
The Eclipse Way

Daniel Megert

Eclipse Platform and JDT Lead

IBM Research - Zurich

2 © 2015 IBM Corporation

Why Did We Do Eclipse?

 Disrupt the growing dominance of Microsoft

 Solve our tool integration problems

 Create a community of plug-in providers

3 © 2015 IBM Corporation

How we Started: Closed development

– The Swiss Bank
approach to software
development
• If it hasn't shipped

it doesn’t exist

– Strong firewall
between developers
and customers

4 © 2015 IBM Corporation

History

 1998 - IBM conceives idea of universal tool integration platform

– Work starts on SWT

 1999 - IBM team starts work to build Eclipse Platform and Java IDE

– Based on 10 years experience with Smaltalk, VA/Java, VA/MicroEdition

 2001 - IBM donates Eclipse Platform and Java IDE to open source ($40M)

 2001 - IBM Eclipse team leads Eclipse evangelism and seeds community

– IBM funded receptions and Eclipse community events

– Keynotes, conference talks, articles by IBM technical leaders

– 55 Full time developers improving Eclipse and fully engaged with community

– First Eclipse-based products

5 © 2015 IBM Corporation

November 2001: “Open Source”
Reaction from the development team

You want us
to do what?

Code in public?

Have technical
discussions in public?

Answer all those
dumb questions?

Why are we doing
this again?

6 © 2015 IBM Corporation

Key Lessons

– Transparency helps existing development
• Better understanding of current status
• Responding to feedback takes time, but pays off

– Use same communication channels inside as
outside

Not limited to Open Source projects
“Open Commercial Development”

CommunityCommunity

Transparency

Feedback
and Support

DevelopersDevelopers

7 © 2015 IBM Corporation

The Eclipse Way

 The secret of the success of the Eclipse team

 An agile software development process

 Used, developed and improved over time by the Eclipse team

8 © 2015 IBM Corporation

The Success of the Process

 The Eclipse team is shipping high quality
software on-time for many years now

–Continuous nightly builds on-time
–Weekly integration builds on-time
–Six week milestones on-time
–Yearly releases on-time
–Service releases on-time

 A healthy project
–Works on this high-level over years
–Continuously improving the process

Eclipse 1.0 Nov 2001

Eclipse 2.0 June 2002

Eclipse 2.0.1 Sept 2002

Eclipse 2.0.2 Nov 2002

Eclipse 2.0.3 Mar 2003

Eclipse 2.1 Mar 2003

Eclipse 2.1.1 June 2003

... ...

Eclipse 4.5.1 Sept 2015

9 © 2015 IBM Corporation

Getting Started

 Milestones first
–Small cycles (+/- six weeks)

 Early incremental planning
–Essential for many agile processes

 Continuous testing, Continuous integration
–Essential for many agile processes

 Endgame
–Stabilizing the product at the end of the release cycle
– No feature work allowed

 Decompression
–Essential to recover and improve the process over time

10 © 2015 IBM Corporation

In the Past…

Time

Effort/

Pain

Level

Look at calendar

All the time in the world

Heads down

Say goodbye to your loved ones

Exhaustion

11 © 2015 IBM Corporation

Milestones First
 Break down release cycle into milestones

– We currently use 6 weeks

 Each milestone is a miniature
development cycle

– Plan, execute, test
– Teams refer to the release plan when
creating milestone plans

• Assign plan items to a milestone
• Milestone plans are public

 Result of a milestone
– Milestone builds: good enough to be
used by the community

 Milestones reduce stress!

12 © 2015 IBM Corporation

Iterative – Time-boxed

endgame

Release 4.6

fitness

M1

pl
an

de
ve

lo
p

st
ab

ili
ze

6 weeks

warm-up

re
tr

os
pe

ct
iv

e

in
iti

al
 re

le
as

e
pl

an

de
co

m
pr

es
si

on

4.5

M2

pl
an

de
ve

lo
p

st
ab

ili
ze

…

pl
an

de
ve

lo
p

st
ab

ili
ze

sign-offsign-off sign-off

6 weeks 6 weeks

fix te
st fix te
st

13 © 2015 IBM Corporation

Early Planning

 Release themes establish big picture
– Team input

– Community input

 Component teams define component plans

 PMC collates initial draft project plan
– Tradeoff: requirements vs. available resources
– Committed, Proposed, Deferred

https://www.eclipse.org/projects/project-plan.php?planurl=http://www.eclipse.org/eclipse/development/plans/eclipse_project_plan_4_6.xml#themes_and_priorities
https://www.eclipse.org/projects/project-plan.php?planurl=http://www.eclipse.org/eclipse/development/plans/eclipse_project_plan_4_6.xml#themes_and_priorities

14 © 2015 IBM Corporation

The Plan is Alive

 The project plan is updated quarterly to reflect
– Progress on items
– New items
– Input from the community

 Becomes final at the end of the release

 Before, and still practiced by many: static plans
– Accurate once, but no early feedback: non-existent until late

in the cycle.

15 © 2015 IBM Corporation

Continuous Integration

 Fully automated build process

 Build quality verified by automatic unit tests

 Staged builds
– Nightly builds

• Discover integration problems between components
– Weekly integration builds

• All automatic unit tests must be successful
• Good enough for our own use

– Milestone builds
• Good enough for the community to use

16 © 2015 IBM Corporation

Always Beta

 Each integration build is a release candidate; we expect it to work

 Results of the build process and the automatic tests
– Indicate where we are

 As tool makers we use our own tools
– Component teams use weekly integration builds

– Community uses release and milesone builds

 Continuously Consume Our Own Output
aka Eat your own dog food

17 © 2015 IBM Corporation

Community Involvement

 Problem: no one knew what was in a milestone,
– So there was no incentive to move to milestone builds

– So we received minimal feedback
• More stale defect reports

– Quality suffered

 Solution: publish New and Noteworthy
– Advertise what we have been doing

 Requires transparency
– Community needs to know what is going on to participate

 Requires open participation
– We value the contributions of the community

 We are the community

18 © 2015 IBM Corporation

Testing

 Innovate and refactor code with confidence
– Continuous incremental design

 Almost 90,000 JUnit tests

 Tightly integrated into the build process
– Tests run after each build (nightly, integration, milestone)
– Milestone builds are only green when all tests pass

 Test / Report kinds
– Correctness tests: Assert correct behavior

– Performance tests: Allow to see performance regressions
• Based on a database of previous test run measurements

– Resource tests: no leaks and no resource consumption regressions
– API verification - breakage

– API verification - illegal use of internal/non API

http://download.eclipse.org/eclipse/downloads/drops4/R-4.5.1-201509040015/apitools/analysis/html/index.html
http://download.eclipse.org/eclipse/downloads/drops4/R-4.5.1-201509040015/compilelogs/plugins/org.eclipse.pde.junit.runtime_3.4.500.v20150423-1241/@dot.html

19 © 2015 IBM Corporation

Endgame

 Convergence process applied before release
– Sequence of test-fix passes (RCs)

• Community event
 With each pass the costs for fixing are increased

– Higher burden to release a fix for a problem
– Focus on higher priority problems and trivial fix/polish items

 Endgame endurance
– We are only effective for so long
– Distribute Quality/Polish effort throughout the release
– Shared responsibility and commitment
– We all sign off

20 © 2015 IBM Corporation

Decompression

 Recover from release
 Retrospective of the last cycle

– Achievements
– Failures
– Process
– Cross-team collaboration

 Explore new stuff
 Start to plan the next release and cycles

21 © 2015 IBM Corporation

Conclusion

 The team makes the process work

 The team defines and evolves the process

22 © 2015 IBM Corporation

