Daniel Megert
Eclipse Platform and JDT Lead
IBM Research - Zurich

Why Did We Do Eclipse?

* Disrupt the growing dominance of Microsoft
= Solve our tool integration problems

= Create a community of plug-in providers

EClipSE
© 2015 IBM Corporation @’)

How we Started: Closed developmen; |

— The Swiss Bank
approach to software
development

* If it hasn't shipped
it doesn’t exist

— Strong firewall
between developers
and customers

cClipPSE
© 2015 IBM Corporation @')

History

1998 - IBM conceives idea of universal tool integration platform

— Work starts on SWT

1999 - IBM team starts work to build Eclipse Platform and Java IDE

— Based on 10 years experience with Smaltalk, VA/Java, VA/MicroEdition

2001 - IBM donates Eclipse Platform and Java IDE to open source ($40M)

2001 - IBM Eclipse team leads Eclipse evangelism and seeds community
— IBM funded receptions and Eclipse community events

— Keynotes, conference talks, articles by IBM technical leaders

— 55 Full time developers improving Eclipse and fully engaged with community

— First Eclipse-based products

SClipSE
© 2015 IBM Corporation @J

November 2001: “Open Source”
Reaction from the development team

e

- -

TR
2 P
I - cownpmEm

EClipSE
© 2015 IBM Corporation @’)

Key Lessons

— Transparency helps existing development

* Better understanding of current status
* Responding to feedback takes time, but pays off

— Use same communication channels inside as

outside Transparency

b \
4
-
2

Feedback
and Support

»Not limited to Open Source projects

»“Open Commercial Development”

EClipSE
RN ©2015 e Coporsin -

B

The Eclipse Way

" The secret of the success of the Eclipse team

= An agile software development process

= Used, developed and improved over time by the Eclipse team

_.'.
"e
U]
(p

The Success of the Process

= The Eclipse team is shipping high quality
software on-time for many years now

—Continuous nightly builds on-time = T 0 Nov 2001
—Weekly integration builds on-time e June 2002

—Six week milestones on-time S ey

—Yearly releases on-time Eclipse 2.0.2 Nov 2002

—Service releases on-time Eclipse 2.0.3 S

Eclipse 2.1 Mar 2003

- A healthy prOjeCt Eclipse 2.1.1 June 2003
—Works on this high-level over years

—Continuously improving the process

Eclipse 4.5.1 Sept 2015

BN || e
Getting Started

= Milestones first
—Small cycles (+/- six weeks)

= Early incremental planning
—Essential for many agile processes

= Continuous testing, Continuous integration
—Essential for many agile processes

* Endgame
—Stabilizing the product at the end of the release cycle
— No feature work allowed

= Decompression
—Essential to recover and improve the process over time

SClipSE
© 2015 IBM Corporation @’)

In the Past...

Say goodbye to your loved ones

Look at calendar

Effort/

Pain

Level

Exhaustion

All the time in the world

v

Time

. = ’a}gg

Milestones First

= Break down release cycle into milestones

— We currently use 6 weeks

= Each milestone is a miniature
development cycle

— Plan, execute, test = before/after

— Teams refer to the release plan when
creating milestone plans

quality
* Assign plan items to a milestone A
* Milestone plans are public
= Result of a milestone eady 2 ship
— Milestone builds: good enough to be : ;
used by the community
= Milestones reduce stress! >t
2.0 3.0

cClipPSE
© 2015 IBM Corporation @')

lterative — Time-boxed

4.5

sign-off

Lsign-off

L >

>

warm-up endgame

= &
% _g -
w o 9
O 90
s 2 o

w —
E o 9
o 5 =
o Q (4v]
Q . —
“ =

6 weeks 6 weeks 6 weeks

© 2015 IBM Corporation

Early Planning

- establish big picture
— Team input

— Community input
= Component teams define component plans

= PMC collates initial draft project plan
— Tradeoff: requirements vs. available resources

— Committed, Proposed, Deferred

cClipPSE
© 2015 IBM Corporation @')

https://www.eclipse.org/projects/project-plan.php?planurl=http://www.eclipse.org/eclipse/development/plans/eclipse_project_plan_4_6.xml#themes_and_priorities
https://www.eclipse.org/projects/project-plan.php?planurl=http://www.eclipse.org/eclipse/development/plans/eclipse_project_plan_4_6.xml#themes_and_priorities

B\
The Plan is Alive

= The project plan is updated quarterly to reflect
— Progress on items
— New items

— Input from the community

= Becomes final at the end of the release

= Before, and still practiced by many: static plans

— Accurate once, but no early feedback: non-existent until late
in the cycle.

EClipSE
© 2015 IBM Corporation @’)

MR

Continuous Integration

* Fully automated build process
= Build quality verified by automatic unit tests

= Staged builds
— Nightly builds
* Discover integration problems between components
— Weekly integration builds

* All automatic unit tests must be successful
* Good enough for our own use

— Milestone builds
* Good enough for the community to use

= [
© 2015 IBM Corporation @')

_ | NN

Always Beta

Each integration build is a release candidate; we expect it to work

Results of the build process and the automatic tests

— Indicate where we are

As tool makers we use our own tools
— Component teams use weekly integration builds

— Community uses release and milesone builds

Continuously Consume Our Own Output
aka Eat your own dog food

EClipSE
© 2015 IBM Corporation @'J

BRI\ || R

Community Involvement

Problem: no one knew what was in a milestone,
— So there was no incentive to move to milestone builds

— So we received minimal feedback
* More stale defect reports

— Quality suffered

Solution: publish New and Noteworthy

— Advertise what we have been doing

Requires transparency
— Community needs to know what is going on to participate

Requires open participation
— We value the contributions of the community

We are the community

SClipSE
© 2015 IBM Corporation @’)

Testing

Innovate and refactor code with confidence

— Continuous incremental design
Almost 90,000 JUnit tests

Tightly integrated into the build process
— Tests run after each build (nightly, integration, milestone)
— Milestone builds are only green when all tests pass

Test / Report kinds

— Correctness tests: Assert correct behavior

— Performance tests: Allow to see performance regressions
Based on a database of previous test run measurements

— Resource tests: no leaks and no resource consumption regressions

EClipSE
© 2015 IBM Corporation @’)

http://download.eclipse.org/eclipse/downloads/drops4/R-4.5.1-201509040015/apitools/analysis/html/index.html
http://download.eclipse.org/eclipse/downloads/drops4/R-4.5.1-201509040015/compilelogs/plugins/org.eclipse.pde.junit.runtime_3.4.500.v20150423-1241/@dot.html

_ | NN

Endgame

= Convergence process applied before release

— Sequence of test-fix passes (RCs)
¢ Community event

= With each pass the costs for fixing are increased

— Higher burden to release a fix for a problem

— Focus on higher priority problems and trivial fix/polish items
= Endgame endurance

— We are only effective for so long

— Distribute Quality/Polish effort throughout the release

— Shared responsibility and commitment

— We all sign off

EClipSE
© 2015 IBM Corporation @'J

AN

Decompression

= Recover from release

" Retrospective of the last cycle
— Achievements
— Failures
— Process
— Cross-team collaboration

= Explore new stuff

= Start to plan the next release and cycles

EClipSE
© 2015 IBM Corporation @’)

Conclusion

" The team makes the process work

= The team defines and evolves the process

EClipSE
2 S — L2

~ i}r\ e <« L JEUNOPE

_udv /19 S DUNGRGEEManyAS =S OVEMDETRZ0NS

