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Setting up development environment
Scaffolding project using XBlock cookiecutter template

Setting up and configuring development tools
o Dependency management (pip-tools)
o Tests (pytest and tox)
o  Static code analysis, code style checks (pycodestyle, pylint, isort)

XBlock development

XBlock Workbench integration
XBlock fields and field scopes
Views

Action handlers

Installing XBlock into devstack
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Dev environment setup




Development environment

Install python and pip
o  Debian/Ubuntu: sudo apt-get install python-pip
o  Mac: brew install python pip
o  Windows: http://bit.lv/20T7SZA
Install virtualenv
o Debian/Ubuntu/Mac: (sudo) pip install virtualenv
o  Windows: same link
Create virtualenv for the project
o All systems: virtualenv env_name

Activate virtualenv

o  Debian/Ubuntu/Mac: source venv/bin/activate
o  Windows: venov\Scripts\activate

Install cookiecutter
o All systems: pip install cookiecutter



http://bit.ly/2oT7SZA

Baking the project




Baking the project

e cookiecutter https://github.com/edx/cookiecutter-xblock.git

e Asks some questions:
o project_desc - short description of your XBlock
o package_name - the name of python package for your XBlock; Caveat: No dashes, no spaces
o repo_name - the name of git repository for your XBlock
o tag_name - computer-readable name of your XBlock
o class_name - name of python class for your XBlock

e (ireates <repo_name> directory in current working directory
o setup.py - script that installs your block into python environment
o Makefile - some helpful automation commands, i.e. make dev.run
o DocKkerfile - instructions on building Docker image for the XBlock
o <package_name> - main contents of your XBlock



Version control

Running cookiecutter does not create a git repository
Run the following commands to create one yourself:

cd <repo-name>
git init

This step is fine to skip if you don’t have git installed



Initial fixes

e Apply changes from
https://github.com/open-craft/quote-of-the-day-xblock/pull/2
e (Commit them



https://github.com/open-craft/quote-of-the-day-xblock/pull/2

Development tools



Dependency management

Two mechanisms to do dependency management:
o setup.py - manages installation when your package is “transient dependency”, i.e. when
installing an XBlock into workbench/edx-platform runtime
o requirements files - manages installation when your package is installed in development
environment and tries to achieve “repeatable installs”

Pip - python package manager

Pip-tools - extensions to pip to address some shortcomings:
o Hard to keep dependency packages up-to-date; almost impossible for transient
dependencies
o Hard to remove stale dependencies (except destroying virtualenv and installing fresh)
Pip-tools workflow:
o Declare dependencies in requirements/*.in files

o Compile dependencies list into requirements/*.txt files using pip-compile requirements/*.in
o Install dependencies using pip-sync requirements/*.txt



[nstallation
Apply changes from

https://github.com/open-craft/quote-of-the-dayv-xblock/pull/3
Make sure to use tabs for indentation in Makefile, not spaces!
Run make dev.update to install development tools



https://github.com/open-craft/quote-of-the-day-xblock/pull/3

Tests
Unit and integration tests

o Unit tests - class/module is tested in isolation, all dependencies are mocked/stubbed

o Integration tests - workflows are tested as a whole, real dependencies (i.e. actual DB)
Pytest - python test framework

o Documentation: https://docs.pytest.org/en/latest/

o Ataglance: name functions/classes/modules with test prefix, assert using assert x ==y
Tox - python test automation tools

o Runs tests in different environments, i.e. python 2.7 and python 3.5

o tox.ini can be used to provide configuration for many other tools (i.e. pylint, pycodestyle etc.)

The result should resemble
https://github.com/open-craft/quote-of-the-day-xblock/pull/4



https://docs.pytest.org/en/latest/
https://github.com/open-craft/quote-of-the-day-xblock/pull/4

Static code analysis and code style

These tools analyse your code without actually running it t l
Detect common errors and caveats OO S

Code style tools enforce coding standards:
o Tabs vs spaces (where applicable)
o Formatting
o Naming conventions
o And soon

Pycodestyle (former pep8) - checks if code conforms to PEPS8 guidelines
Pylint - static code analyzer; detects potential problems, also does code style
checks

isort - tiny tool to make sure import statements are sorted

The result should resemble
https://github.com/open-craft/quote-of-the-day-xblock/pull/5



https://github.com/open-craft/quote-of-the-day-xblock/pull/5

XBlock development



Goal: develop a
sample XBlock and
integrate 1t with
devstack



Sample XBlock

To illustrate different aspects of a XBlock, we will implement sample XBlock that
will pull random quotes from a 3rd-party quotes API

Features:

e Displays random quote each time it is shown on the page

e Allows user to “star” quotes - those will be remembered and always
displayed

e (if time allows) Allow course authors to configure API URL and parameters.

Reference implementation:
https://github.com/open-craft/quote-of-the-day-xblock



https://github.com/open-craft/quote-of-the-day-xblock

XBlock workbench

Simple XBlock runtime for development and testing your blocks
Slightly different from actual edx-platform runtime, but it won’t affect us
Dockerfile contains instructions on creating a workbench box

o ...but we’ll have to extend them a bit to have our XBlock actually available there

Useful for development and testing
o  Some of more sophisticated XBlocks use workbench to run integration tests

Scenarios - XML snippets specifying XBlocks and their settings
o  Our XBlock already contains two scenarios: the most basic one and one with multiple
instances of the block on the same page

Caveat: comes pre-bundled with a couple of simple XBlocks and scenarios -
don’t get confused



XBlock fields and field scopes

e [ields are attributes of your XBlock
o Different data types: String, Integer, DateTime etc.
o Also contain meta information: help text, description etc.
e Scopes specify what Kind of attribute the field is
o Docs on scopes
e Simply put there are two major groups of fields:

o Content and settings - provided by course authors, same for each student, exported with the
block
o Student data - provided by the student (i.e. answers), different between students



http://edx.readthedocs.io/projects/xblock-tutorial/en/latest/concepts/fields.html#field-scope

Views

Views are instructions to render your XBlock

Predefined views:

o student_view - how block is presented to student
o studio_view - confusing name: editor interface presented to course author
o author_view - how block is presented to author in Studio (optional, defaults to student_view)

Ok to define custom views, but runtime won’t know how to use them - so
those views should be called from one of the predefined views

Fragments - chunks of HTML+CSS+]S code to be rendered
o Used to be part of XBlock package, recently moved to dedicated python package



Action handlers

Most XBlocks need to react to student actions
o Mostif not all are AJAX calls

Action handlers are methods on the XBlock that handle answering those

calls
o  XBlock.handler - decorator for basic action handler (just marks a method as action handler)
o XBlock.json handler - automatically parses request body as JSON and formats return value
as JSON
XBlock frontend code will need to know where those handlers are:
o runtime.handlerUrl(*handler method name”) - returns URL of the handler

Side note: to support editing XBlock in Studio a handler must be present

o However, this was tedious to replicate in each XBlock - we (OpenCraft) created a couple of
xblock-utils helpers to automate it (but it implies using Django template engine)
o https://github.com/edx/xblock-utils/blob/master/xblockutiltemplates/studio editable.py



https://github.com/edx/xblock-utils/blob/master/xblockutils/studio_editable.py

Installing XBlock into devstack

e Development install - good for developing (faster feedback cycle)
Set up shared directory in Vagrantfile (i.e. /home/you/xblocks => /edx/xblocks)
SSH into devstack

sudo su edxapp

pip install -e /edx/xblocks/your _xblock

e Production install - good for deployment
o Add XBlock to requirements/custom.txt

o SSH into devstack
o  Run paver install _prereqs (make sure to have NO_PREREQ_INSTALL env var unset)

e Using in the course:
o Remember that tag_name parameter? This is XBlock’s tag (if you don’t remember it - look it
up in setup.py entry_points)
o In Studio: Course Settings => Advanced Settings => Advanced XBlocks; add XBlock tag to the
list and save
o  XBlock will appear in “Advanced” menu in course outline
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