstance().openById(

PEN_VENDOR_ID,

PEN_PRODUCT_ID, null);

}

while (true) {

thePen.read(data);

// Convert data to string and put in result

if (!result.toString().isEmpty()

&& !result.toString().equals("000000")) {

fireChangeEvent(result.toString());

}

}

} catch (HIDDeviceNotFoundException ex) {

} catch (IOException ex) {

} finally { }

}

+
Deploying the Bundle
mToolkit

 Export the bundle using Export -> Plug-in development -> Deployable
plug-in and fragments

 Open the mToolkit Frameworks view using Window -> Show View ->
Others...

 Activate the Frameworks tab and create a new Framework using the IP
Address of the Pi

 Start the newly created framework

 Right-click on Bundles

 Click on «Install new...» and select the plug-in you exported before

 Connect to the Pi and see the Bundle in action!

+
Debugging and Logging

 After accessing the Pi through ssh you will be able to inspect

the log files and control Kura using these commands:

tail –f /var/log/kura.log

tail –f /var/log/kura-console.log

telnet 127.0.0.1 5002

will show the realtime kura log

will show the System.err log

will open the OSGi telnet terminal

sudo /etc/init.d/kura restart
Will restart Kura. Bundles installed with
mToolkit will be removed.

+
Setting up the Digital Light Sensor
Enable I2C on the Raspberry Pi

The Rapsberry Pi ships with the I2C disabled.

In order to communicate with the Grove Digital Light Sensor we have to enable the

Linux modules that will enable I2C communication on the Pi.

Enter the following commands in the Pi command line:

sudo nano /etc/modules

And add these two lines to the file:

i2c-bcm2708

i2c-dev

Then save the file and reboot the Pi

+
Setting up the Digital Light Sensor
Worker overview

Stub file: LuxCalculation.stub.java

 Detecting luminosity changes will be demanded to a separate Runnable

 The I2C Digital Light Sensor is acquired and managed using OpenJDK

Device I/O APIs, provided by Kura

 The worker will be constantly polling the Light Sensor reading the

luminosity and will trigger listeners when it needs to.

 The change in luminosity between polls is evaluated using several

thresholds, programmable through the Kura Web UI.

 The LUX value is calculated using an helper method, provided in the stub.

+
Setting up the Digital Light Sensor
Managing I2C

I2C Devices are accessed using jdk.dio.I2CDevice and jdk.dio.I2CDeviceConfig

classes.

Reads and writes on the sensor can be atomic or transacted.

Refer to OpenJDK Device I/O APIs for further info

private static void initDevice() {

try {

I2CDeviceConfig config = new I2CDeviceConfig(

1,

LIGHT_SENSOR_ADDRESS,

7,

400000

);

s_light_sensor = (I2CDevice) DeviceManager.open(I2CDevice.class, config);

// INIT

s_light_sensor.begin();

s_light_sensor.write(0x80); s_light_sensor.write(0x03);

s_light_sensor.write(0x81); s_light_sensor.write(0x11);

s_light_sensor.write(0x86); s_light_sensor.write(0x00);

s_light_sensor.end();

} catch (UnavailableDeviceException e) {

} catch (DeviceNotFoundException e) {

} catch (ClosedDeviceException e) {

} catch (IOException ex) {

}

}

+
Setting up the Digital Light Sensor
Worker

Another Runnable is used to implement the Digital Light Sensor logic

Stub file: LightSensorWorker.stub.java

public class DigitalLightSensorWorker implements Runnable {

public void run() {

if (null == s_light_sensor || !s_light_sensor.isOpen()) { initDevice(); }

try {

while (true) {

s_light_sensor.write(0x8C); Thread.sleep(5);

L0 = s_light_sensor.read(); Thread.sleep(5);

s_light_sensor.write(0x8D); Thread.sleep(5);

H0 = s_light_sensor.read(); Thread.sleep(5);

s_light_sensor.write(0x8E); Thread.sleep(5);

L1 = s_light_sensor.read(); Thread.sleep(5);

s_light_sensor.write(0x8F); Thread.sleep(5);

H1 = s_light_sensor.read();

int ch0 = (((H0 & 0xff) * 0x100) + L0) & 0xffff;

int ch1 = (((H1 & 0xff) * 0x100) + L1) & 0xffff;

int lux = Utilities.calculateLux(ch0, ch1);

if (lux > PROP_THRESHOLD_LUX_MAX) {

fireChange(lux);

}

Thread.sleep(READ_RESOLUTION);

}

} catch (IOException ex) {

} catch (InterruptedException ex) {

} finally {

closeDevice();

}

}

+
Setting up the Digital Light Sensor
Wake-up / Sleep logic

A simple wake-up / sleep logic is implemented in the worker in order to have it

fire lux change events only when needed.

Stub file: LightSensorWorker.stub.java

public class DigitalLightSensorWorker implements Runnable {

private static LightSensorChangeListener callback;

private static boolean s_listen = false;

public DigitalLightSensorWorker(LightSensorChangeListener callback) {

DigitalLightSensorWorker.callback = callback;

}

public static void startListeningForLaser() {s_listen = true;}

public static void stopListeningForLaser() {s_listen = false;}

public static boolean isAcquiring() {return s_listen;}

private void fireChange(int lux) {

if (s_listen) {

callback.lightSensorChangeDetected(lux);

stopListeningForLaser();

}

}

The startListeningForLaser() method is called when the Laser Tag Worker

detects a Shot command

+
GPIO Actuator

The GPIO Actuator is yet another runnalbe. This time it is a simple class

delegated to work on the GPIOs using jdk.dio.GPIOPin.

In this class Device I/O features are loaded using the default configuration.

Stub file: GPIOActuator.stub.java

public class GPIOActuator implements Runnable {

private static final int ledPinGPIO = 17;

private static GPIOPin led;

public GPIOActuator() {

try {

Device<?> d = DeviceManager.open(ledPinGPIO);

led = (GPIOPin) d;

led.setValue(false);

} catch (IOException e) {}

}

public static void closeGPIOs(){

try{

led.close();

}catch(IOException ex){}

}

public void run() {

try {

led.setValue(true); Thread.sleep(1000); led.setValue(false);

} catch (IOException e) {

} catch (InterruptedException e) {}

}

+
Game Logic
Overview

 When the game starts, player must be set to 0 scored points and must have a
programmable amount of rounds (default 12)

 When the player fires a round (C button) the game starts listening for lux
change on the DLS for a programmable time window (default 200ms)

 Available rounds are decreased by 1. If the lux change is detected in the time frame, 1
point is scored, led and buzzer get activated

 Lux variance threshold is programmable. Defaults to 300lux

 Once the clip is empty the player should reload the gun (B button). Reload
will take a programmable amount of time (default 5s) during which no point
can be scored.

 Game should subscribe to a Commands topic, listening for «NewGame» and
«StopGame» commands.

 When receiving a «NewGame» it should reset score and available rounds

 When receiving a «StopGame» it should stop scoring points until a «NewGame» is
received

+
Game Logic
Implementation

Stub file: GameLogic.stub.java

public class GameLogic {

private static int s_score;

private static int s_clip;

private static boolean s_reloading = false;

private static boolean s_game_stopped = false;

public static void startGame() {

s_game_stopped = false;

s_score = 0;

s_clip = PROP_CLIP_SIZE;

}

public static void stopGame(){

s_game_stopped = true;

}

public static void shoot() {

if(s_game_stopped){ return; }

if(isReloading()){ return; }

if (s_clip == 0) {

ShootAPi.doPublish("NeedsReload", true);

} else {

s_clip--;

ShootAPi.doPublish("Shot!", s_clip);

}

}

public static boolean isReloading() {

return s_reloading;

}

public static void scorePoint() {

if(s_game_stopped){ return;}

if (s_clip > 0) {

s_score++;

ShootAPi.doPublish("Score", s_score);

}

}

public static void reload() {

if(s_game_stopped){ return;}

s_clip = PROP_CLIP_SIZE;

Thread reloadThread = new Thread(

new Runnable() {

public void run() {

try {

ShootAPi.doPublish(

"Reloading", true);

s_reloading = true;

Thread.sleep(PROP_RELOAD_DELAY);

ShootAPi.doPublish(

"Reloading", false);

} catch (InterruptedException ex) {

} finally {

s_reloading = false;

}

}

});

if (!s_reloading) {

reloadThread.start();

}

}

+
Shoot A Pi
Main class overview

 Implements ConfigurableComponent

 It exposes a component in the Kura Web UI, letting the user change configuration

parameters from any browser

 Acquires the CloudService

 Publishes data to the MQTT Broker using the MQTTDataTransport

 Implements CloudClientListener

 Listens for requests on the Commands MQTT topic

 Manages the Executors

 It starts, stops and cancels the runnables and wires everything together

The ShootAPi class is responsible for managing the whole application

+

The ConfigurableComponent interface provides no methods. It will instead make

the class appear as a Web UI component. The class will also exported as a OSGi

Declarative Service

Stub file: Main.stub.java

Shoot A Pi
ConfigurableComponent and OSGi Component configuration

public class ShootAPi implements ConfigurableComponent, CloudClientListener {

private static final String APP_ID = "Shoot_A_Pi_Demo"; // Cloud App identifier

// Publishing Property Names

private static final String PUBLISH_TOPIC_PROP_NAME = "publish.appTopic";

private static final String PUBLISH_QOS_PROP_NAME = "publish.qos";

private static final String PUBLISH_RETAIN_PROP_NAME = "publish.retain";

// Configurable Properties Names

private static final String PROP_CLIP_SIZE = “clip.size";

private static final String PROP_DETECTION_WINDOW = “dls.detect.window";

private static final String PROP_DETECTION_THRESHOLD = “dls.detect.threshold";

private static final String PROP_DETECTION_THRESHOLD = “dls.detect.threshold";

private static Map<String, Object> m_properties;

. . .

public void updated(Map<String, Object> properties){

// store the properties received

m_properties = properties;

for (String s : properties.keySet()) {

s_logger.info("Update - " + s + ": " + properties.get(s));

}

// try to kick off a new job

doUpdate();

}

+

The CloudService will be used to publish data to the Broker, while the

CloudClientListener will listen for MQTT messages on the «Commands» topic

Stub file: Main.stub.java

Shoot A Pi
CloudService and CloudClientListener

public class ShootAPi implements

ConfigurableComponent, CloudClientListener {

private CloudService m_cloudService;

private static CloudClient m_cloudClient;

public void setCloudService(CloudService

cloudService) {

m_cloudService = cloudService;

}

public void unsetCloudService(CloudService

cloudService) {

m_cloudService = null;

}

protected void activate(ComponentContext

componentContext, Map<String, Object> properties) {

. . .

try {

m_cloudClient =

m_cloudService.newCloudClient(APP_ID);

m_cloudClient.addCloudClientListener(this);

doUpdate();

} catch (Exception e) {

}

}

public void onConnectionEstablished() {

try {

m_cloudClient.subscribe("Commands/#", 0);

} catch (KuraException ex) {}

}

public void onMessageArrived(String deviceId,

String appTopic,

KuraPayload msg, int qos, boolean retain) {

Object command = msg.getMetric("Command");

if (command != null) {

switch (command.toString()) {

case "NewGame":

GameLogic.startGame();

break;

case "StopGame":

GameLogic.stopGame();

break;

}

}

}

+

Executors are used to start the Runnables.

Stub file: Main.stub.java

Shoot A Pi
Executors

public class ShootAPi implements ConfigurableComponent,

CloudClientListener {

// Executors

private static ScheduledExecutorService s_pen_poller;

private static ScheduledExecutorService s_light_sensor;

private static ExecutorService s_activator;

// Handles

private static ScheduledFuture<?> s_pen_handle;

private static ScheduledFuture<?> s_sensor_handle;

private static Future<?> s_activator_handle;

. . .

public ShootAPi() {

s_pen_poller =

Executors.newSingleThreadScheduledExecutor();

s_light_sensor =

Executors.newSingleThreadScheduledExecutor();

s_activator =

Executors.newSingleThreadExecutor();

}

protected void deactivate(ComponentContext

componentContext) {

s_activator.shutdown();

s_light_sensor.shutdown();

s_pen_poller.shutdown();

. . .

}

private void doUpdate() {

// cancel a current worker handle

if (s_pen_handle != null) {

s_pen_handle.cancel(true);

}

if (s_activator_handle != null) {

s_activator_handle.cancel(true);

}

if (s_sensor_handle != null) {

s_sensor_handle.cancel(true);

}

penWorkerRunnable =

new LaserPenWorker(penButtonPressed);

s_pen_handle =

s_pen_poller.scheduleWithFixedDelay(

penWorkerRunnable,

1, 2, TimeUnit.SECONDS);

sensorWorkerRunnable =

new DigitalLightSensorWorker(laserDetected);

s_sensor_handle =

s_light_sensor.scheduleWithFixedDelay(

sensorWorkerRunnable,

1, 2, TimeUnit.SECONDS);

GameLogic.startGame();

}

+ Shoot-A-Pi Arcade Shooter Simulator
Web Dashboard Architecture

MQTT

Broker

Shoot A Pi

P
A

H
O

 f
o
r

J
a
v
a
S

c
ri
p
t

Google Protocol Buffers

ByteBuffer

JSX Compressor

Dashboard Logic

Web Dashboard

Complete dashboard in the Dashboard folder

+ You are important!
Kura helps you … Kura needs you

I was lucky to be

involved and get to

contribute to

something that was

important, which is

empowering people

with software. (By Bill

Gates)

+1 0 -1

Sign in: www.eclipsecon.org

Evaluate the sessions

