

A Real Example

Frequently Bought Together

Price For All Three: $\mathbf{\$ 1 6 6 . 8 3}$

. Add all three to Cart Add all three to Wish List
Show availability and shipping details
\checkmark This item: Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems) by Eibe Frank
\square The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics) by Robert Tibshirani
\square Pattern Recognition and Machine Learning (Information Science and Statistics) by Christopher M. Bishop

Customers Who Bought This Item Also Bought

Introduction to Data Mining by Pang-Ning Tan

Pattern Recognition and
Machine Learning... by Christopher M. Bishop र टी

Machine Learning (Mcgraw-Hill International Edit) by Tom M. Mitchell 등ㅅ삳 (38) \$73.72

Introduction to Machine Learning (Adaptive Comp.... by Ethem Alpaydin से की

Market-Based Problems

* Finding associations among items in a transactional database.
- Items
- Bread, Milk, Chocolate, Butter .
* Transaction (Basket)
- A non-empty subset of all items
- Cross Selling
- Selling additional products or services to an existing customer.
* Bundle Discount
* Shop Layout Design
- Minimum Distance vs. Maximum Distance
* "Baskets" \& "Items": Sentences \& Words

Definitions

A transaction is a set of items: $T=\left\{i_{a}, i_{b}, \ldots, i_{t}\right\}$
T is a subset of I where I is the set of all possible items.

* The dataset D contains a set of transactions.
* An association rule is in the form of

$$
P \Rightarrow Q \text { where } P \subset I, Q \subset I \text { and } P \cap Q=\varnothing
$$

* A set of items is referred to as itemset.
* An itemset containing k items is called k-itemset.
* An itemset can be seen as a conjunction of items.

Transactions

Transactions	Items
1	Bread, Jelly, Peanut, Butter
2	Bread, Butter
3	Bread, Jelly
4	Bread, Milk, Butter
5	Chips, Milk
6	Bread, Chips
7	Bread, Milk
8	Chips, Jelly

Searching for rules in the form of: Bread \rightarrow Butter

Support of an Itemset

* The support of an item (or itemset) X is the percentage of transactions in which that item (or itemset) occurs.

$$
\operatorname{Support}(X)=\frac{\# X}{n}
$$

| Itemset | Support | Itemset | Support |
| :--- | :---: | :---: | :---: | :---: |
| Bread | $6 / 8$ | Bread, Butter | $3 / 8$ |
| Butter | $3 / 8$ | | $0 / 8$ |
| Chips | $2 / 8$ | Bread, Butter, Chips | |
| Jelly | $3 / 8$ | \ldots | $0 / 8$ |
| Milk | $3 / 8$ | Bread, Butter, Chips, Jelly | |
| Peanut | $1 / 8$ | ... | $0 / 8$ |
| | | Bread, Butter, Chips, Jelly, Milk | |
| | | Bread, Butter, Chips, Jelly, Milk, Peanut | $0 / 8$ |

Support \& Confidence of Association Rule

* The support of an association rule $X \rightarrow Y$ is the percentage of transactions that contain X and Y.

$$
\operatorname{Support}(X \rightarrow Y)=\frac{\#(X \cup Y)}{n}
$$

* The confidence of an association rule $X \rightarrow Y$ is the ratio of the number of transactions that contain $\{\mathrm{X}, \mathrm{Y}\}$ to the number of transactions that contain X.

$$
\text { Confidence }(X \rightarrow Y)=\frac{\#(X \cup Y)}{\#(X)}
$$

* It can be represented equally as

$$
\text { Confidence }(X \rightarrow Y)=\frac{\operatorname{Support}(X \cup Y)}{\operatorname{Support}(X)}
$$

* Conditional probability: $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$

Support \& Confidence of Association Rule

* Support measures how often the rule occurs in the dataset.
* Confidence measures the strength of the rule.

Transactions	Items
1	Bread, Jelly, Peanut, Butter
2	Bread, Butter
3	Bread, Jelly
4	Bread, Milk, Butter
5	Chips, Milk
6	Bread, Chips
7	Bread, Milk
8	Chips, Jelly

Bread \rightarrow Milk
Support: 2/8
Confidence: 1/3

Milk \rightarrow Bread
Support: 2/8
Confidence: 2/3

Frequent Itemsets and Strong Rules

* Support and Confidence are bounded by thresholds:
- Minimum support σ
- Minimum confidence Φ
* A frequent (large) itemset is an itemset with support larger than σ.

A strong rule is a rule that is frequent and its confidence is higher than Φ.

* Association Rule Problem
- Given I, D, σ and Φ, to find all strong rules in the form of $X \rightarrow Y$.
* The number of all possible association rules is huge.
- Brute force strategy is infeasible.
- A smart way is to find frequent itemsets first.

The Big Picture

- Step 1: Find all frequent itemsets.
* Step 2: Use frequent itemsets to generate association rules.
- For each frequent itemset f
- Create all non-empty subsets of f .
- For each non-empty subset s of f
- Output $s \rightarrow$ (f-s) if support (f) / support (s) > Φ

$$
\{a, b, c\}\left\{\begin{array}{l}
a b \rightarrow c \\
a c \rightarrow b \\
b c \rightarrow a \\
a \rightarrow b c \\
b \rightarrow a c \\
c \rightarrow a b
\end{array}\right.
$$

Myth No. 1

* A rule with high confidence is not necessarily plausible.
* For example:
- |D|=10000
- \#\{DVD\}=7500
- \#\{Tape\}=6000
- \#\{DVD, Tape\}=4000
- Thresholds: $\sigma=30 \%, \Phi=50 \%$

- Support(Tape \rightarrow DVD) $=4000 / 10000=40 \%$
- Confidence(Tape \rightarrow DVD) $=4000 / 6000=66 \%$
* Now we have a strong rule: Tape \rightarrow DVD
- Seems that Tapes will help promote DVDs.
- However, P(DVD)=75\% > P(DVD | Tape) !!
- Tape buyers are less likely to purchase DVDs.

Myth No. 2

Transactions

Bread, Milk
Bread, Battery
$P($ Bread \mid Battery $)=100 \%>P($ Bread $)=75 \%$
Bread, Butter
Bread, Honey
Bread, Chips
Yogurt, Coke
Bread, Battery
Cookie, Jelly

Myth No. 3

Association = Causality

$P(Y \mid X)$ is just the conditional probability.

Itemset Generation

Itemset Calculation

Transactions

$O(N M W)$

$$
M=2^{d}-1
$$

The Apriori Method

* One of the best known algorithms in Data Mining
* Key ideas
- A subset of a frequent itemset must be frequent.
- \{Milk, Bread, Coke\} is frequent \rightarrow \{Milk, Coke\} is frequent
- The supersets of any infrequent itemset cannot be frequent.
- \{Battery\} is infrequent \rightarrow \{Milk, Battery\} is infrequent

| Title \quad 1-20 | Cited by | Year |
| :--- | :--- | :--- | :--- |
| Fast algorithms for mining association rules
 R Agrawal, R Srikant
 Proc. 20th int. conf. very large data bases, VLDB 1215, 487-499 | 19603 | 1994 |
| Mining association rules between sets of items in large databases
 R Agrawal, T Imielíski, A Swami
 ACM SIGMOD Record 22 (2), 207-216 | 17129 | 1993 |
| Mining sequential patterns
 R Agrawal, R Srikant
 Data Engineering, 1995. Proceedings of the Eleventh International Conference ... | 6017 | 1995 |

Candidate Pruning

General Procedure

* Generate itemsets of a particular size.
* Scan the database once to see which of them are frequent.
* Use frequent itemsets to generate candidate itemsets of size=size+1.
* Iteratively find frequent itemsets with cardinality from 1 to k.
* Avoid generating candidates that are known to be infrequent.
* Require multiple scans of the database.
* Efficient indexing techniques such as Hash function \& Bitmap may help.

Apriori Algorithm

C_{k} : Candidate itemset of size k
L_{k} : Frequent itemset of size k
$L_{1} \leftarrow\{$ frequent items $\}$
for ($\mathrm{k}=1$; $L_{\mathrm{k}} \neq \emptyset$; $\mathrm{k}++$)
$\mid C_{k+1} \leftarrow$ candidate $\left(L_{k}\right)$
candidates
for each transaction t
$Q \leftarrow\left\{c \mid c \in C_{k+1} \wedge c \subseteq t\right\}$
count $[c] \leftarrow$ count $[c]+1, \quad \forall c \in Q$
end for
$L_{k+1} \leftarrow\left\{c \mid c \in C_{k+1} \wedge \operatorname{count}[c] / N \geq \sigma\right\} \quad$ filtering
end for
return $\bigcup_{k} L_{k}$

$L_{k} \rightarrow C_{k+1}$

$$
L_{1}=\{1,2,3,4,5\} \quad L_{2}=\{\{1,2\},\{2,3\}\}
$$

$\left\{X \cup p \mid X \in L_{k}, p \in L_{1}, p \notin X\right\}$
$C_{3}=\{\{1,2,3\},\{1,2,4\},\{1,2,5\},\{2,3,4\},\{2,3,5\}\}$
$\left\{X \cup Y\left|X, Y \in L_{k},|X \cap Y|=k-1\right\}\right.$
$C_{3}=\{\{1,2,3\}\}$

$$
\left\{X \cup Y_{k} \mid X, Y \in L_{k}, X_{i}=Y_{i}, \forall i \in[1, k-1], X_{k} \neq Y_{k}\right\} \quad \text { Ordered List }
$$

$$
L_{2}=\{\{1,2\},\{2,3\}\}
$$

$$
C_{3}=\{ \}
$$

$$
L_{2}=\{\{1,3\},\{2,3\}\}
$$

$$
C_{3}=\{ \}
$$

$$
L_{2}=\{\{1,2\},\{1,3\},\{2,3\}\}
$$

$$
C_{3}=\{\{1,2,3\}\}
$$

$$
L_{2}=\{\{1,2\},\{1,3\}\}
$$

$$
C_{3}=\{\{1,2,3\}\}
$$

Correctness

$$
\forall X, X \in L_{k+1} \Rightarrow X \in C_{k+1}
$$

$$
\begin{gathered}
\left\{X_{1}, \ldots, X_{k}, X_{k+1}\right\} \in L_{k+1} \\
\Downarrow
\end{gathered}
$$

$$
\left\{X_{1}, \ldots, X_{k-1}, X_{k}\right\} \in L_{k}
$$

$$
\left\{X_{1}, \ldots, X_{k-1}, X_{k+1}\right\} \in L_{k}
$$

$$
\left\{X_{1}, \ldots, X_{k-1}, X_{k}, X_{k+1}\right\} \in C_{k+1}
$$

Demo

Database D	
TID	Items
100	134
200	235
300	1235
400	25

L_{2}| itemset | sup |
| :---: | :---: |
| $\{13\}$ | 2 |
| $\{23\}$ | 2 |
| $\{23$ | 5 |
| $\{3$ | 3 |
| 23 | 2 |

Support> 1

Note: $\{1,2,3\}\{1,2,5\}$ and $\{1,3,5\}$ not in C_{3}

Clothing Example

Apriori-Gen Algorithm - Clothing Example

- Given: 20 clothing transactions; $s=\mathbf{2 0 \%}, \mathrm{c}=\mathbf{5 0 \%}$
- Generate association rules using the Apriori algorithm

Transaction	Items	Transaction	Items
t_{1}	Blouse	t_{11}	TShirt
t_{2}	Shoes, Skirt, TShirt	t_{12}	Blouse, Jeans, Shoes, Skirt, TShirt
t_{3}	Jeans, TShirt	t_{13}	Jeans, Shoes, Shorts, TShirt
t_{4}	Jeans, Shoes, TShirt	t_{14}	Shoes, Skirt, TShirt
t_{5}	Jeans, Shorts	t_{15}	Jeans, TShirt
t_{6}	Shoes, TShirt	t_{16}	Skirt, TShirt
t_{7}	Jeans, Skirt	Blouse, Jeans, Skirt	
t_{8}	Jeans, Shoes, Shorts, TShirt	t_{17}	t_{18}
t_{9}	Jeans	t_{19}	Jeans, Shoes, Shorts, TShirt
t_{10}	Jeans, Shoes, TShirt	t_{20}	Jeans, Shoes, Shorts, TShirt

- Scan1: Find all 1-itemsets. Identify the frequent ones.

Candidates:Bloyse, Jeans, Shoes, Shorts, Skirt, Tshirt Support: $\quad 3 / 20 \quad 14 / 20 \quad 10 / 20 \quad 5 / 20 \quad 6 / 20 \quad 14 / 20$
Frequent (Large): Jeans, Shoes, Shorts, Skirt, Tshirt
Join the frequent items - combine items with each other to generate candidate pairs

Clothing Example

Clothing Example - cont. 1

- Scan2: 10 candidate 2-itemsets were generated. Find the frequent ones.
\{Jeans, Shoes\}:7/20 \{Shoes, Short\}:4/20 \{Short, Skit $\}$ - $/ 20$ \{Skirt, TShirt\}: 4/20
\{Jeans, Short\} :5/20 \{Shoes. Shicif: $3 / 20$ \{Short, TShirt\}: 4/20
\{Jeallofirit\} :3/20 \{Shoes, TShirt\}: 10/20
$\{$ Jeans, TShirt\}:9/20 4/20 $\quad 7$ frequent itemsets are found out of 10.

Scan	Candidates Large Itemsets
1	(Blouse), (Jeans), (Shoes),[Shorts), \{Skirt), (TShirt), \longrightarrow(Jeans), (Shoes), (Shorts] (Skirt), (Tshirt)
2	(Jeans, Shoes), (Jeans, Shorts), (Jeans, Skirt), (Jeans, Shoes), (Jeans, Shorts), \{Jeans, TShirt), (Shoes, Shorts\}, \{Shoes, Skirt), \qquad \qquad (Shoes, TShirt), (Shorts, Skirt), (Shorts, TShirt), (Jeans, TShirt\}, (Shoes, Shorts), (Shoes, TShirt), (Shorts, TShit). (Skirt, TShirt) [Skin, TShirt]
3	(Jeans, Shoes, Shorts), (Jeans, Shoes, TShirt), \qquad (Jems, Shoes, Shonts). (Jeans, Shorts, TShirt), (Jeans, Skirt, TShirt). (Jeans, Shoes, TShirt), (Shoes, Shorts, TShirt), \{Shoes, Skirt, TShirt\}, \qquad [Shorts, Skirt, TShirt]
4	(Jeans, Shoes, Shorts, TShirt) \longrightarrow [Jeans, Shoes, Shorts, TShirr)
5	$\emptyset \quad \emptyset$

Clothing Example

Clothing Example - cont. 2

- The next step is to use the large itemsets and generate association rules
- $\mathbf{c}=50 \%$
- The set of large itemsets is

L=\{\{Jeans\},\{Shoes\}, \{Shorts\}, \{Skirt\}, \{TShirt\}, \{Jeans, Shoes\}, \{Jeans, Shorts\}, \{Jeans, TShirt\}, \{Shoes, Shorts\}, \{Shoes, TShirt\}, \{Shorts, TShirt\}, \{Skirt, TShirt\}, \{Jeans, Shoes, Shorts\}, \{Jeans, Shoes, TShirt\}, \{Jeans, Shorts, TShirt\},\{Shoes, Shorts, TShirt $\}$, \{Jeans, Shoes, Shorts, TShirt\} \}

- We ignore the first 5 as they do not consists of 2 nonempty subsets of large itemsets. We test all the others, e.g.:

Confidence $($ Jeans \rightarrow Shoes $)=\frac{\text { Support }(\{\text { Jeans, Shoes }\})}{\text { Support }(\{\text { Jeans }\})}=\frac{7 / 20}{14 / 20}=50 \% \geq c$

Real Examples

最住组合

Cloud Computing Bibl
e

气象灾害防护指引：暴
雨

Customers Who Bought This Item Also Bought

Cloud Computing
Explained：
Implementation Handbook．．．by John Rhoton

Cloud Computing Architected：Solution Design Handbook by John Rhoton
 \＄26．37

最佳组合

近视永镜大鏡框舒适款

奇海平光防紫外线防雾游泳镜2500M黑色（镜片防

V $¥ 49.00$

奥浪均码男士泳裤8320均
码
『 $¥ 59.00$

侨丰电动气泉
V $¥ 29.00$

奇海平光防紫外线防雾游泳镜2500M蓝色（镜片防

V $¥ 49.00$

Sequential Pattern

Sequence

* A sequence is an ordered list of elements where each element is a collection of one or more items.
* $t=<t_{1} t_{2} \ldots t_{m}>$ is a subsequence of $s=<s_{1} s_{2} \ldots s_{n}>$ if there exist integers $1 \leq j_{1}<j_{2}<\ldots<j_{m} \leq n$ such that $t_{1} \subseteq s_{j 1}, t_{2} \subseteq s_{j 2}, \ldots, t_{m} \subseteq s_{j m}$.

\mathbf{s}	\mathbf{t}	\mathbf{Y} / \mathbf{N}
$<\{2,4\}\{3,6,5\}\{8\}>$	$<\{2\}\{3,6\}\{8\}>$	Yes
$<\{2,4\}\{3,6,5\}\{8\}>$	$<\{2\}\{8\}>$	Yes
$<\{1,2\}\{3,4\}>$	$<\{1\}\{2\}>$	No
$<\{2,4\}\{2,4\}\{2,5\}>$	$<\{2\}\{4\}>$	Yes

Support of Sequence

CID	Time	Items
A	1	$1,2,4$
A	2	2,3
A	3	5
B	1	1,2
B	2	$2,3,4$
C	1	1,2
C	2	$2,3,4$
C	3	$2,4,5$
D	1	2
D	2	3,4
D	3	4,5
E	1	1,3
E	2	$2,4,5$

Support	
$<\{1,2\}>$	60%
$<\{2,3\}>$	60%
$<\{2,4\}>$	80%
$<\{3\}\{5\}>$	80%
$<\{1\}\{2\}>$	80%
$<\{2\}\{2\}>$	60%
$<\{1\}\{2,3\}>$	60%
$<\{2\}\{2,3\}>$	60%
$<\{1,2\}\{2,3\}>$	60%

Candidate Space

(Given: \{Milk\} \{Bread\}

2-itemset: \{Bread, Milk\}

* 2-sequence:
- <\{Bread, Milk\}>
- < \{Bread\} \{Milk\}>, <\{Milk\} \{Bread\}>
- <\{Bread\} \{Bread\}>, <\{Milk\} \{Milk\}>
* Order matters in sequences but not for itemsets.
* For 1000 items: $1000 \times 1000+\frac{1000 \times 999}{2}=1499500$
* The search space is much larger than before.
* How to generate candidates efficiently?

Candidate Generation

* A sequence s_{1} is merged with another sequence s_{2} if and only if the subsequence obtained by dropping the first item in s_{1} is identical to the subsequence obtained by dropping the last item in s_{2}.

3-sequences

$$
\begin{array}{cc}
<\{1\}\{2\}\{3\}> & \\
\hline<\{1\}\{2,5\}> & \text { Candidate } \\
\hline<\{1\}\{5\}\{3\}> & <\{1\}\{2\}\{3\}\{4\}> \\
\hline<\{2\}\{3\}\{4\}> & <\{1\}\{2,5\}\{3\}> \\
\hline<\{2,5\}\{3\}> & <\{1\}\{5\}\{3,4\}> \\
\hline<\{3\}\{4\}\{5\}> & <\{2\}\{3\}\{4\}\{5\}> \\
\hline<\{5\}\{3,4\}> & <\{2,5\}\{3,4\}>
\end{array}
$$

$$
\begin{gathered}
\text { Pruning } \\
<\{1\}\{2,5\}\{3\}>
\end{gathered}
$$

Reading Materials

* Text Book

- J. Han and M. Kamber, Data Mining: Concepts and Techniques, Chapter 6, Morgan Kaufmann.

* Core Papers

- J. Han, J. Pei, Y. Yin and R. Mao (2004) "Mining frequent patterns without candidate generation: A frequent-pattern tree approach". Data Mining and Knowledge Discovery, Vol. 8(1), pp. 53-87.
- R. Agrawal and R. Srikant (1995) "Mining sequential patterns". In Proceedings of the Eleventh International Conference on Data Engineering (ICDE), pp. 3-14.
- R. Agrawal and R. Srikant (1994) "Fast algorithms for mining association rules". In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), pp. 487-499.
- R. Agrawal, T. Imielinski, and A. Swami (1993) "Mining association rules between sets of items in large databases". In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 207-216.

