

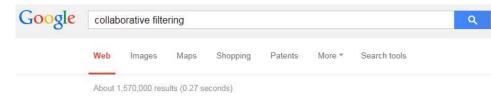
Recommendation Algorithms

Lecturer: Dr. Bo Yuan

E-mail: yuanb@sz.tsinghua.edu.cn

Overview

- Vector Space Model
- Latent Semantic Analysis
- PageRank
- Collaborative Filtering



Collaborative filtering - Wikipedia, the free encyclopedia

more relevant

en.wikipedia.org/wiki/Collaborative_filtering -

Collaborative filtering (CF) is a technique used by some recommender systems. Collaborative filtering has two senses, a narrow one and a more general one.

Introduction - Methodology - Types - Application on social web

Amazon.com recommendations item-to-item collaborative filtering ...

ieeexplore.ieee.org/iel5/4236/26323/01167344.pdf by G Linden - 2003 - Cited by 2167 - Related articles

Item-to-Item Collaborative Filtering. Recommendation algorithms are best known for their use on e-commerce Web sites. 1 where they use input about a cus-.

ГРРП Collaborative Filtering: A Tutorial - Carnegie Mellon University

www.cs.cmu.edu/~wcohen/collab-filtering-tutorial.ppt -

Collaborative Filtering: A Tutorial, William W. Cohen, Center for Automated Learning and Discovery, Carnegie Mellon University, Everyday Examples of ...

[PDF] Collaborative Filtering with Temporal Dynamics

sydney.edu.au/engineering/it/~josiah/lemma/kdd-fp074-koren.pdf v by Y Koren - 2009 - Cited by 411 - Related articles

Jun 28, 2009 - Accordingly, we revamp two leading collaborative filtering ...
Algorithms. Keywords collaborative filtering, recommender systems, concept drift.

PDFI Learning Collaborative Filtering and Its Application to People to ...

www.cse.unsw.edu.au/~wobcke/papers/learning-to-rank.pdf •

by X Cai - Cited by 12 - Related articles of items or people becomes essential. Approaches to recommender systems can be categorised as content-based or **collaborative filtering** (CF) methods.

GraphLab - Collaborative filtering

less relevant

graphlab.org/toolkits/collaborative-filtering/ -

The collaborative filtering toolkit provides tools to identify patterns of user interests and make targeted recommendations. Most of the algorithms take the rating ...

Information Overload

¥6288.00 B

Apple (Phone da Plus (A1669) 64G 収益 金色 移动规模电信4G手机 ##200051 (##

¥5688.00 E

Gelety 57 edge (G9350) 32G/g 电光电极玻璃器电荷45等机 四十四份 田 T#25072 | FF

¥3199.00 E 通电符45手机 双水双的 前期250年代 T = 80177 (E

多为党方路级集 医贫血医 🥬

¥2799.00 E

河道45号側 エヤエ柳 竹三 MOOWRR 11222805 / ISB

ロアロチの方方放射車 (第1111年) (例

¥399.00

直受(Neuman)小型拉52学机 格德4G被 T = 2543 | CO

經常特益子机學會當 🥮

¥1099.00 M 序数 (Le) 序2 (XEID) IIGE 全色 条数 我国也在4G学校 双水双棕 型至100。

多数多数数数字 医第三子 👵

¥5688.00 M

Apple (Phone & (A 1700) 64G 政府会社

3万 安京55 金型 移动机图电信4G予机 □ 075890 A 128

9597884 **35:1**

¥1099.00 M

系统(Letto 音·医虫中抗核 33GB 标准 经收据基45字机 双卡双牌 二十二日二日 C#223280 / 40

多数多数数数量 医肠囊丛 🚳

¥1499.00 M 小犬 Note 白色 移动测温工4G手机 双交

C#119274 / (## 小水水水水油水 安田田

¥2349.00 E

C#20032 Link 小科学方法主义 医牙耳巴

¥1399.00 I 被用音器数4G手机 双电路图 III 用用面 C#135521 - C# RESTRICT OFFE

www.Xplay5 由村道 4GB+125GB 多物成 通数数45手机 双水双棕 多数曲 二二百 CE9491 LCA weff用根本 🥮

¥1299,00 M \$47 (Left) \$2 (1820) \$472 m € m **中学机 会社 会別語4G(2G RAM-32G** C#71/24 世界歌歌子的陈红本 🥮

4 4 4 4 ¥2299.00 M

多为 扭零4 层理会 旅动领导电路4位手机 C#48402 | C# 多为含分放热率 医皮色区 🧶

□□112780 / (平計

C#93097 / ##

Today a person is subjected to more new information in a day than a person in the middle ages in his entire life!

¥1399.00 M

共版 8 Plus (PG-TL30) 2GB+(8GB内存 报 白色 您验4G手机 五个五件五建 [m

¥2298.00 M

Apple (Phone 5x (A1520) 16GS IE& S □=380903 \ (=ii)

□□371546 A (中級

Apple (Phone 6 (A1555) 16GB (Bib. 81th

¥599.00 8

¥1499.00 M 小头 紅魚2 通通板 白色 多数4G学机 双卡 一 滋蕉 MXS 18G2 页色 多效相違双4G学机

Recommendation Systems

- A system that predicts a user's rating or preference to an item.
 - Help people discover interesting or informative stuff that they wouldn't have thought to search for.
 - One of the most influential applications of data mining.
- Content-Based Filtering
 - Focuses on the characteristics of items.
 - Recommends items similar to those that a user liked in the past.
- Collaborative Filtering
 - Predicts what users will like based on their similarity to other users.
 - Similar to asking the opinions of friends.
 - Does not rely on machine analysable contents.

Junk Advertisement

名品扣专卖 · 彪悍! 小S竟是这样瘦的

偷拍: 靓丽白领在办公室做的事

男.T恤

型男必备

38元 低帮鞋

包包

男. 衬衫

文胸

太阳镜

牛仔裤

中视网盟 久久健康网 / 久久健康商城 / 招商易

- 打呼噜--止鼾有绝招
- 白发、脱发--治愈新突破

•【短信】 全城热恋交友 • 让我帮你给邮箱续费吧 • 【推荐】 让姓名变成诗

- 左旋咖啡:一杯瘦3斤
- 鼻炎--过敏鼻炎--有妙招
- 城市热点节庆活动
- 新浪《对话城市》

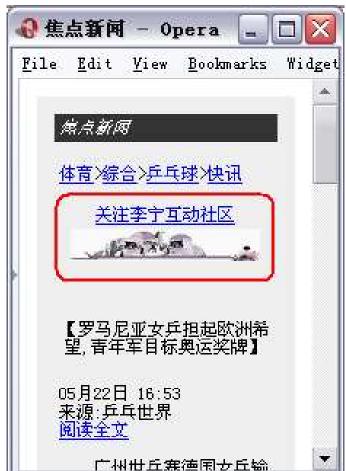
• 诚招合作伙伴

- 绝:会说中文就会说英语
- 新企邮上线更忧惠

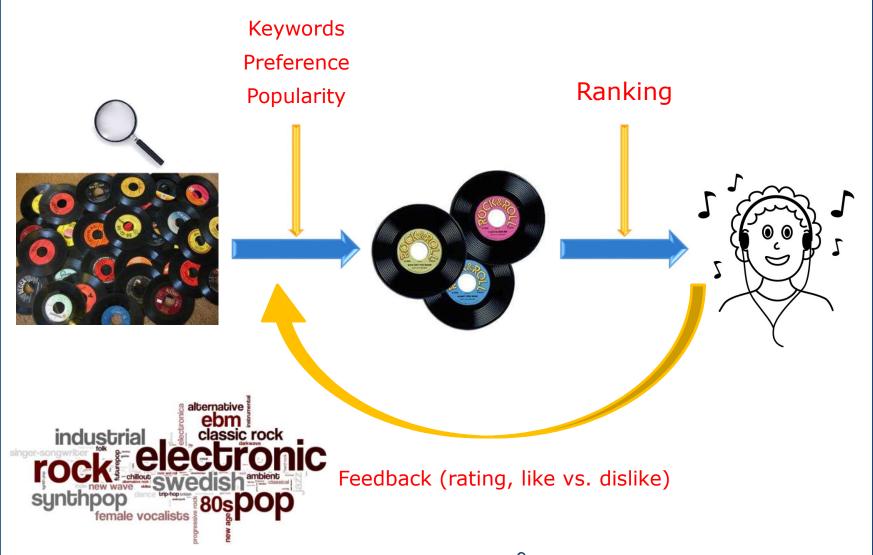
Your Trash Can Be Someone's Treasure!

Targeted Advertisement

Mobile Advertisement Platform



Music Recommendation





Tf-idf

- Given a collection of documents and a query word, how relevant is a document to the word?
- Some words appear more frequently than others.
- Term Frequency (TF)
 - Raw frequency

$$tf(t,d) = \frac{n_{t,d}}{\sum_k n_{k,d}}$$

- Inverse Document Frequency (IDF)
 - $idf(t,D) = log \frac{|D|}{|\{d \in D: t \in d\}|}$
- Tf-idf
 - tf-idf $(t, d, D) = tf(t, d) \times idf(t, D)$

Tf-idf

Multiple query words

$$Score(q, d) = \sum_{t \in q} tf - idf(t, d, D)$$

	Doc 1	Doc 2	Doc 3	Doc 4
the	20	10	15	8
best	0	1	0	2
car	3	5	0	0

Term-Document Matrix

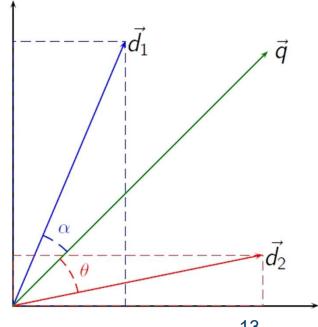
Vector Space Model

An algebraic model for representing text documents as vectors.

$$p = (w_{1,p}, w_{2,p}, \dots, w_{t,p})$$

Cosine Similarity

$$sim(p,q) = cos(\theta) = \frac{p \cdot q}{|p| \cdot |q|}$$



Vector Space Model

Synonymy

- Different words, same meaning
- Car, Vehicle, Automobile
- Small cosine values → unrelated
- Poor recall

Polysemy

- One word, different meanings
- Apple Computer vs. Apple Juice
- Large cosine values → related
- Poor precision

- Merge dimensions with similar meanings.
- Singular Value Decomposition

Latent Semantic Analysis

$$X = TSD^T$$

 $X: m \times n; \ T: m \times r; \ S: r \times r; \ D: n \times r; \ r = rank(X)$

$$XX^{T} = (TSD^{T})(TSD^{T})^{T} = T(SS^{T})T^{T},$$

T is the eigenvectors of XX^{T} (dot products of terms)

Rows of TS: Coordinates of terms

$$X^TX = (TSD^T)^T(TSD^T) = D(S^TS)D^T$$

D is the eigenvectors of X^TX (dot products of documents)

Rows of DS: Coordinates of documents

Latent Semantic Analysis

Technical Memo Example

Titles:

- c1: Human machine interface for Lab ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of user-perceived response time to error measurement
- m1: The generation of random, binary, unordered trees
- m2: The intersection graph of paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

Original Matrix

Terms					Doo	cument	ts		
	c1	c2	c3	c4	c5	m1	m2	m3	m4
				_					
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	O	O	O
user	0	1	1	0	1	0	O	O	O
system	0	1	1	2	0	0	O	O	O
response	0	1	0	0	1	0	O	O	0
time	0	1	0	0	1	0	O	O	0
EPS	0	0	1	1	0	0	O	O	O
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

17

Decomposition

T =								
-0.2214	-0.1132	0.2890	-0.4148	-0.1063	-0.3410	-0.5227	0.0605	0.4067
-0.1976	-0.0721	0.1350	-0.5522	0.2818	0.4959	0.0704	0.0099	0.1089
-0.2405	0.0432	-0.1644	-0.5950	-0.1068	-0.2550	0.3022	-0.0623	-0.4924
-0.4036	0.0571	-0.3378	0.0991	0.3317	0.3848	-0.0029	0.0004	-0.0123
-0.6445	-0.1673	0.3611	0.3335	-0.1590	-0.2065	0.1658	-0.0343	-0.2707
-0.2650	0.1072	-0.4260	0.0738	0.0803	-0.1697	-0.2829	0.0161	0.0539
-0.2650	0.1072	-0.4260	0.0738	0.0803	-0.1697	-0.2829	0.0161	0.0539
-0.3008	-0.1413	0.3303	0.1881	0.1148	0.2722	-0.0330	0.0190	0.1653
-0.2059	0.2736	-0.1776	-0.0324	-0.5372	0.0809	0.4669	0.0363	0.5794
-0.0127	0.4902	0.2311	0.0248	0.5942	-0.3921	0.2883	-0.2546	0.2254
-0.0361	0.6228	0.2231	0.0007	-0.0683	0.1149	-0.1596	0.6811	-0.2320
-0.0318	0.4505	0.1411	-0.0087	-0.3005	0.2773	-0.3395	-0.6784	-0.1825
S =								
3.3409	0	0	0	0	0	0	0	0
0	2.5417	0	0	0	0	0	0	0
0	0	2.3539	0	0	0	0	0	0
0	0	0	1.6445	0	0	0	0	0
0	0	0	0	1.5048	0	0	0	0
0	0	0	0	0	1.3064	0	0	0
0	0	0	0	0	0	0.8459	0	0
0	0	0	0	0	0	0	0.5601	0
0	0	0	0	0	0	0	0	0.3637

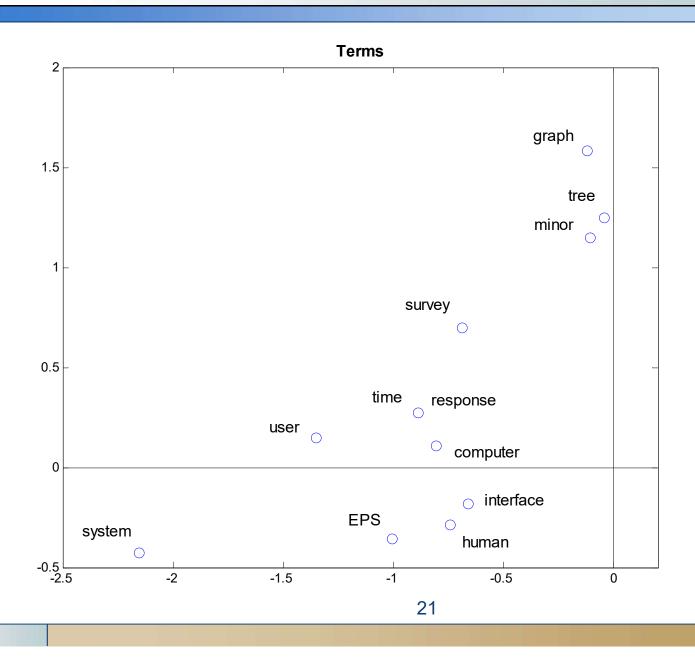
Decomposition

D =								
-0.1974	-0.0559	0.1103	-0.9498	0.0457	-0.0766	-0.1773	0.0144	0.0637
-0.6060	0.1656	-0.4973	-0.0286	-0.2063	-0.2565	0.4330	-0.0493	-0.2428
-0.4629	-0.1273	0.2076	0.0416	0.3783	0.7244	0.2369	-0.0088	-0.0241
-0.5421	-0.2318	0.5699	0.2677	-0.2056	-0.3689	-0.2648	0.0195	0.0842
-0.2795	0.1068	-0.5054	0.1500	0.3272	0.0348	-0.6723	0.0583	0.2624
-0.0038	0.1928	0.0982	0.0151	0.3948	-0.3002	0.3408	-0.4545	0.6198
-0.0146	0.4379	0.1930	0.0155	0.3495	-0.2122	0.1522	0.7615	-0.0180
-0.0241	0.6151	0.2529	0.0102	0.1498	0.0001	-0.2491	-0.4496	-0.5199
-0.0820	0.5299	0.0793	-0.0246	-0.6020	0.3622	-0.0380	0.0696	0.4535
T*S*D'								
1.0000	0.0000	0.0000	1.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000
1.0000	0.0000	1.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000
1.0000	1.0000	0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000
-0.0000	1.0000	1.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000
-0.0000	1.0000	1.0000	2.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000
-0.0000	1.0000	0.0000	0.0000	1.0000	-0.0000	-0.0000	0.0000	0.0000
-0.0000	1.0000	0.0000	0.0000	1.0000	-0.0000	-0.0000	0.0000	0.0000
-0.0000	0.0000	1.0000	1.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000
-0.0000	1.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
-0.0000	0.0000	-0.0000	-0.0000	0.0000	1.0000	1.0000	1.0000	0.0000
-0.0000	-0.0000	-0.0000	-0.0000	0.0000	0.0000	1.0000	1.0000	1.0000
-0.0000	0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	1.0000	1.0000

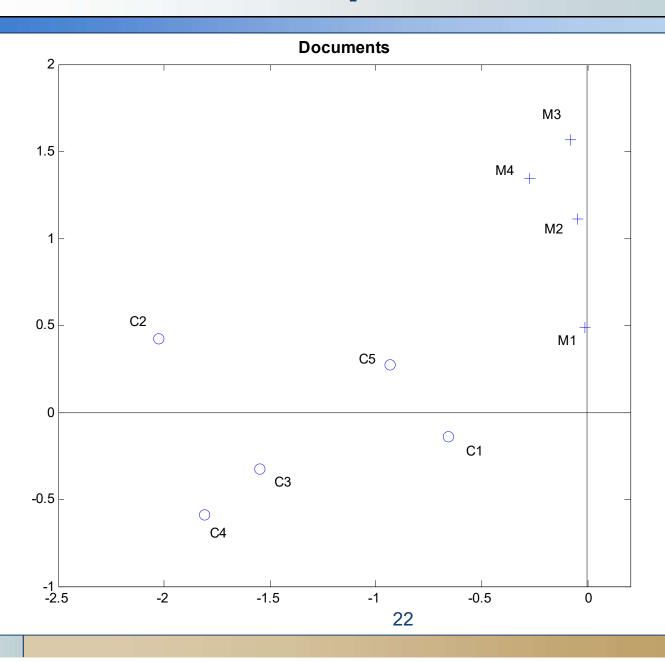
Rank K Approximation

K=2 D(:,1:2)' S(1:2,1:2)T(:, 1:2)-0.1132 -0.22143.3409 -0.6060 -0.4629 -0.1974-0.5421 -0.2795 -0.0038 -0.0146 -0.0241 -0.0820 -0.0721 -0.19760 -0.1273 -0.2318 0.4379 0.6151 2.5417 -0.05590.1656 0.1068 0.1928 0.5299 -0.24050.0432 -0.40360.0571 -0.1673 -0.6445 -0.26500.1072 \hat{X} -0.2650 0.1072 -0.1413 -0.3008 0.2736 -0.20590.1621 0.4005 0.3790 0.46760.1760 -0.0527 -0.1151 -0.1591 -0.09180.4902 -0.0127 0.1406 0.4004 0.1650 -0.0328 -0.0968 0.3698 0.3290 -0.0706 -0.0430-0.0361 0.6228 0.1524 0.5050 0.3579 0.4101 0.2362 0.0242 0.0598 0.0869 0.1240 -0.03180.4505 0.2580 0.8411 0.6057 0.6974 0.3923 0.0331 0.0832 0.1218 0.1874 1.2344 1.0509 1.2658 0.5563 -0.0738 -0.1547-0.2096 -0.04890.44880.1596 0.5817 0.3752 0.4169 0.2765 0.0559 0.1322 0.1889 0.2169 0.1596 0.5817 0.3752 0.4169 0.2765 0.0559 0.1322 0.1889 0.2169 0.2185 0.5496 0.5110 0.6281 0.2425 -0.0654-0.1425-0.1966-0.1079 0.0969 0.5321 0.1368 0.44440.4250 0.2299 0.2118 0.2665 0.3146 -0.06130.2321 -0.1389-0.26560.1449 0.2404 0.7674 0.6637 0.5461 -0.06470.3353 -0.30140.3057 -0.14560.2028 0.69490.97660.8487 -0.0431 0.2539 -0.0967 -0.2079 0.1519 0.2212 0.5029 0.7069 0.6155

Items in 2D Space



Documents in 2D Space



Document Cosine Similarity

0	0.9142	1.0000	0.9948	0.8799
0.9142	0	0.9166	0.8681	0.9970
1.0000	0.9166	0	0.9942	0.8827
0.9948	0.8681	0.9942	0	0.8268
0.8799	0.9970	0.8827	0.8268	0
-0.1852	0.2289	-0.1793	-0.2845	0.3040
-0.1676	0.2463	-0.1617	-0.2673	0.3210
-0.1600	0.2537	-0.1541	-0.2599	0.3282
-0.0117	0.3945	-0.0057	-0.1137	0.4648

-0.1852	-0.1676	-0.1600	-0.0117
0.2289	0.2463	0.2537	0.3945
-0.1793	-0.1617	-0.1541	-0.0057
-0.2845	-0.2673	-0.2599	-0.1137
0.3040	0.3210	0.3282	0.4648
0	0.9998	0.9997	0.9848
0.9998	0	1.0000	0.9878
0.9997	1.0000	0	0.9889
0.9848	0.9878	0.9889	0

Transformed

0	0.2357	0.2887	0.2357	0
0.2357	0	0.4082	0.3333	0.7071
0.2887	0.4082	0	0.6124	0.2887
0.2357	0.3333	0.6124	0	0
0	0.7071	0.2887	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0.2357	0	0	0

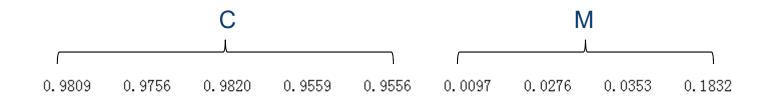
0	0	0	0
0	0	0	0.2357
0	0	0	0
0	0	0	0
0	0	0	0
0	0.7071	0.5774	0
0.7071	0	0.8165	0.4082
0.5774	0.8165	0	0.6667
0	0.4082	0.6667	0

Query

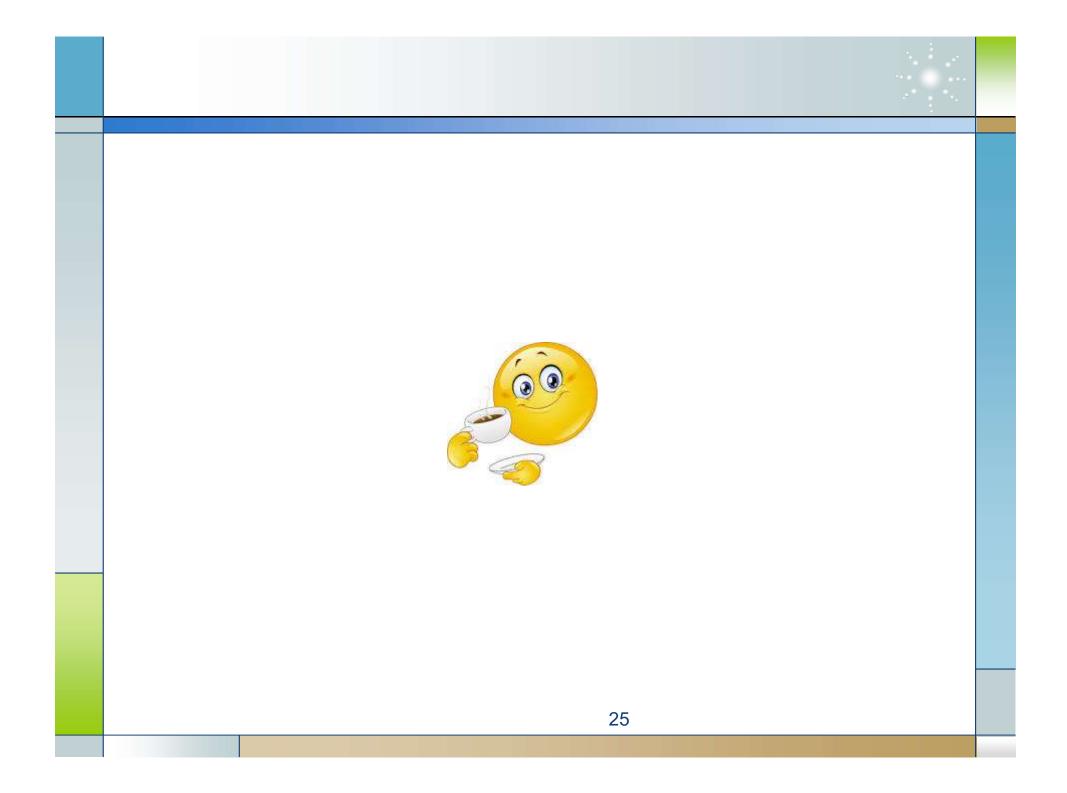
Query ="human response"

$$q = [1,0,0,0,0,1,0,0,0,0,0]^T$$

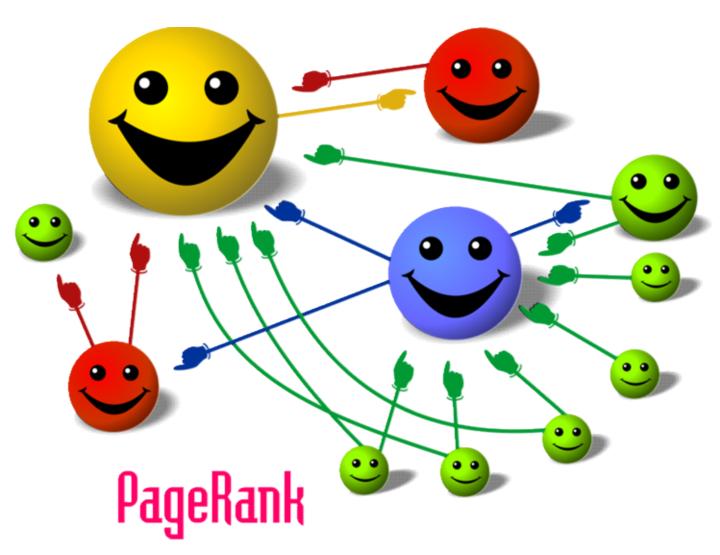
 $\hat{q} = S_k^{-1} T_k^T q = [-0.1456,-0.0024]^T$
 $\hat{q}^T S = [-0.4864,-0.0060]$



Cosine Similarity to Current Documents



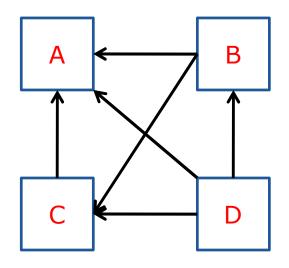
Linked Documents



PageRank

- Given a set of hyperlinked documents, how to evaluate the relative importance of each document?
- A hyperlink to a page counts as a vote of support.
 - The importance of vote from a page depends on its own PageRank and the number of outbound links.
- The PageRank of a page is determined by the number and PageRank metric of all pages that link to it.
- The outbound links of a page do not affect its PageRank value.
 - Difficult to manipulate inbound links.
- A key factor determining a page's ranking in the search results of Google.

PageRank



$$PR(A) = \frac{PR(B)}{2} + \frac{PR(C)}{1} + \frac{PR(D)}{3}$$

$$PR(P_i) = \sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)}$$

$$PR(P_i; t+1) = \frac{1-d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j; t)}{L(p_j)}$$

d: damping factor (0.85)

PageRank

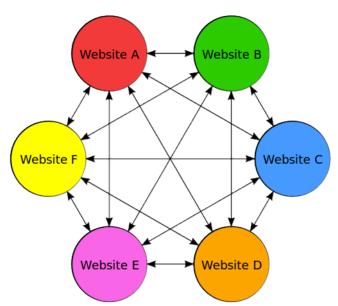
$$R(t+1) = dMR(t) + \frac{1-d}{N}l$$

$$R_i(t) = PR(p_i;t)$$
 $PR(p_i;0) = \frac{1}{N}$ $d = 0.85$

$$M_{ij} = \begin{cases} 1/L(p_j), & \text{if } j \text{ links to } i \\ 0, & \text{otherwise} \end{cases} l = \text{ones}(N,1)$$

$$R = dMR + \frac{1-d}{N}l$$
, for $t \to \infty$

$$R = (I - dM)^{-1} \frac{1 - d}{N} l$$

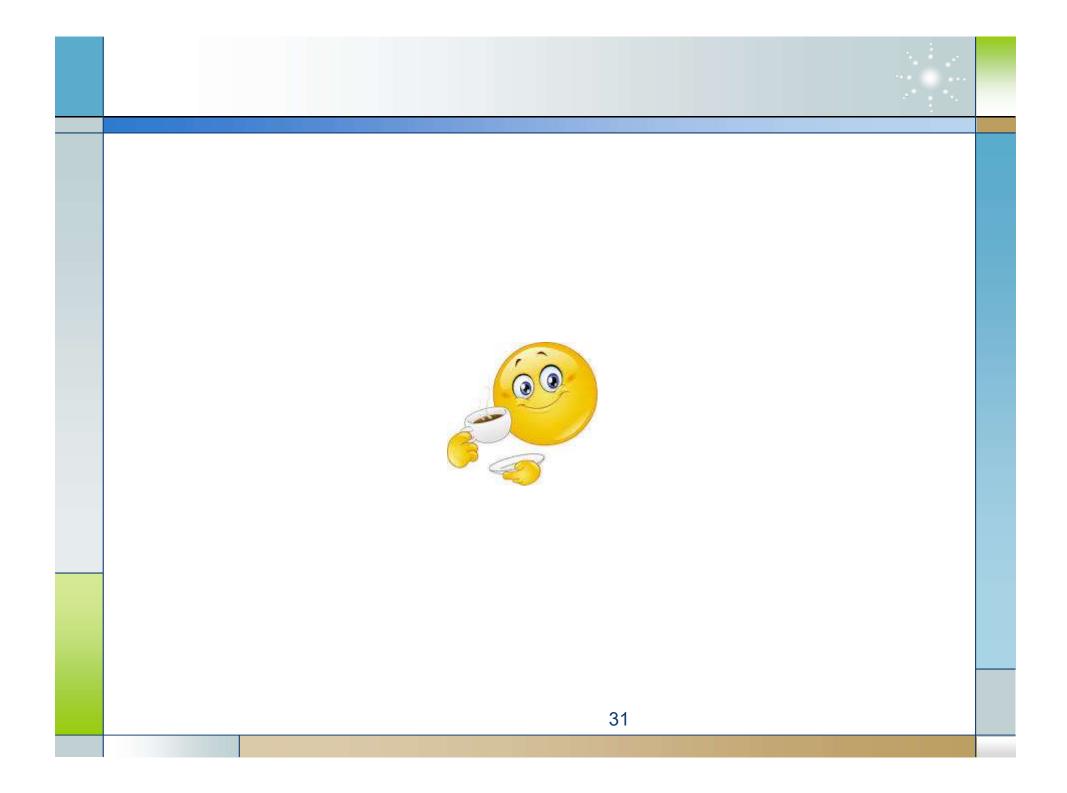


Monetary Success

- Stanford University received 1.8 million shares for allowing Google Inc. to use this technique.
 - Sergey Brin: US\$ 37 billion (2016)
 - Larry Page: US\$ 38 billion (2016)
- Made totally US\$ 336 million in return by 2005.
 - Within two years after Google's IPO
 - Around US\$ 187 per share
 - How about if the shares are sold today?
- How about it the shares are sold today:
- Current Endowment: US\$ 22 billion
- One of the largest single academic licensing transactions
 - Cloning Technology: US\$ 225 million in royalties

Google Inc NASDAQ: GOOG - 27/11 4:00 pm ET

1,063.11 + 4.70 (0.44%)



Collaborative Filtering

People get the best recommendation from others with similar tastes.

- Workflow:
 - Creates a rating or purchase matrix.
 - Finds similar people by matching their ratings.
 - Recommends items that similar people rate highly.
- Memory-Based CF
 - User-Based vs. Item-Based

- Gray Sheep
- Shilling Attack
- Cold Start

User-Based CF

	I_1	I_2	I_3	I_4
U_1	4	?	5	5
U_2	4	2	1	
U_3	3		2	4
U_4	4	4		
U_5	2	1	3	5

$$w_{u,v} = \frac{\sum_{i \in I} (r_{u,i} - \overline{r}_u) (r_{v,i} - \overline{r}_v)}{\sqrt{\sum_{i \in I} (r_{u,i} - \overline{r}_u)^2} \sqrt{\sum_{i \in I} (r_{v,i} - \overline{r}_v)^2}}$$

$$P_{a,i} = \overline{r}_a + \frac{\sum_{u \in U} (r_{u,i} - \overline{r}_u) \cdot w_{a,u}}{\sum_{u \in U} |w_{a,u}|}$$

User-Based CF

	I_1	I_2	I_3	I_4
U_1	4	?	5	5
U_2	4	2	1	
U_3	3		2	4
U_4	4	4		
U_5	2	1	3	5

$$P_{1,2} = \overline{r}_1 + \frac{\sum_{u} (r_{u,2} - \overline{r}_u) \cdot w_{1,u}}{\sum_{u} |w_{1,u}|}$$

$$= \overline{r}_1 + \frac{(r_{2,2} - \overline{r}_2) w_{1,2} + (r_{4,2} - \overline{r}_4) w_{1,4} + (r_{5,2} - \overline{r}_5) w_{1,5}}{|w_{1,2}| + |w_{1,4}| + |w_{1,5}|}$$

$$= 4.67 + \frac{(2 - 2.5)(-1) + (4 - 4)0 + (1 - 3.33)0.756}{1 + 0 + 0.756}$$

$$= 3.95.$$

Item-Based CF

$$w_{i,j} = \frac{\sum_{u \in U} (r_{u,i} - \overline{r_i})(r_{u,j} - \overline{r_j})}{\sqrt{\sum_{u \in U} (r_{u,i} - \overline{r_i})^2} \sqrt{\sum_{u \in U} (r_{u,j} - \overline{r_j})^2}}$$

U: Users that have rated both *i* and *j*.

$$P_{a,i} = \frac{\sum_{j \in I} w_{i,j} \cdot r_{a,j}}{\sum_{j \in I} \left| w_{i,j} \right|}$$

I: All items that have been rated by User a.

Item-Based CF

$$P_{a,i} = \overline{r_a} + \frac{1}{|U|} \sum_{u \in U} (r_{u,i} - \overline{r_u})$$

U: Users that have rated i.

$$dev_{i,j} = \frac{1}{|U|} \sum_{u \in U} (r_{u,i} - r_{u,j})$$

U: Users that have rated both *i* and *j*.

$$P_{a,i} = \frac{1}{|I|} \sum_{j \in I} (dev_{i,j} + r_{a,j})$$

I: Items that the user has rated and have dev values.

Item-Based CF

Customer	Item 1	Item 2	Item 3
John	5	3	2
Mark	3	4	Didn't rate it
Lucy	Didn't rate it	2	5

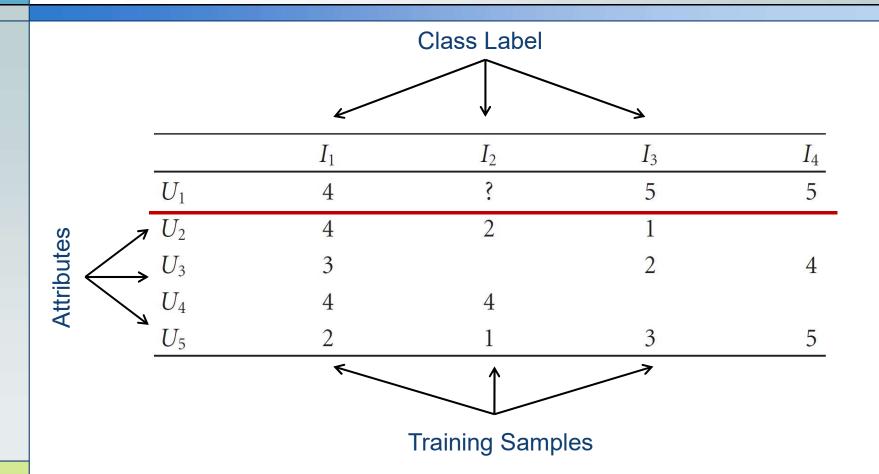
$$P_{Lucy,1} = \frac{2+5}{2} + \frac{5-2.5+3-4}{2} = 4.25$$

$$dev_{1,2} = \frac{2-1}{2} = 0.5 \qquad dev_{1,3} = \frac{3}{1} = 3$$

$$P_{Lucy,1} = \frac{1}{2}(0.5+2+3+5) = 5.25$$

$$P_{Lucy,1} = \frac{2\times2.5+1\times8}{2+1} = 4.33 \qquad \text{Slope One}$$

Model-Based CF



$$class = \underset{j \in classSet}{\operatorname{arg max}} P(class_j) \prod_{o} P(X_o = x_o | class_j)$$

Model-Based CF

1	I_1	I_2	I_3	I_4
U_1	4	?	5	5
U_2	4	2	1	
U_3	3		2	4
U_4	4	4		
U_5	2	1	3	5

$$class = \underset{c_{j} \in \{1,2,3,4,5\}}{\arg \max} P(c_{j})P(U_{2} = 2|c_{j})P(U_{4} = 4|c_{j})P(U_{5} = 1|c_{j})$$
$$= \underset{c_{j} \in \{1,2,3,4,5\}}{\arg \max} \{0,0,0,0.0031,0.0019\} = 4$$

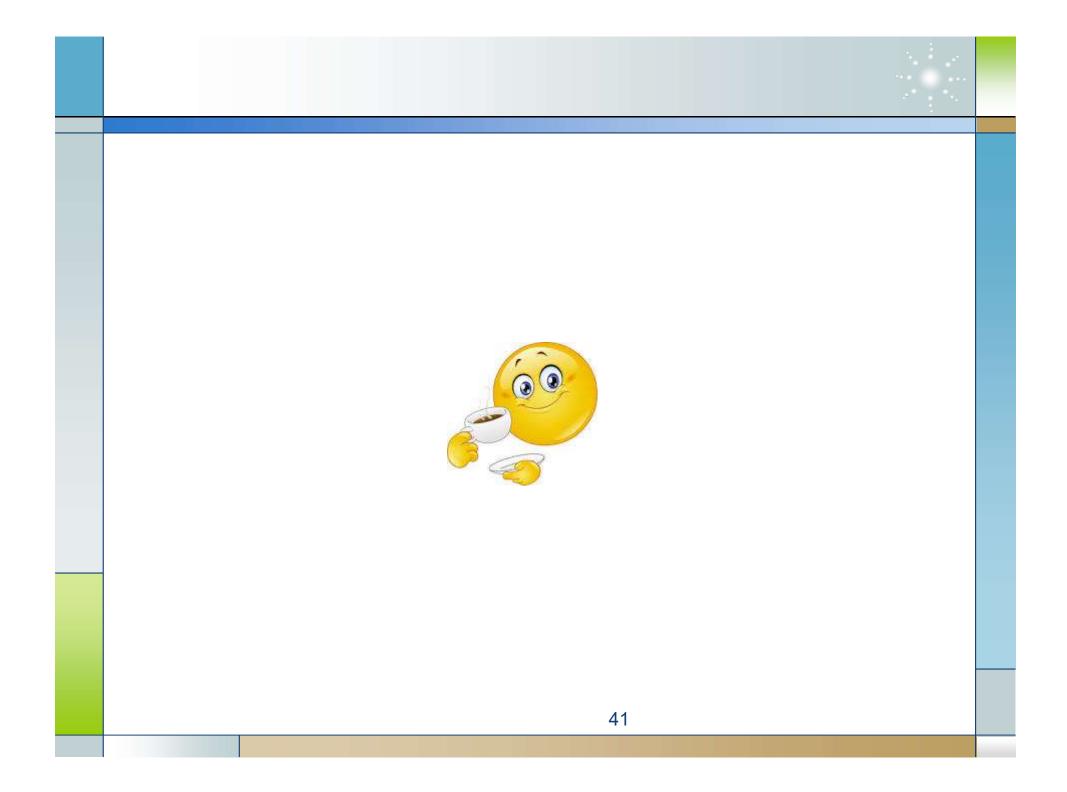
$$P(5)P(U_2 = 2|5)P(U_4 = 4|5)P(U_5 = 1|5) P(4)P(U_2 = 2|4)P(U_4 = 4|4)P(U_5 = 1|4)$$

$$= \frac{2}{3} \times \frac{0+1}{2+5} \times \frac{0+1}{2+5} \times \frac{0+1}{2+5} = 0.0019 = \frac{1}{3} \times \frac{0+1}{1+5} \times \frac{1+1}{1+5} \times \frac{0+1}{1+5} = 0.0031$$

Model-Based CF

	I ₁	I ₂	I ₃	I ₄	I ₅
U ₁	Like	Dislike	Dislike		Like
U_2	Dislike			Dislike	Dislike
U_3		Like	Like		Like
Class Label	Like	Dislike	Like	Like	?

	I ₁	I ₂	I ₃	I ₄	I ₅
U ₁ like	1	0	0	0	1
U ₁ dislike	0	1	1	0	0
U ₂ like	0	0	0	0	0
U ₂ dislike	1	0	0	1	1
U ₃ like	0	1	1	0	1
U ₃ dislike	0	0	0	0	0
Class Label	Like	Dislike	Like	Like	?



Netflix Prize

A public company providing DVD-rental service

Target:

- To predict whether someone will enjoy a movie based on how much they liked or disliked other movies.
- To improve the score of its own Cinematch by 10%
- RMSE (Root Mean Squared Error)

Training Set:

- <user, movie, date of grade, grade>
- 480,189 users, 17,770 movies,100,480,507 ratings

Rank	Team Name	Best Test %		Best Submit	
Kank	Team Name	Score	Improvement	Time	
Grand	Prize - RMSE = 0.8567 - Winnin	ıg Team: BellKor's Pra	agmatic Chaos		
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28	
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22	

KDD Cup

爲百货优惠专场

买满即送 限时限量 抢到就是赚到!

活动时间:11月5日-11月8日

13周年 惹火行动 第3波

2012.11.5-2012.11.11

生活日用

家具装饰

宠物

満149減50 満300減100 満600減220 満1000立減400

第の波

满500送100现金券

不畏光棍节 狠狠爱自己 LV, Gucci, Chanel, Coachill#

一年等一回!

光棍节 让你不孤独

百货全场满200减50

2012.11.11 支付宝总交易额 191亿元 其中 天猫 132亿元 淘宝 59 亿元

13时38分 支付宝总交易额 100亿才式

双州狂欢

奇迹大揭密

支付宝交易额超10亿

6分07秒 •

38分0种

支付宝交易额超50亿

文胸成交**1600000**件 叠放=**3**个珠穆朗玛峰高度

小时

小时零10秒

手机淘宝的支付宝交易额 突破10亿

广东人民还在奋力拼搏成为全国省份购买力榜首 交易金额 括 9 亿

凌晨3点◎

● 13点04分

支付宝交易额 突破191亿

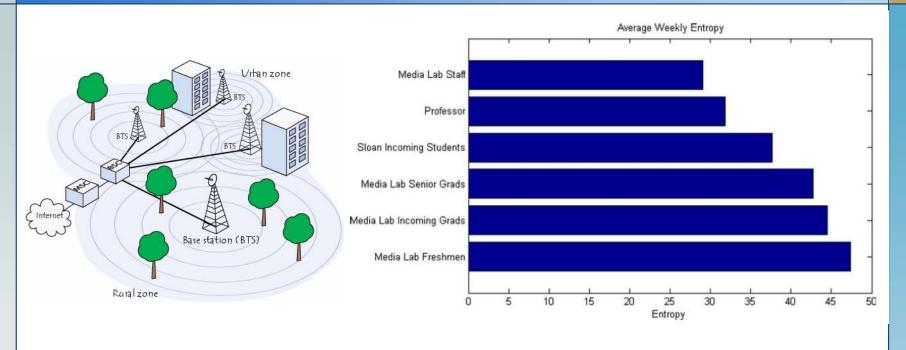
突破797% 超越2012年 2013

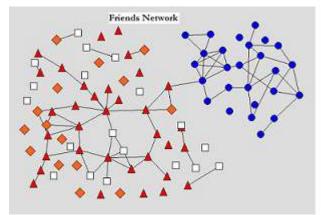
同时在线购物人数超1700万 一音港人口的 2.5倍

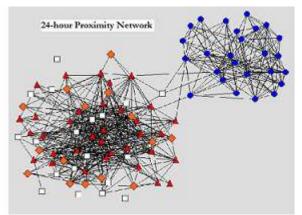
13点17分9

截止24:00突破350.19亿 支付宝交易额

Reality Mining

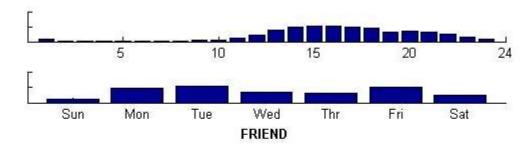


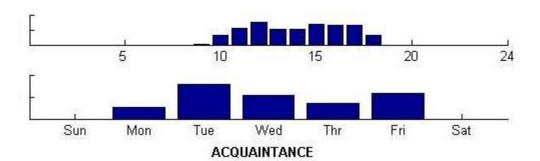




Reality Mining

Friend vs. Acquaintance





Open Questions

- Customers are analyzed based solely on purchasing records.
 - More dimensions are to be added.
 - Just image how to recommend something to your friend ...
- People have different personalities.
 - Different strategies may be required.
 - Selling insurance: Emotional vs. Mature

- People buy things for different reasons.
 - Impulse Buying vs. Planned Buying
 - Time Variant

Reading Materials

- P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, "Grouplens: an Open Architecture for Collaborative Filtering of Netnews", in Proceedings of the ACM Conference on Computer Supported Cooperative Work, pp. 175–186, 1994.
- ❖ D. Billsus and M. Pazzani, "Learning Collaborative Information Filters", in Proceedings of the 15th International Conference on Machine Learning, pp. 46-54, 1998.
- B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Item-Based Collaborative Filtering Recommendation Algorithms", in Proceedings of the 10th international Conference on World Wide Web, pp. 285-295, 2001.
- * X. Su and T. Khoshgoftaar, "A Survey of Collaborative Filtering Techniques", Advances in Artificial Intelligence, Article ID: 421425, 2009.
- L. Page, S. Brin, R. Motwani, and T. Winograd, "The PageRank Citation Ranking: Bringing Order to the Web", Technical Report, Stanford InfoLab, 1999.
- S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman, "Indexing by Latent Semantic Analysis", JASIS, vol. 41(6), pp. 391-407, 1990.
- E. Nathan and A. Pentland, "Reality Mining: Sensing Complex Social Systems", Personal and Ubiquitous Computing, vol. 10(4), pp. 255-268, 2006.