

Bayes & Decision Tree Classifiers

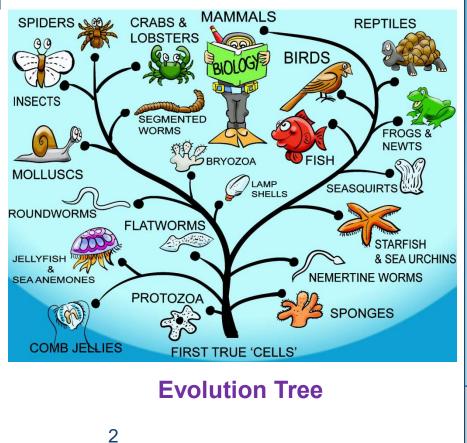
Lecturer: Dr. Bo Yuan

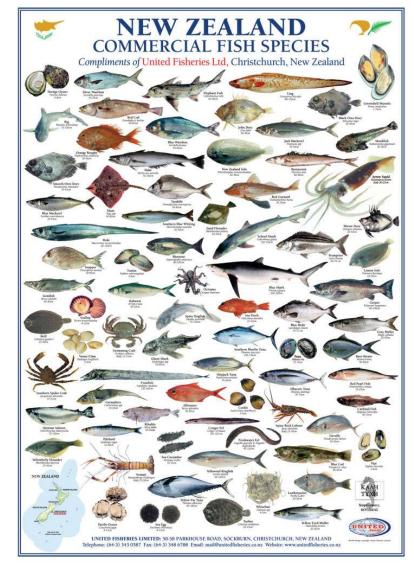
E-mail: yuanb@sz.tsinghua.edu.cn

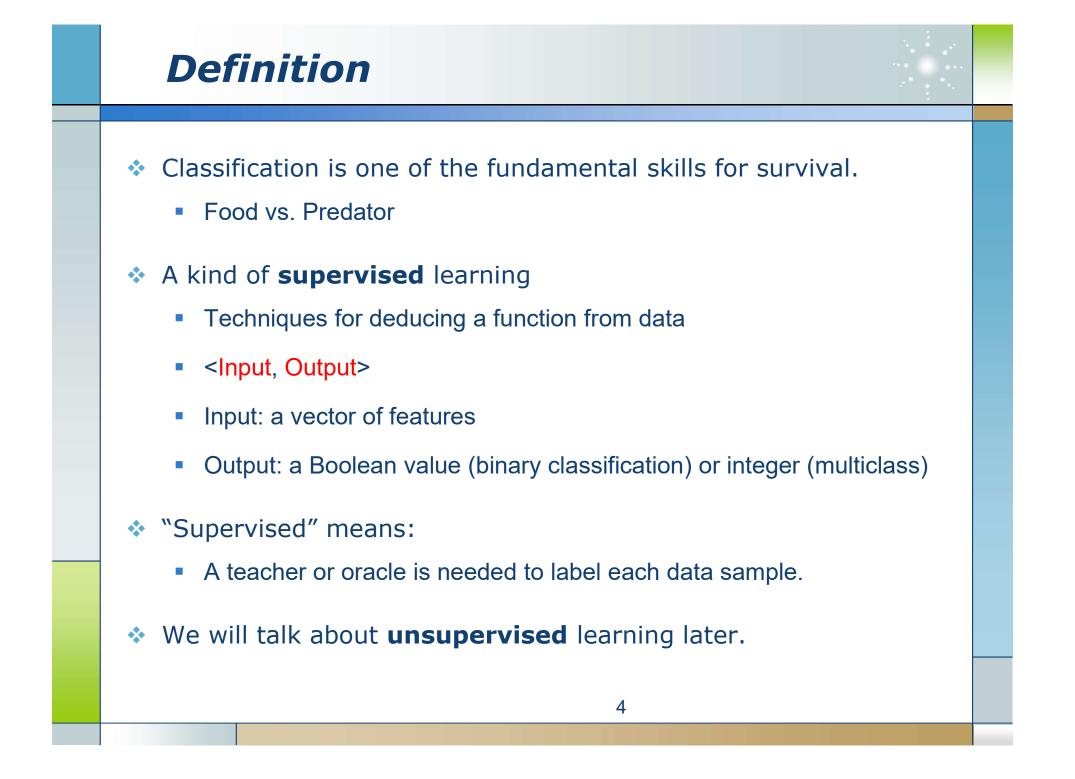
Naïve Bayes Classifier

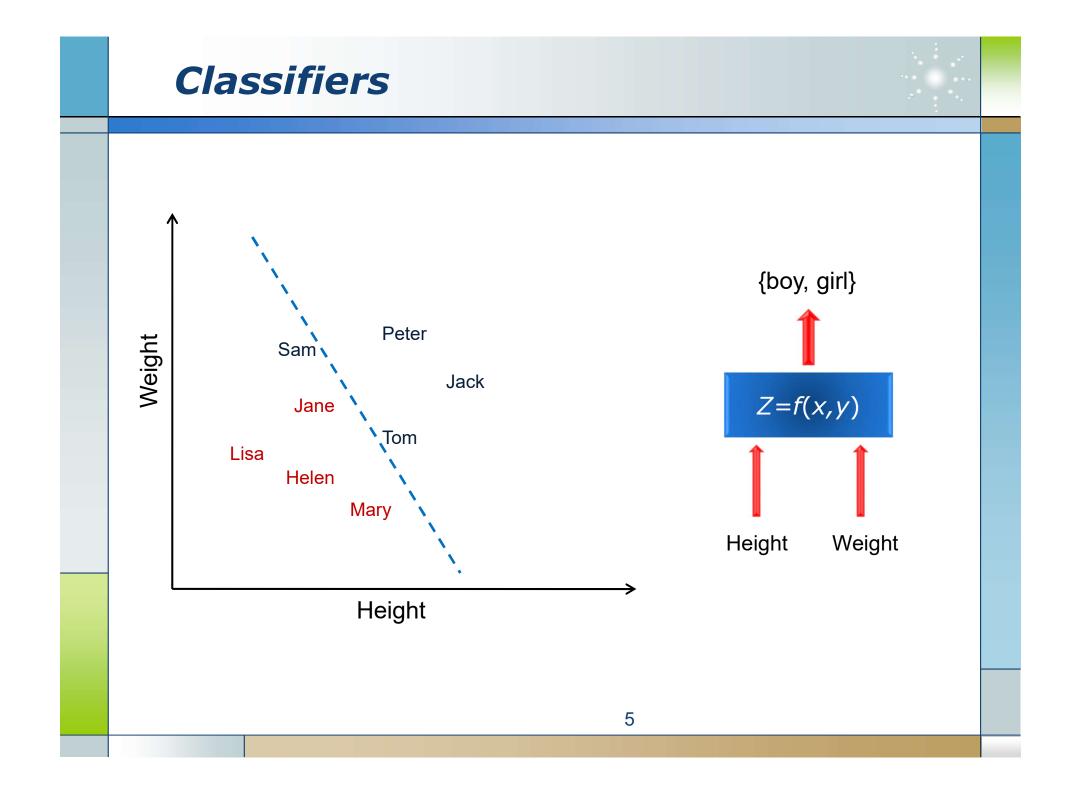
Decision Tree Model

Thomas Bayes



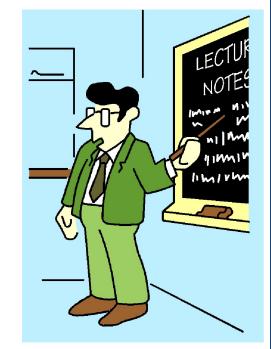




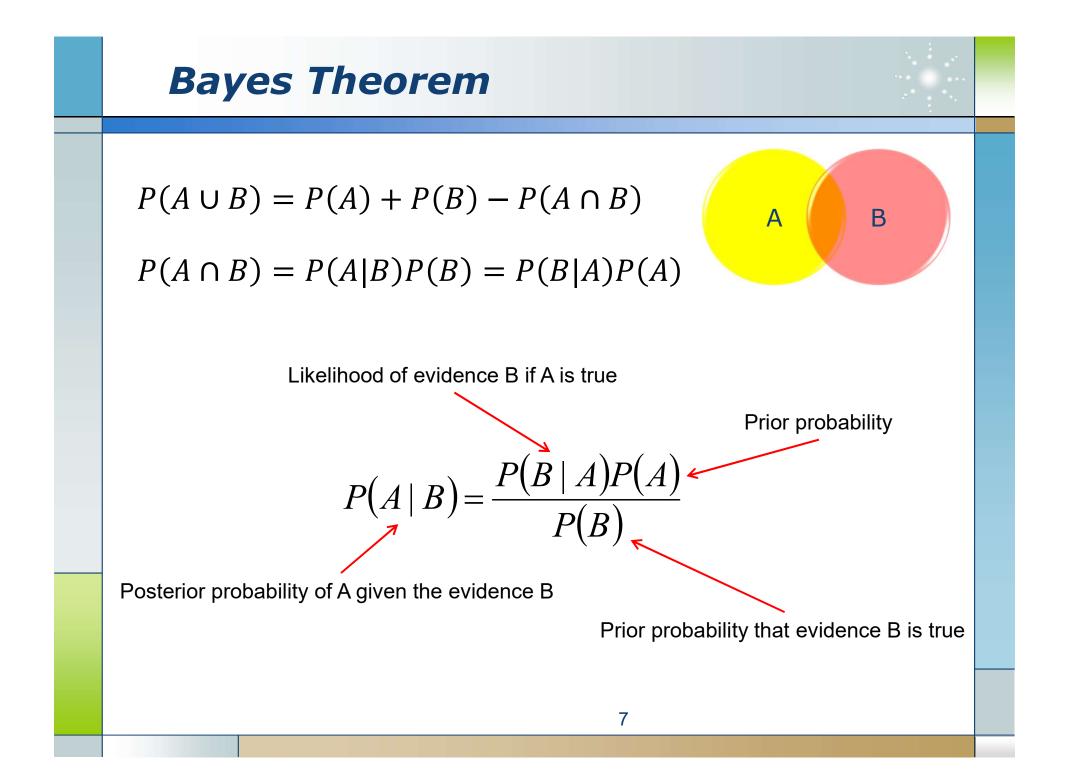


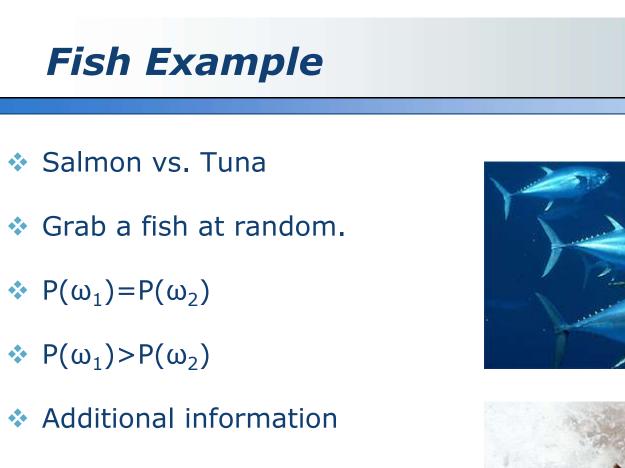
Training a Classifier

Learning



6





$$P(\omega_i \mid x) = \frac{P(x \mid \omega_i)P(\omega_i)}{P(x)}$$

Shooting Example

- Probability of Kill
 - P(A): 0.6
 - P(B): 0.5
- The target is killed with:
 - One shoot from A
 - One shoot from B

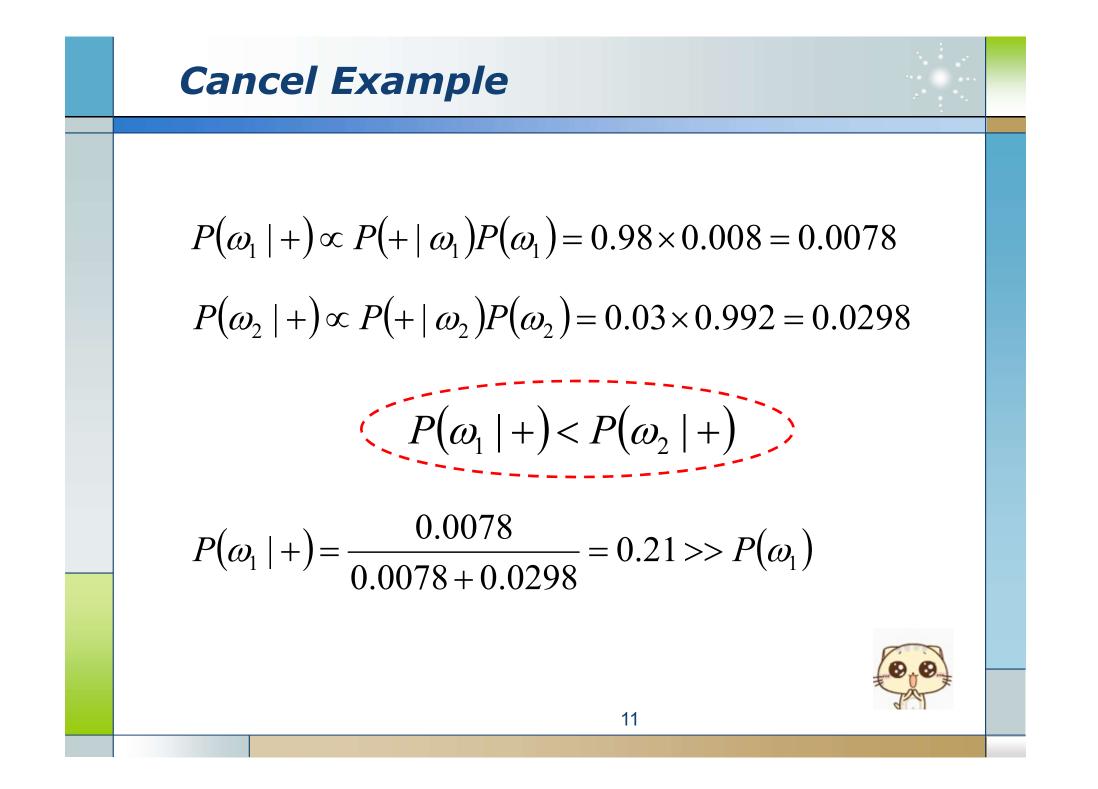
- What is the probability that it is shot down by A?
 - C: The target is killed.

$$P(A \mid C) = \frac{P(C \mid A)P(A)}{P(C)} = \frac{1 \times 0.6}{0.6 \times 0.5 + 0.4 \times 0.5 + 0.6 \times 0.5} = \frac{3}{4}$$

Cancel Example

- $ω_1$: Cancer; $ω_2$: Normal
- ♦ P(ω₁)=0.008; P(ω₂)=0.992
- Lab Test Outcomes: + vs. -
- ♦ P(+| $ω_1$)=0.98; P(-| $ω_1$)=0.02
- ♦ P(+| $ω_2$)=0.03; P(-| $ω_2$)=0.97

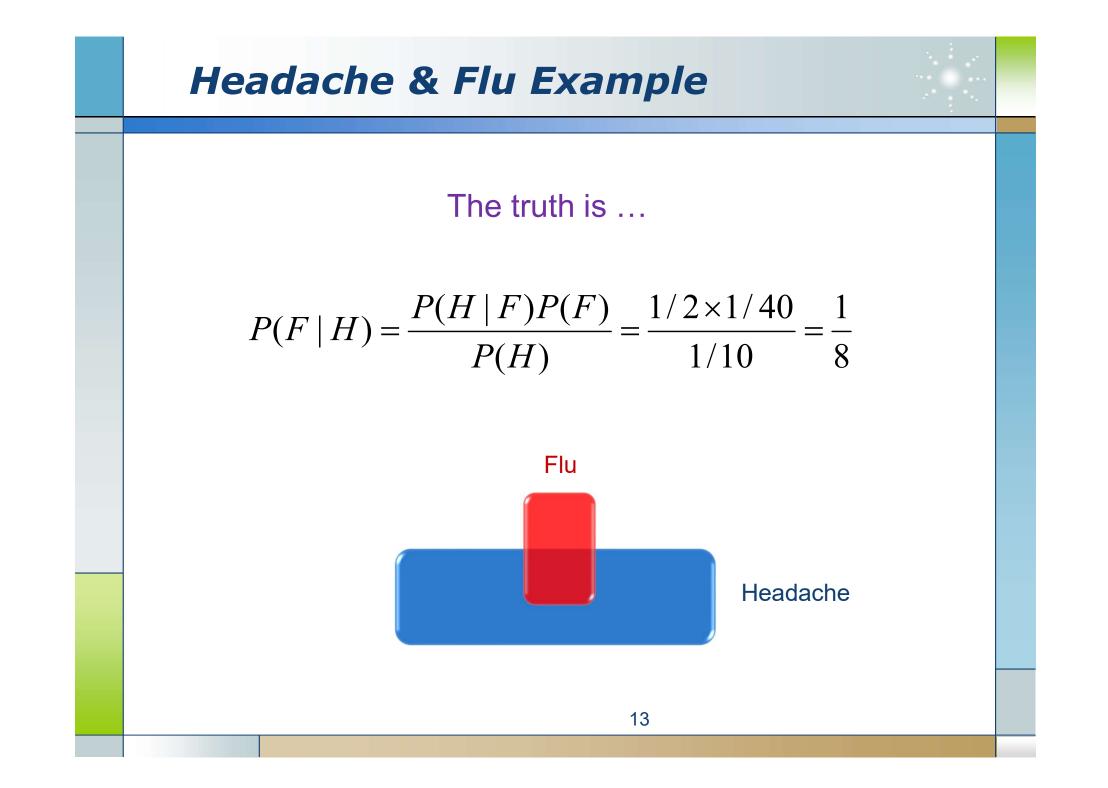
- Now someone has a **positive** test result...
- Is he/she doomed?

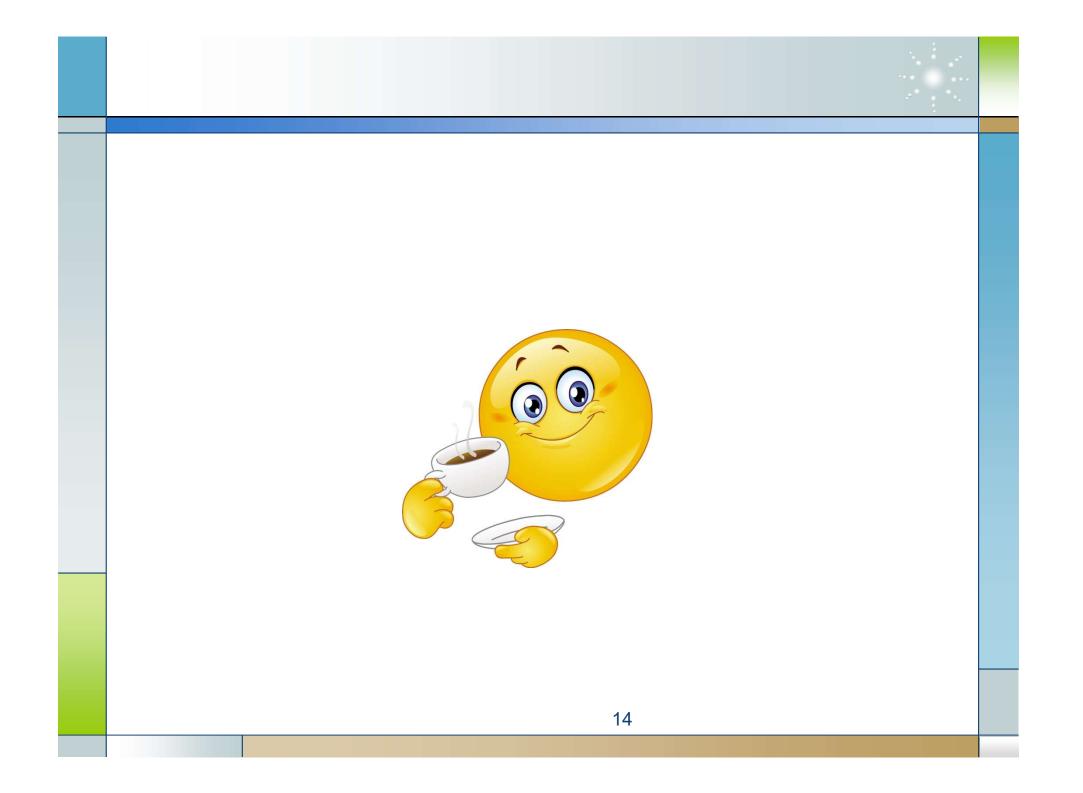


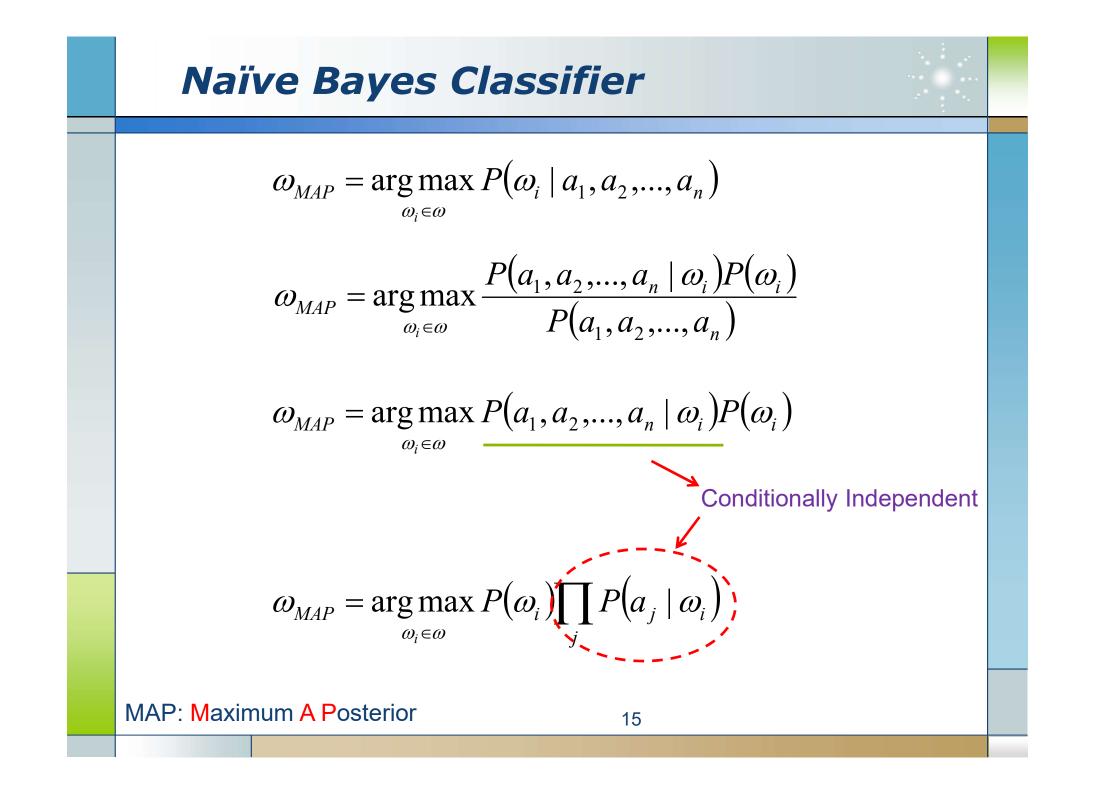
Headache & Flu Example

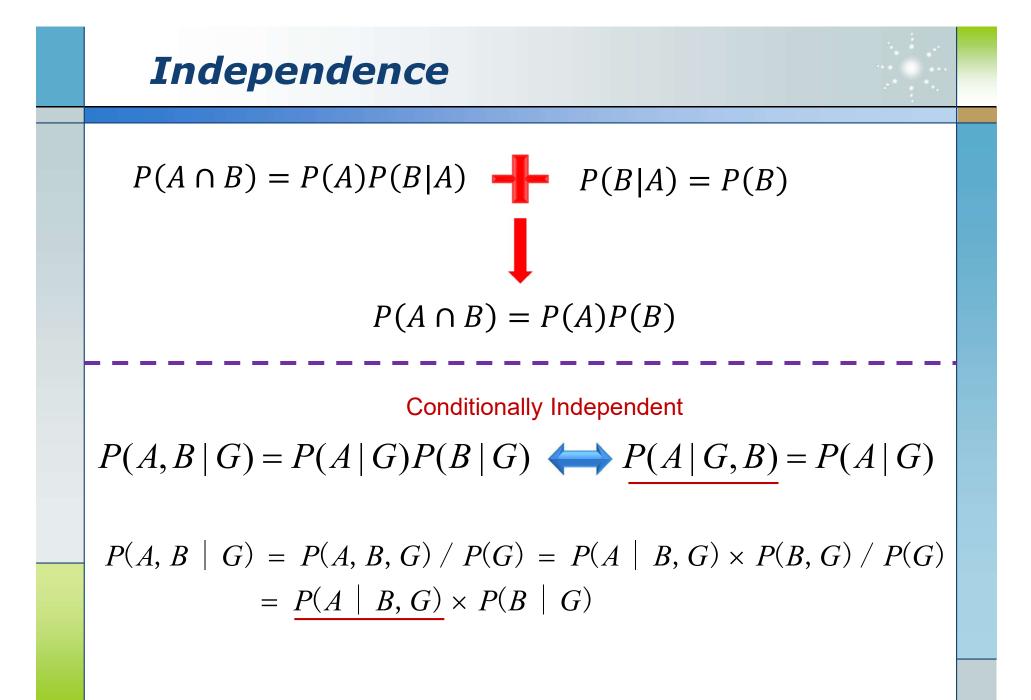
- H="Having a headache"
- F="Coming down with flu"

- ✤ P(H)=1/10; P(F)=1/40; P(H|F)=1/2
- What does this mean?
- One day you wake up with a headache ...
- ✤ Since 50% flu cases are associated with headaches ...
- I must have a 50-50 chance of coming down with flu!

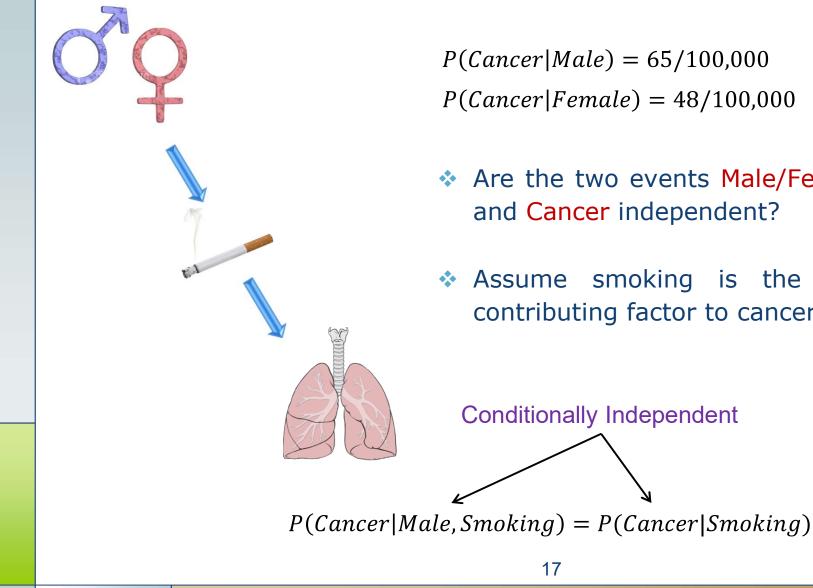








Conditional Independence

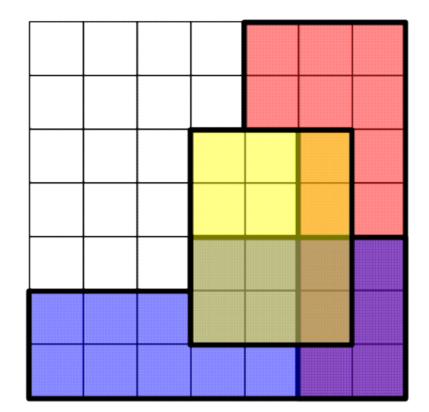


P(Cancer | Male) = 65/100,000P(Cancer|Female) = 48/100,000

- Are the two events Male/Female and Cancer independent?
- Assume smoking is the sole contributing factor to cancer.

Conditionally Independent

Conditional Independence



$$P(R \cap B) = 6/49$$

$$P(R) = 16/49$$

$$P(B) = 18/49$$

$$P(R \cap B) \neq P(R)P(B)$$
Not Independent
$$P(R \cap B|Y) = 1/6$$

$$P(R|Y) = 1/3$$

$$P(B|Y) = 1/2$$

$$P(R \cap B|Y) = P(R|Y)P(B|Y)$$
Conditionally Independent
18

Conditional Independence

- Two coins: fair vs. biased (two-headed)
- Select one coin at random and toss twice.
- ✤ A: First coin toss is head.
- B: Second coin toss is head.
- C: You selected the fair coin.

$$P(A) = P(B) = 0.5 \times 0.5 + 0.5 \times 1.0 = 0.75$$

$$P(C|A) = \frac{P(A|C)P(C)}{P(A|C)P(C) + P(A|\neg C)P(\neg C)} = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 1 \times 0.5} = \frac{1}{3}$$
$$P(B|A) = \frac{1}{3} \times 0.5 + \frac{2}{3} \times 1.0 = \frac{5}{6} \neq P(B)$$
Not Independent

$$P(B|A,C) = P(B|C) = 0.5$$

Conditionally Independent

Independent ≠ Uncorrelated

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y}$$

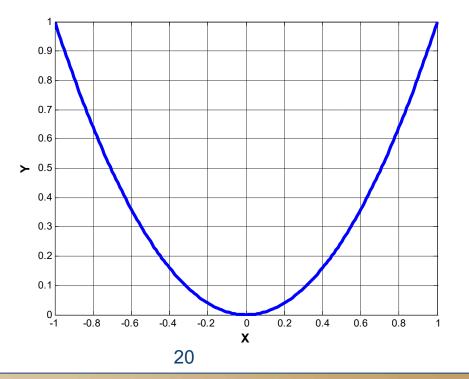
 $X \in [-1, 1]$

 $Y = X^2$

X	Y		
1	1		
0.5	0.25		
0.2	0.04		
0	0		
-0.2	0.04		
-0.5	0.25		
-1	1		

However, Y is completely determined by X.

Cov (X,Y)=0 \rightarrow X and Y are uncorrelated.



Estimating $P(a_j | \omega_i)$

a ₁	a ₂	a ₃	ω
	+		ω ₁
			ω ₂
	-		ω ₁
	+		ω_1
			ω ₂

 $P(\omega_1) = 3/5;$ $P(\omega_2) = 2/5$ $P(a_2 = + | \omega_1) = 2/3$ $P(a_2 = - | \omega_1) = 1/3$

Laplace Smoothing

$$P(a_{jk} | \omega_i) = \frac{|a_j = a_{jk} \wedge \omega = \omega_i| + 1}{|\omega = \omega_i| + |a_j|}$$

How about continuous variables?

Tennis Example

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
Day1	Sunny	Hot	High	Weak	No
Day2	Sunny	Hot	High	Strong	No
Day3	Overcast	Hot High Weak		Weak	Yes
Day4	Rain	Mild	High	Weak	Yes
Day5	Rain	Cool	Normal	Weak	Yes
Day6	Rain	Cool	Normal	Strong	No
Day7	Overcast	Cool	Normal	Strong	Yes
Day8	Sunny	Mild	High	Weak	No
Day9	Sunny	Cool	Normal	Weak	Yes
Day10	Rain	Mild	Normal	Weak	Yes
Day11	Sunny	Mild	Normal	Strong	Yes
Day12	Overcast	Mild	High	Strong	Yes
Day13	Overcast	Hot	Normal	Weak	Yes
Day14	Rain	Mild	High	Strong	No

Tennis Example

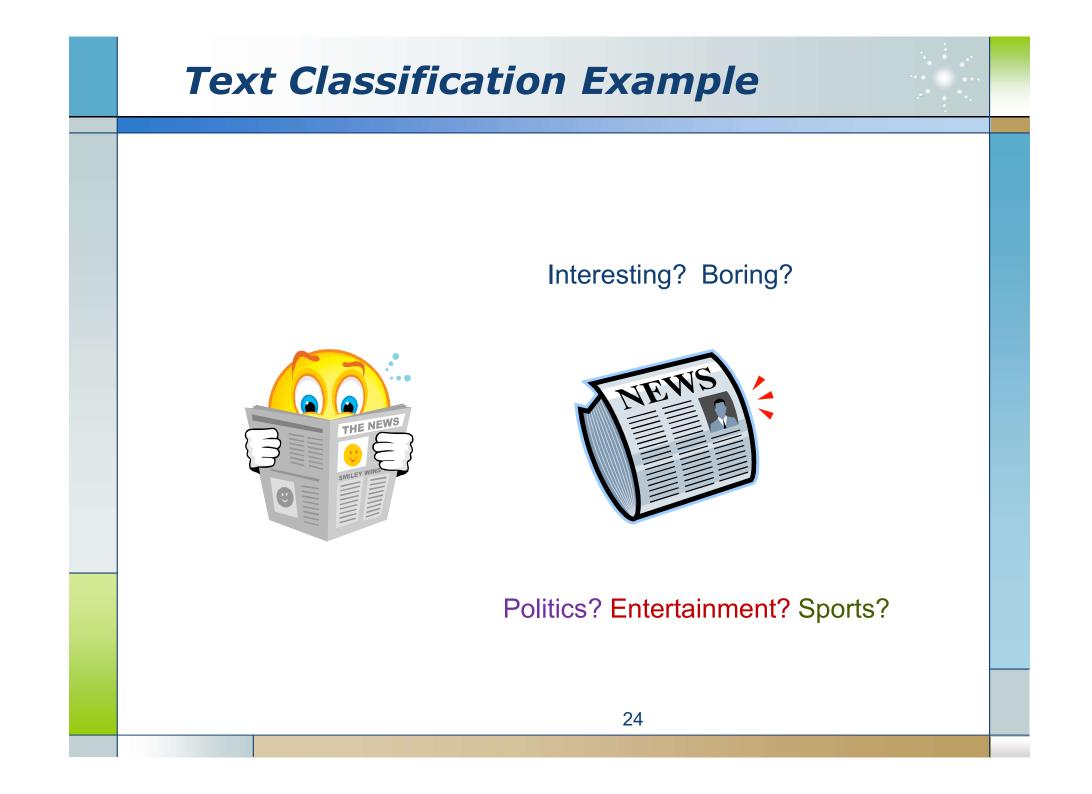
Given:

< Outlook = *sunny*, Temperature = *cool*, Humidity = *high*, Wind = *strong* > Predict:

PlayTennis(*yes or no*)

Bayes Solution : P(PlayTennis = yes) = 9/14P(PlayTennis = no) = 5/14P(Wind = strong | PlayTennis = yes) = 3/9P(Wind = strong | PlayTennis = no) = 3/5

P(yes)P(sunny | yes)P(cool | yes)P(high | yes)P(strong | yes) = 0.0053P(no)P(sunny | no)P(cool | no)P(high | no)P(strong | no) = 0.02060.0206 The conclusion is not to play tennis with probability :-= 0.7950.0206 + 0.0053



Text Representation

a 1	a ₂	a ₃	a ₄	 a _n	ω
Long	long	ago	there	 king	1
New	sanctions	will	be	 Iran	0
Hidden	Markov	models	are	 method	0
The	Federal	Court	today	 investigate	0

We need to estimate probabilities such as $P(a_2 = king | \omega = 1)$.

However, there are 2×n×|Vocabulary| terms in total. For n=100 and a vocabulary of 50,000 distinct words, it adds up to 10 million terms!

Text Representation

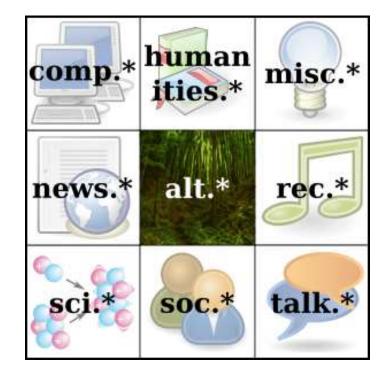
- By only considering the probability of encountering a specific word instead of the specific word position, we can reduce the number of probabilities to be estimated.
- We only count the frequency of each word.
- Now, $2 \times 50,000 = 100,000$ terms need to be estimated.

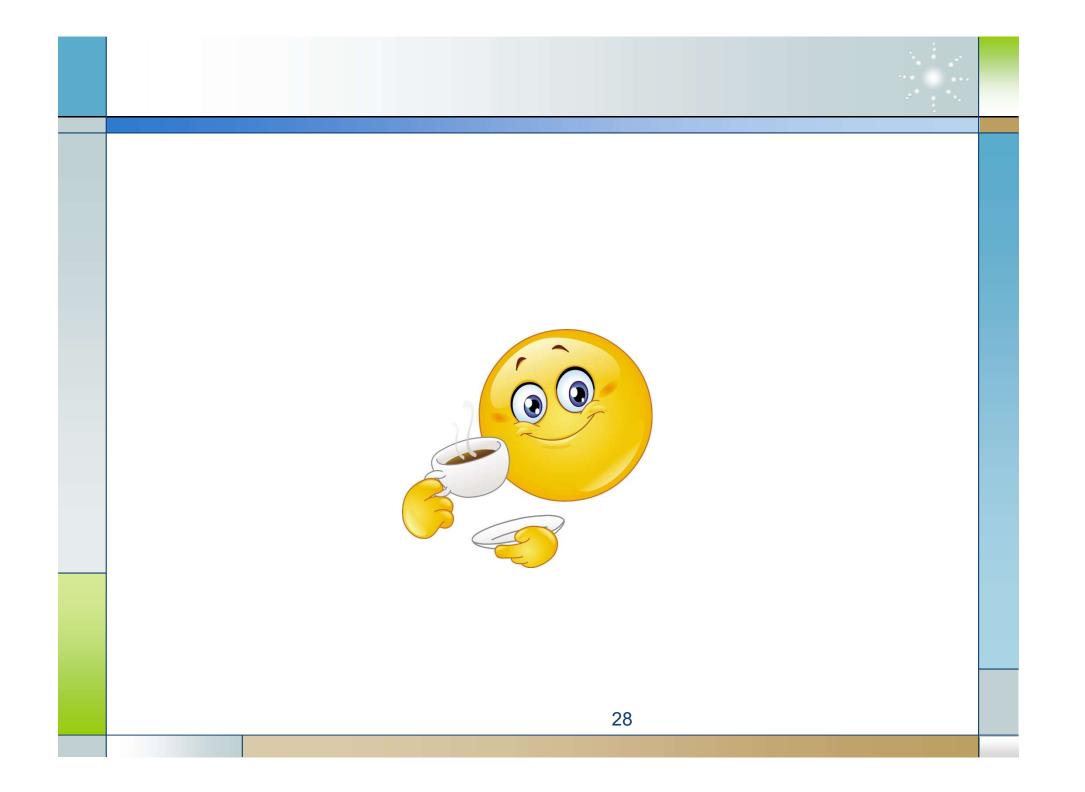
$$P(V_{K} \mid \omega = \omega_{i}) = \frac{n_{k} + 1}{n + |Vocabulary|}$$

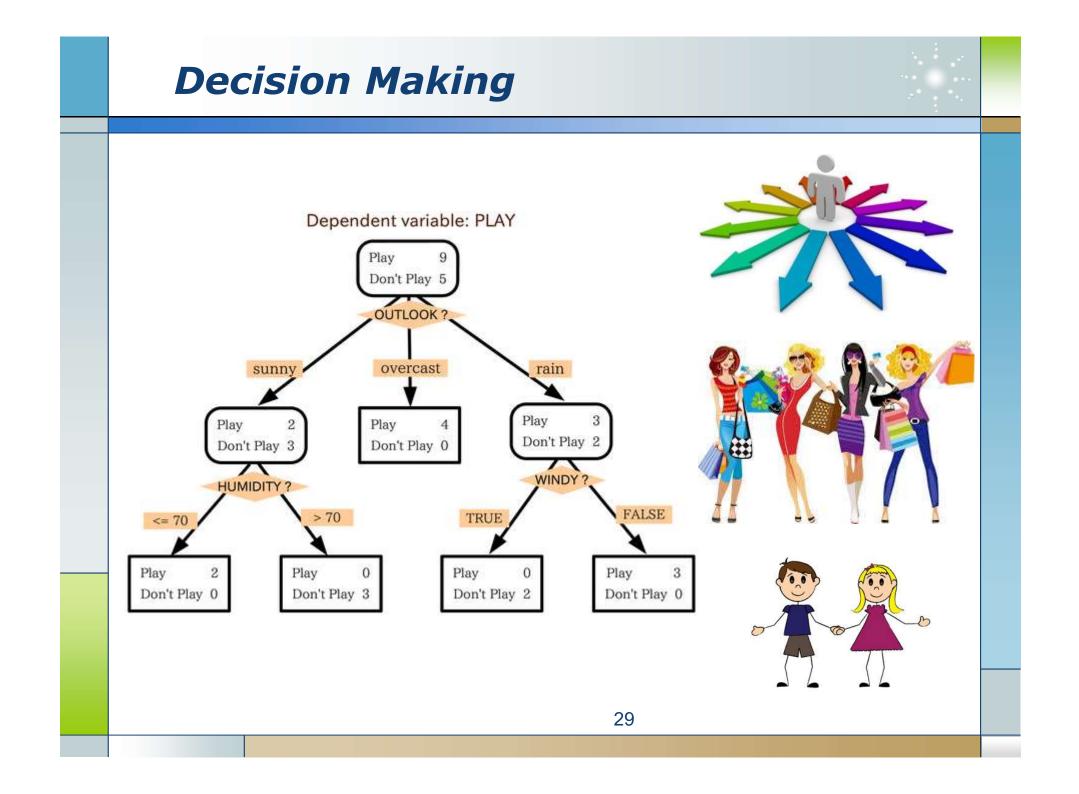
- * *n*: the total number of word positions in all training samples whose target value is ω_i .
- * n_k : the number of times word V_k is found among these *n* positions.

Case Study: Newsgroups

- Classification
 - Joachims, 1996
 - 20 newsgroups
 - 20,000 documents
 - Random Guess: 5%
 - NB: 89%
- Recommendation
 - Lang, 1995
 - NewsWeeder
 - User rated articles
 - Interesting vs. Uninteresting
 - Top 10% selected articles
 - 16% vs. 59%



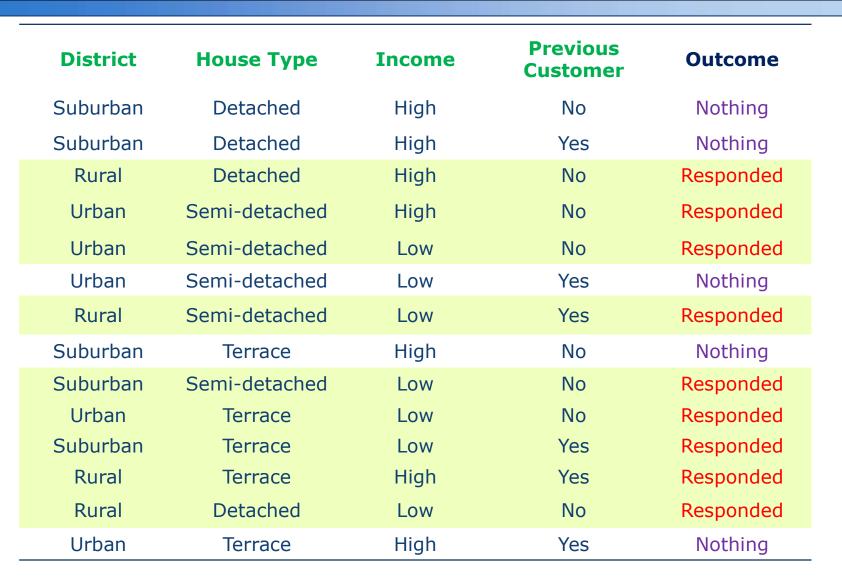


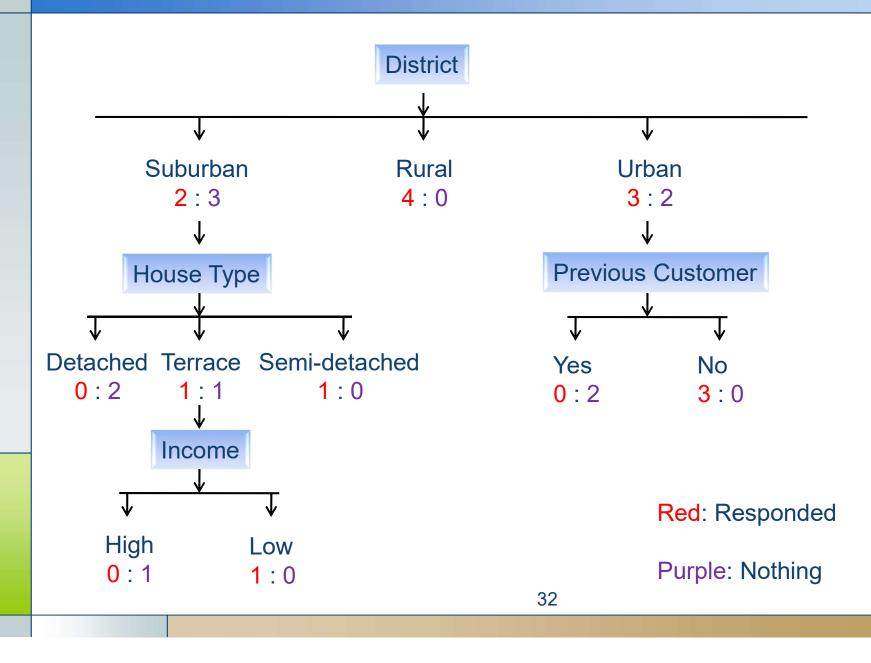


A Survey Dataset

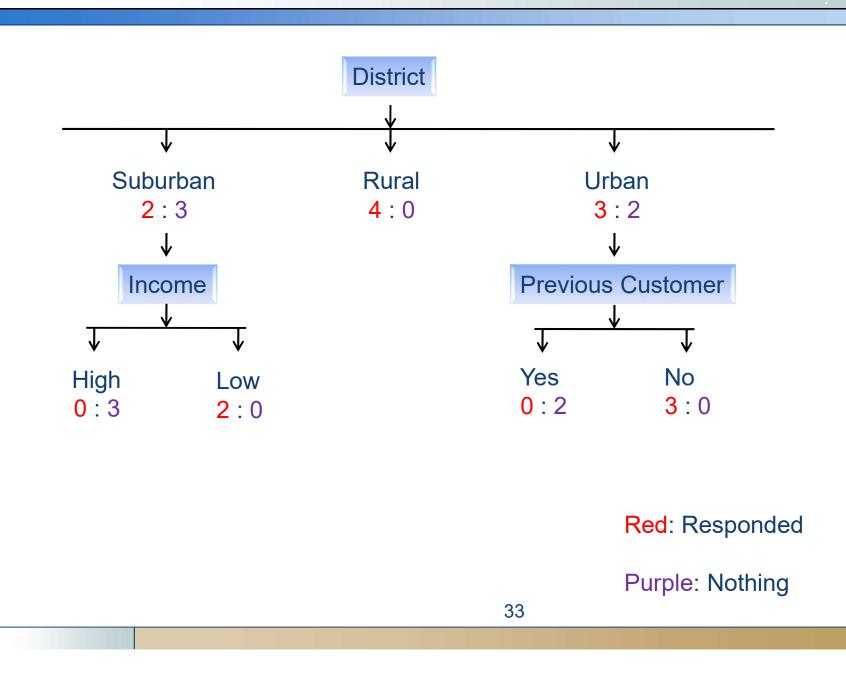
- Given the data collected from a promotion activity.
 - Could be tens of thousands of such records.
- Can we find any interesting patterns?
 - All rural households responded ...
- To find out which factors most strongly affect a household's response to a promotion.
 - Better understanding of potential customers
- Need a classifier to examine the underlying relationships and make future predictions.
- Send promotion brochures to selected households next time.
 - Targeted Marketing

A Survey Dataset

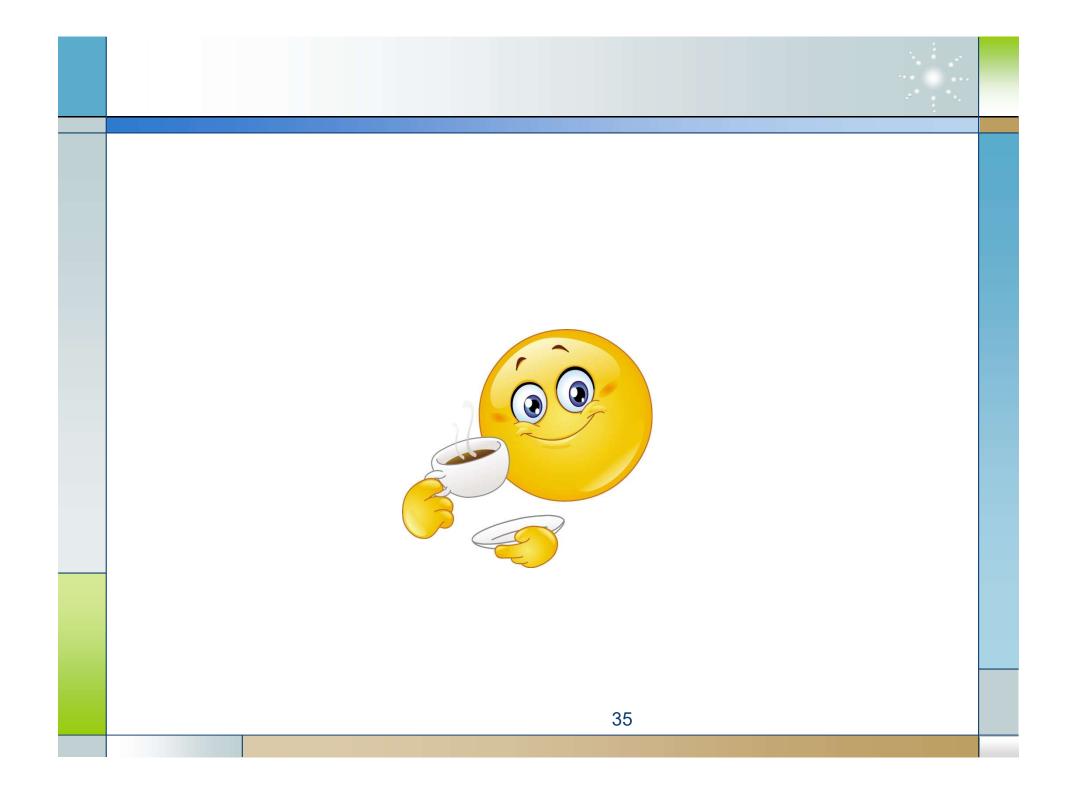




Another Tree Model

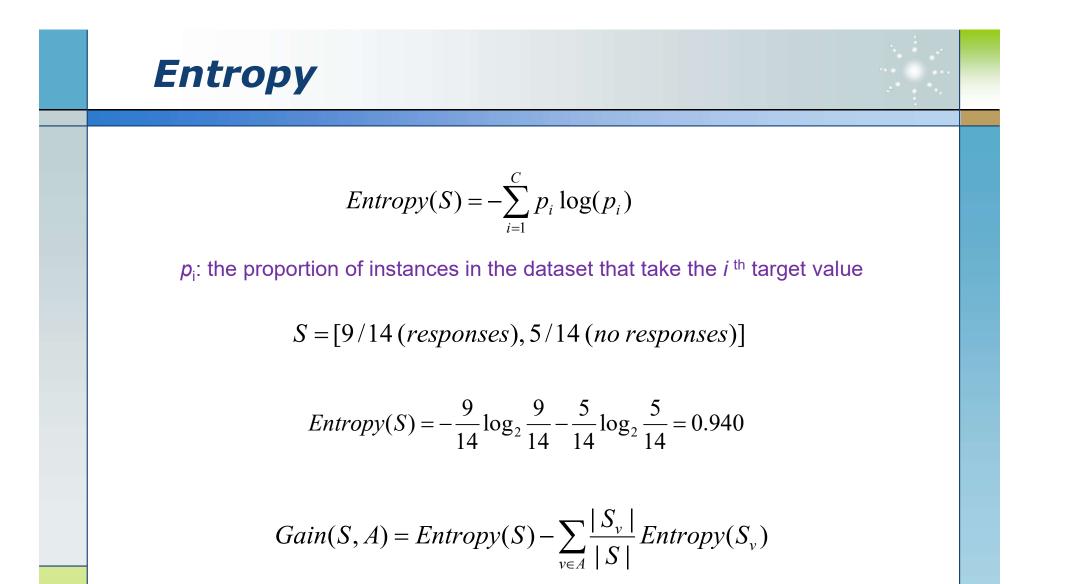


- (District = Rural) \rightarrow (Outcome = Responded)
- (District = Urban) AND (Previous Customer = Yes) \rightarrow (Outcome = Nothing)
- One dataset, many possible trees
- Occam's Razor
 - The term *razor* refers to the act of shaving away unnecessary assumptions to get to the simplest explanation.
 - "When you have two competing theories that make exactly the same predictions, the simpler one is the better."
 - "The explanation of any phenomenon should make as few assumptions as possible, eliminating those making no difference in the observable predictions of the explanatory hypothesis or theory."
- Simpler trees are generally preferred.



ID3

- How to build a shortest tree from a dataset?
- Iterative Dichotomizer 3
- Ross Quinlan: http://www.rulequest.com/
- One of the most influential Decision Trees models
- Top-down, greedy search through the space of possible decision trees
- Since we want to construct short trees ...
- It is better to put certain attributes higher up the tree.
- Some attributes split the data more purely than others.
- Their values correspond more consistently with the class labels.
- Need to have some sort of measure to compare candidate attributes.



 S_v : the subset of S where attribute A takes the value v.

Attribute Selection

$$Gain(S, District) = Entropy(S) - \frac{5}{14}Entropy(S_{District=Suburban})$$

$$-\frac{5}{14}Entropy(S_{District=Ur}) - \frac{4}{14}Entropy(S_{District=Rural})$$

$$= 0.940 - \frac{5}{14} \cdot 0.971 - \frac{5}{14} \cdot 0.971 - \frac{4}{14} \cdot 0 = 0.247$$

$$Gain(S, Income) = Entropy(S) - \frac{7}{14}Entropy(S_{Income=High})$$

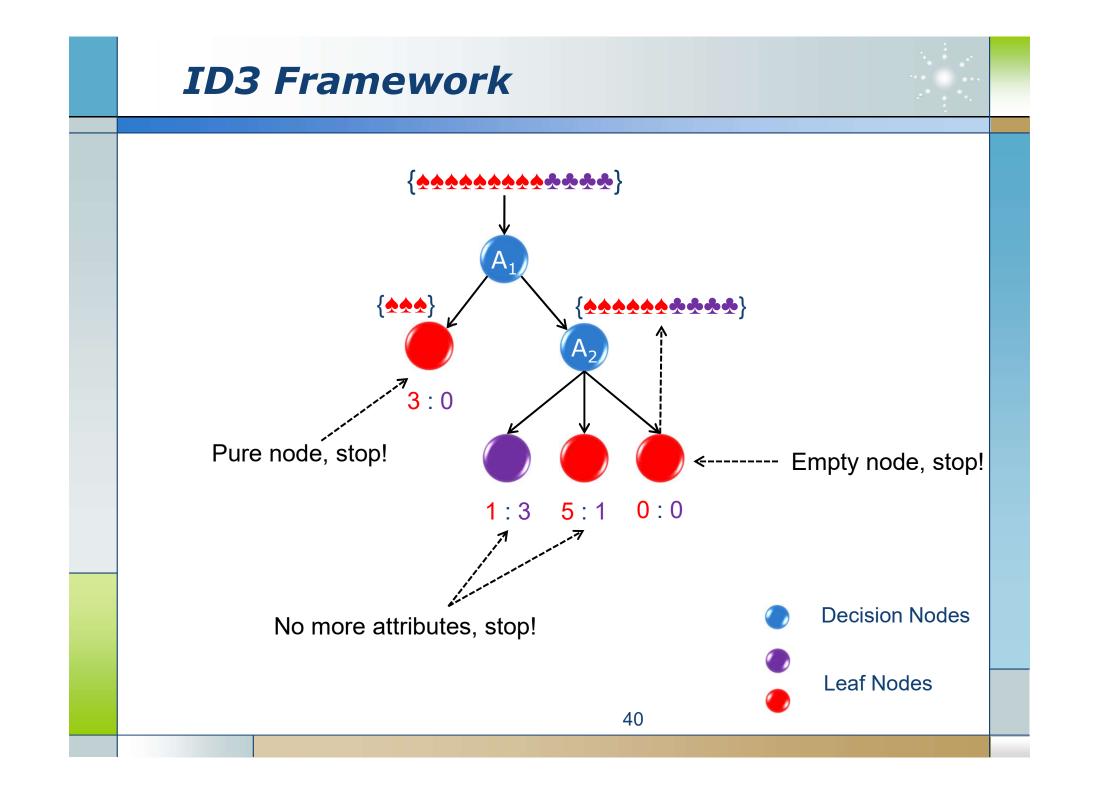
$$-\frac{7}{14}Entropy(S_{Income=Lo})$$

$$= 0.940 - \frac{7}{14} \cdot 0.9852 - \frac{7}{14} \cdot 0.5917 = 0.152$$

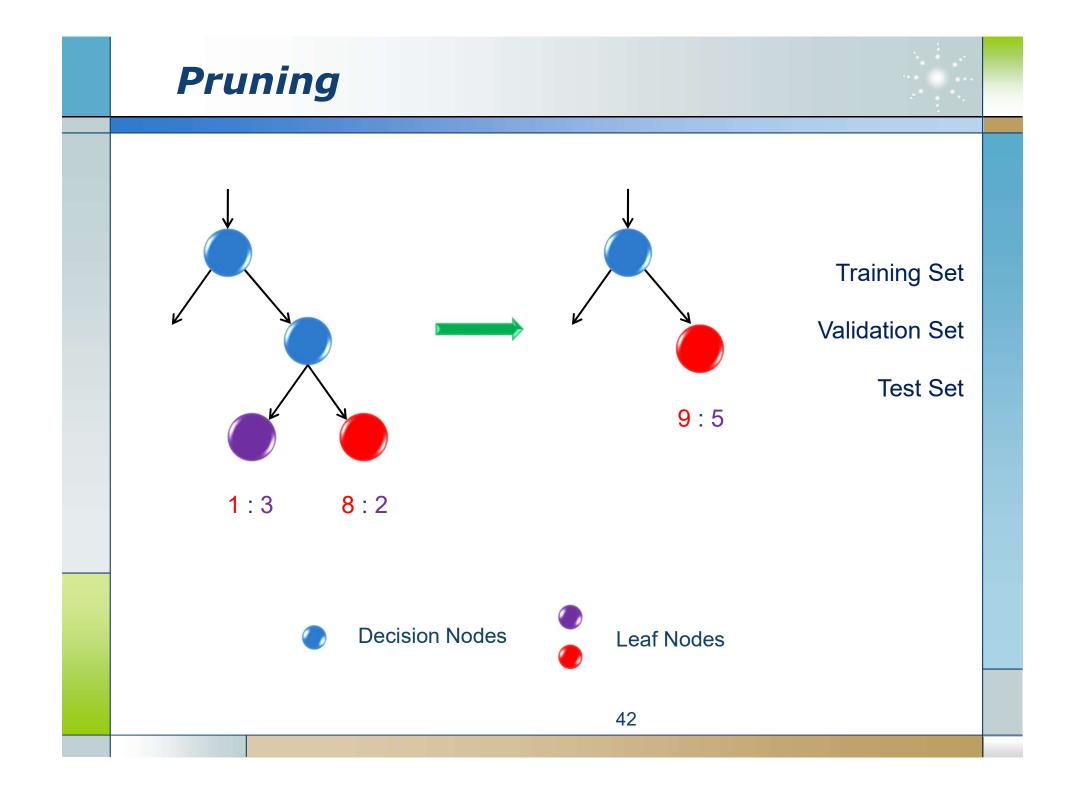
ID3 Framework

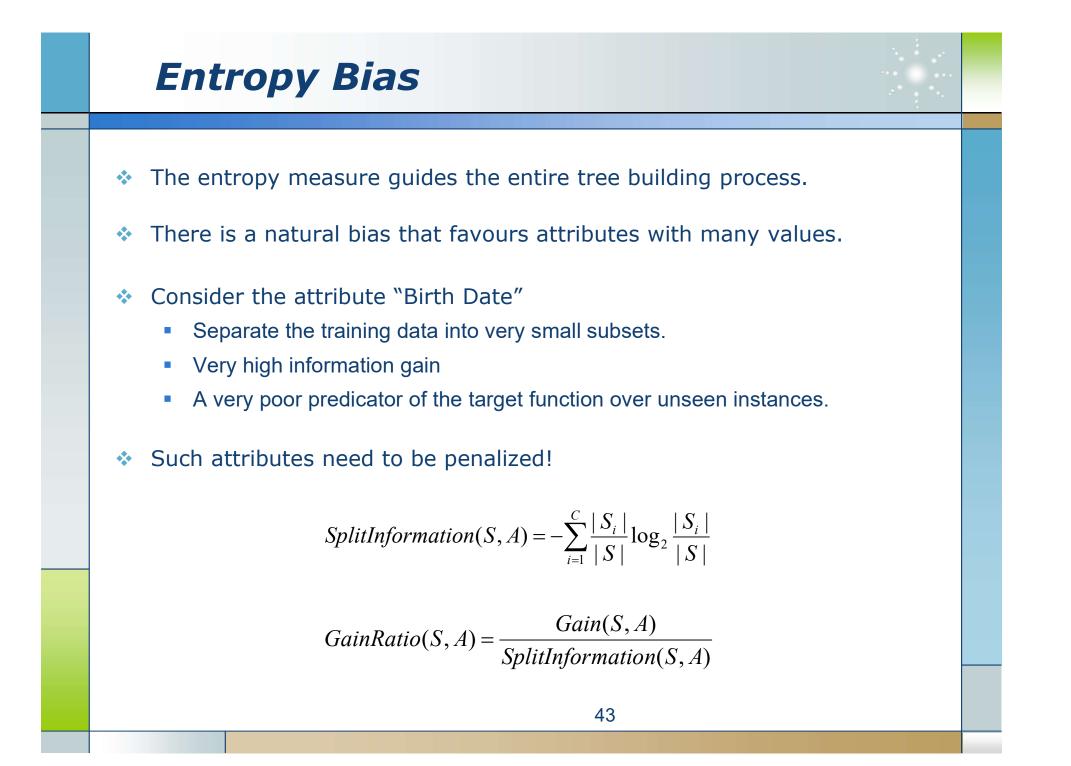
ID3(Examples, Target_attribute, Attributes)

- Create a *Root* node for the tree.
- ✤ If *Examples* have the same target attribute T, return *Root* with label=T.
- If Attributes is empty, return Root with label=the most common value of Target_attribute in Examples.
- ♦ A \leftarrow the attribute from *Attributes* that best classifies *Examples*.
- ♦ The decision attribute for $Root \leftarrow A$.
- For each possible value v_i of A
 - Add a new tree branch below *Root*, corresponding to A= v_i.
 - Let *Examples* (v_i) be the subset of Examples that have value v_i for A.
 - If *Examples* (*v_i*) is empty
 - Below this new branch add a leaf node with label=the most common value of *Target_attribute* in *Examples*.
 - Else below this new branch add the subtree
 - ID3(Examples(v_i), Target_attribute, Attributes-{A})
- Return Root

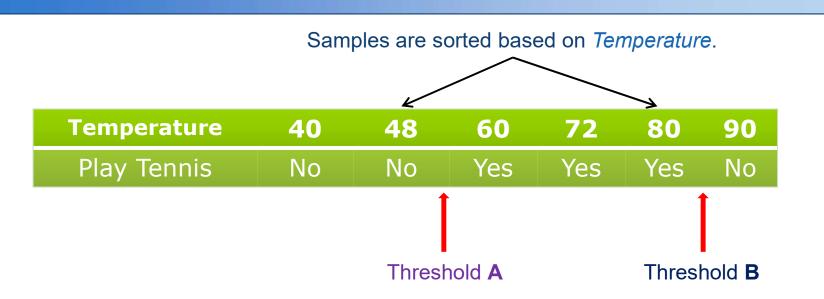


- Perfect Training Accuracy vs. Overfitting
- Random Noise, Insufficient Samples
- We want to capture the general underlying functions or trends.
- Definition
 - Given a hypothesis space *H*, a hypothesis *h* ∈ *H* is said to overfit the training data if there exists some alternative hypothesis *h*' ∈ *H*, such as *h* has smaller error than *h*' over the training samples, but *h*' has a smaller error than *h* over the entire distribution of instances.
- Solutions
 - Stop growing the tree earlier.
 - Allow the tree to overfit the data and then post-prune the tree.





Continuous Attributes



$$Gain(S, A) = Entropy(S) - \frac{1}{3} \cdot 0 - \frac{2}{3} \cdot (-\frac{3}{4} \cdot \log_2 \frac{3}{4} - \frac{1}{4} \cdot \log_2 \frac{1}{4}) = 1 - 0.541 = 0.459$$

$$Gain(S,B) = Entropy(S) - \frac{1}{6} \cdot 0 - \frac{5}{6} \cdot (-\frac{3}{5} \cdot \log_2 \frac{3}{5} - \frac{2}{5} \cdot \log_2 \frac{2}{5}) = 1 - 0.809 = 0.191$$

44

Reading Materials

Online Tutorial

- http://www.decisiontrees.net/node/21 (with interactive demos)
- http://www.autonlab.org/tutorials/dtree18.pdf
- http://people.revoledu.com/kardi/tutorial/DecisionTree/index.html
- http://www.public.asu.edu/~kirkwood/DAStuff/decisiontrees/index.html

Tom Mitchell, Machine Learning, Chapters 3&6, McGraw-Hill.

- Additional reading about Naïve Bayes Classifier
 http://www-2.cs.cmu.edu/~tom/NewChapters.html
- Software for text classification using Naïve Bayes Classifier
 http://www-2.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html