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Market-Based Problems

Finding associations among items in a transactional database.

Items
= Bread, Milk, Chocolate, Butter ...

Transaction (Basket)

= A non-empty subset of all items

Cross Selling

= Selling additional products or services to an existing customer.

Bundle Discount The Creative i

0’7}4}

Essentials Bundle

Shop Layout Design

=  Minimum Distance vs. Maximum Distance

“Baskets” & “Items”: Sentences & Words A




Definitions

o
*%

» A transaction is a set of items: T={i,, ip,...,i}

\/
*

» T is a subset of I where I is the set of all possible items.

\/
*

» The dataset D contains a set of transactions.
% An association rule is in the form of
P=0 wherePcl,QclandPnQ=0
< A set of items is referred to as itemset.
___| < An itemset containing k items is called k-itemset.

% An itemset can be seen as a conjunction of items.




Transactions

ransactons | _tems

1 Bread, Jelly, Peanut, Butter
Bread, Butter
Bread, Jelly
Bread, Milk, Butter
Chips, Milk
Bread, Chips
Bread, Milk
Chips, Jelly

o N o u »~h W N

Searching for rules in the form of: Bread - Butter
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Support of an Itemset

% The support of an item (or itemset) X is the percentage of
transactions in which that item (or itemset) occurs.
#X
Support(X) = —
mmmm
Bread Bread, Butter
Butter 3/8
Chips 2/8 Bread, Butter, Chips 0/8
Jelly 3/8
Milk 3/8 Bread, Butter, Chips, Jelly 0/8
—— Peanut 1/8
Bread, Butter, Chips, Jelly, Milk 0/8
Bread, Butter, Chips, Jelly, Milk, Peanut 0/8 N
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Support & Confidence of Association Rule

% The support of an association rule X->Y is the percentage of
transactions that contain X and Y.

#(XUY)
n

Support(X - Y) =

<+ The confidence of an association rule X=2Y is the ratio of the
number of transactions that contain {X, Y} to the number of
transactions that contain X.

#(XUY)

Confidence(X - Y) = X

% It can be represented equally as

E— , Support(XUY)
Confidence(X - Y) = Support(X)

% Conditional probability: P(Y|X)




Support & Confidence of Association Rule

% Support measures how often the rule occurs in the dataset.

% Confidence measures the strength of the rule.

| Transactions | _______ltems NSRRI

1 Bread, Jelly, Peanut, Butter
Support: 2/8
2 Bread, Butter
3 Bread, Jelly Confidence: 1/3
4 Bread, Milk, Butter
> Chips, Milk Milk > Bread
B 6 Bread, Chips
Support: 2/8
7 Bread, Milk
8 Chips, Jelly Confidence: 2/3 _
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Frequent Itemsets and Strong Rules

Support and Confidence are bounded by thresholds:

Minimum support ¢

Minimum confidence @

A frequent (large) itemset is an itemset with support larger than .

A strong rule is a rule that is frequent and its confidence is higher than ®.

Association Rule Problem

The number of all possible association rules is huge.

Given |, D, 6 and @, to find all strong rules in the form of X->Y.

Brute force strategy is infeasible.

A smart way is to find frequent itemsets first.
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The Big Picture

% Step 1: Find all frequent itemsets.

% Step 2: Use frequent itemsets to generate association rules.
= For each frequent itemset f
» Create all non-empty subsets of f.

= For each non-empty subset s of f
* Output s = (f-s) if support (f) / support (s) > ®

— ab=>c
ac—>b
bc—>a

— {a,b,c} — The key is to find frequent itemsets.
a—2>bc

b—>ac

— c—>ab
12




< A rule with high confidence is not necessarily plausible.

Myth No. 1

% For example:

|D|=10000

#DVD}=7500

#{Tape}=6000

#{DVD, Tape}=4000

Thresholds: 6=30%, ®=50%

Support(Tape - DVD)=4000/10000=40%
Confidence(Tape - DVD)=4000/6000=66%

< Now we have a strong rule: Tape - DVD

Seems that Tapes will help promote DVDs.
However, P(DVD)=75% > P(DVD | Tape) !!

Tape buyers are less likely to purchase DVDs.
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Transactions

Bread, Milk
Bread, Battery
Bread, Butter
Bread, Honey
Bread, Chips
Yogurt, Coke
Bread, Battery
Cookie, Jelly

Myth No. 2

P(Bread | Battery) =100% > P(Bread) =75%

=
8
La
Sr=
| ot
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! Myth No. 3

Association # Causality

P(Y|X) is just the conditional probability.
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Itemset Generation




Itemset Calculation

Transactions List of
Candidates

TID| | Items

Bread, Milk

Bread. Diaper, Water, Eggs
Milk, Diaper. Water, Coke
Bread. Milk, Diaper, Water
Bread, Milk, Diaper, Coke

-4 W

L
:

-+ L —
NG

O(NMW) M=27-1
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The Apriori Method

% One of the best known algorithms in Data Mining

% Key ideas
= A subset of a frequent itemset must be frequent.
« {Milk, Bread, Coke} is frequent - {Milk, Coke} is frequent

= The supersets of any infrequent itemset cannot be frequent.
« {Battery} is infrequent - {Milk, Battery} is infrequent

Title 1-20 Cited by Year

Fast algorithms for mining association rules
R Agrawal. R Srikant 19603 1994
Proc. 20th int. conf. very large data bases, VLDB 1215, 487-499

Mining association rules between sets of items in large databases
R Agrawal, T Imielifiski, A Swami 17129 1993
ACM SIGMOD Record 22 (2), 207-216

Mining sequential patterns
R Agrawal, R Srikant 6017 1995 —
Data Engineering, 1995. Proceedings of the Eleventh International Conference ...
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Candidate Pruning




General Procedure

<&

% Generate itemsets of a particular size.

D)

L0

< Scan the database once to see which of them are frequent. j

L0

% Use frequent itemsets to generate candidate itemsets of size=size+1.

<

< Iteratively find frequent itemsets with cardinality from 1 to k.

D)

L0

< Avoid generating candidates that are known to be infrequent.

L0

< Require multiple scans of the database.

<&

< Efficient indexing techniques such as Hash function & Bitmap may help.

D)

21




! Apriori Algorithm

C.: Candidate 1temset of size k
L.: Frequent i1temset of size k

L, < { frequent items}

for (k=1; L #@; k++)

C,., < candidate (Lk) candidates
for each transaction t

Q(—{c|ceCk+1/\cgt} .
counting

count|[c] < count|[c]+1, VceQ
end for

L., « {c ' c e C.., Acountlc]/ N > G} filtering

end for
return |JI,
k
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! Ly 2 Cyis

L =1{1,2,3,4,5} L, ={{1,2},{2,3}}

XUplXel,pel,peX}

C, ={{1,2,3},{1,2,4},{1,2,5},{2,3,4},{2,3,5} }

(XUY|X.YeL | XNY|=k-1}

B C3:{{19293}}




! Ly 2 Cyis

(XUY | X, YelL, X =Y ,Vie[lLk-1],X, #Y} Ordered List
L, ={{1,2},{2,3}} G ={}

L, ={{1,3},{2,3}} G ={} @
L, ={{1,2},{1,3},{2,3} } G, ={{1,2,3}}

— L ={{2},{1,3}} C, ={{1,2,3}} @
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! Correctness

VXaXELkH :>XECk+1

{Xl’""Xk’Xkﬂ} € Lk+1
U
{XI,...,Xk_I’Xk}ELk Join

{Xl’""Xk—UXkH}ELk i

X o X X, X1 € Gy
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Demo
T e
Database D itemset|sup. sup;j;n:;;emsa sup.
TID |ltems Cj {1} 2 1 {1} 2
1001 3 4 I 3 .| @& 3
200235 |[ScanD| g3 | 3 3 | 3
300|1235 {4} 1 (5 3 |_
4002 5 5y | 3 --
C, [itemset sup Cy ltemset <-_'_'_'_j';/
L, |itemset|sup {123 [ 1 Scan D {12}
M3 2 (13| 2 | - {13}
23y | 2 |— |15 | 1 (Lis)
1l 25 | 3 {23} | 2 {2 3}
? EC” 5% > (25 | 3 {2 5}
. ..,_@_\ {35} | 2 {3 5}
14 Cj itemset Scan D =L3 itemset SUPL  Note: {1.233412 5%
i2 3 5t {230} 2 and {1,3,5} not in C,
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Clothing Example

Apriori-Gen Algorithm — Clothing Example
* Given: 20 clothing transactions; s=20%, ¢c=50%

 (Generate association rules using the Apriori algorithm

Transaction Items Transaction Items

n Blouse " TShirt

fh Shoes, Skirt, TShirt 2 Blouse, Jeans, Shoes, Skirt, TShirt
n Jeans, TShirt 13 Jeans, Shoes, Shorts, TShirt
14 Jeans, Shoes, TShirt N4 Shoes, Skirt, TShirt

r5 Jeans, Shorts s Jeans, TShirt

t5 Shoes, TShirt hs Skirt, TShirt

7 Jeans, Skirt 7 Blouse, Jeans, Skirt

I3 Jeans, Shoes, Shorts, TShin | g Jeans, Shoes, Shorts, TShirt
Iy Jeans g Jeans

f10 Jeans, Shoes, TShirt 10 Jeans, Shoes, Shorts, TShirt

* Scanl: Find all 1-itemsets. Identify the frequent ones.
— Candidates:BloMse, Jeans, Shoes, Shorts, SKkirt, Tshirt

/ 14/20 10/20 5/20 6/20 14/20
Frequent (Large): Jeans, Shoes, Shorts, Skirt, Tshirt

Support:

Join the frequent items — combine items with each other to generate
candidate pairs B

| I




Clothing Example

Clothing Example — cont.1

Jeans, Shoes, Shorts, Skirt, Tshirt

Scan2: 10 candidate 2-itemsets were generated. Find the frequent

ones.

{Jeans, Shoes}:7/20 {Shoes, Short}:4/20 {Short,Mﬁ {Skirt, TShirt}: 4/20

{Jeans, Short} :5/20 {ShoMKZ{} {Short, TShirt}: 4/20

{Jea)-exﬁ :3/20 {Shoes, TShirt}: 10/20

{Jeans, TShirt}:9/20 4/20

7 frequent itemsets are found out of 10.

Scan Candidates Large Itemsets
1 {Blouse), {Jeans), {Shoes}),

{Shorts), {Skirt}, {TShirt}
2 {Jeans, Shoes), (Jeans, Shorts), (Jeans, Skint},

{Jeans, TShirt}, {Shoes, Shorts}, {Shoes, Skirt),

{Shoes, TShirt), {Shorts, Skirt), (Shorts, TShirt},

[Skirt, TShirt)
3 {Jeans, Shoes, Shorts), (Jeans, Shoes, TShirt}

{Jeans, Shorts, TShirt), (Jeans, Skirt, TShint}, — elnu,Slmu TSInrtl

{Shoes, Shorts, TShirt}, {Shoes, Skirt, TShirt},

{Shorts, Skirt, TShirt} H0ES i
4 {Jeans, Shoes, Shorts, TShirt} — {Jeans, Shoes, Shorts, TShirt}
5 @ @

o _/2 sets are joined if they

7| (i,.e. 1 item different)

2 sets are joined if they
have 2 item in common
(i..e. 1 item different)

Evervone is combined
with each other

have 1 item in common

29




Clothing Example

Clothing Example — cont.2

* The next step is to use the large itemsets and generate association
rules

¢=50%

The set of large itemsets is

L={{Jean\.Q,{Shue. i {Sh{u\ﬁ}, {Ski\}, {TSlh(t}, {Jeans, Shoes}, {Jeans,
Shorts}, {Jeans, TShirt}, {Shoes, Shorts}, {Shoes, TShirt}, {Shorts, TShirt},

{SKkirt, TShirt}, {Jeans, Shoes, Shorts}, {Jeans, Shoes, TShirt}, {Jeans,
Shorts, TShirt},{Shoes, Shorts, TShirt}, {Jeans, Shoes, Shorts, TShirt} }

We ignore the first 5 as they do not consists of 2 nonempty subsets of large
itemsets. We test all the others, e.g.:

Support({Jeans, Shoes})  7/20
Support({Jeans}) ~14/20
30

Confidence(Jeans — Shoes) =

=50%=>c | —
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! Effective Recommendation

BET.ZET..
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! Sequential Pattern

Customer
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Sequence

/7

< A sequence is an ordered list of elements where each element is a

collection of one or more items.

@ t=<ty t, ... t,,> is a subsequence of s=<s; s, ... 5,> if there exist integers

1 <j;<j;< ... <Ju=n such that t,Cs;;, t,CS;,..., t,ESjn-

s |t | _V/N__

<{2,4}) {3,6,5}) {8}> <{2} {3, 6} {8}> Yes

<{2,4} {3,6,5} {8}> <{2} {8}> Yes

<{1, 2} {3, 4}> <{1} {2}> No

B <{2, 4} {2, 4} {2, 5}> <{2} {4}> Yes
35




Support of Sequence

mm

A 1,2, 4 <{1, 2}> 60%

A 2 2,3 <{2, 3}> 60%

A 3 5 <{2, 4}> 80%

B 1 1,2 <{3} {5}> 80%

B 2 2,34 <{1} {2}> 80%

C 1 1,2 <{2} {2}> 60%

C 2 2,34 <{1} {2,3}> 60%

C 3 2,4,5 <{2} {2,3}> 60%

D 1 2 <{1, 2} {2, 3}> 60%
— D 2 3, 4

D 3 4,5

E 1 1, 3

E 2  2,4,5

36




Candidate Space

< Given: {Milk} {Bread}

% 2-itemset: {Bread, Milk}

% 2-sequence:
= <{Bread, Milk}>
= <{Bread} {Milk}>, <{Milk} {Bread}>
= <{Bread} {Bread}>, <{Milk} {Milk}>

< Order matters in sequences but not for itemsets.

1000X%999
2

< For 1000 items: 1000x1000+ =1499500

< The search space is much larger than before.

< How to generate candidates efficiently? B

37




! Candidate Generation

% A sequence s; is merged with another sequence s, if and only if the

subsequence obtained by dropping the first item in s; is identical to the
subsequence obtained by dropping the last item in s,.

3-sequences

<{1} {2} {3}>
<{1} {2, 5}>
<{1} {5} {3}>
<{2}; {3} {4}>
<{2, 5} {3}>
<{3} {4} {5}>
<{5} {3, 4}>

<{1} {2} {3} {4}>
<{1} {2, 5} {3}>
<{1} {5} {3, 4}>
<{2} {3} {4} {5}>
<{2, 5} {3, 4}>

38

s NN

V4
-, I

<{1} 42, 5} {3}>

-



Reading Materials

< Text Book

= J. Han and M. Kamber, Data Mining: Concepts and Techniques, Chapter 6, Morgan
Kaufmann.

@,

% Core Papers

= J. Han, J. Pei, Y. Yin and R. Mao (2004) “Mining frequent patterns without
candidate generation: A frequent-pattern tree approach”. Data Mining and
Knowledge Discovery, Vol. 8(1), pp. 53-87.

= R. Agrawal and R. Srikant (1995) “Mining sequential patterns”. In Proceedings of
the Eleventh International Conference on Data Engineering (ICDE), pp. 3-14.

= R. Agrawal and R. Srikant (1994) “Fast algorithms for mining association rules”. In
Proceedings of the 20th International Conference on Very Large Data Bases
— (VLDB), pp. 487-499.

= R. Agrawal, T. Imielinski, and A. Swami (1993) “Mining association rules between
sets of items in large databases”. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pp. 207-216. N
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