Building an XBlock

\J
OpenCraft_.

Eugeny Kolpakov Tim Krones
eugeny@opencraft.com tim@opencraft.com

Copyright © 2017 OpenCraft GmbH
This text and images in this presentation are released under the Creative Commons Attribution-ShareAlike 3.0 licence, except for any logos.
Code samples are released under the AGPL v3 license unless otherwise noted.

Agenda

Setting up development environment
Scaffolding project using XBlock cookiecutter template

Setting up and configuring development tools
o Dependency management (pip-tools)
o Tests (pytest and tox)
o Static code analysis, code style checks (pycodestyle, pylint, isort)

XBlock development

XBlock Workbench integration
XBlock fields and field scopes
Views

Action handlers

Installing XBlock into devstack

0O O O O O

Agenda

Dev environment setup

Development environment

Install python and pip
o Debian/Ubuntu: sudo apt-get install python-pip
o Mac: brew install python pip
o Windows: http://bit.lv/20T7SZA
Install virtualenv
o Debian/Ubuntu/Mac: (sudo) pip install virtualenv
o Windows: same link
Create virtualenv for the project
o All systems: virtualenv env_name

Activate virtualenv

o Debian/Ubuntu/Mac: source venv/bin/activate
o Windows: venov\Scripts\activate

Install cookiecutter
o All systems: pip install cookiecutter

http://bit.ly/2oT7SZA

Baking the project

Baking the project

e cookiecutter https://github.com/edx/cookiecutter-xblock.git

e Asks some questions:
o project_desc - short description of your XBlock
o package_name - the name of python package for your XBlock; Caveat: No dashes, no spaces
o repo_name - the name of git repository for your XBlock
o tag_name - computer-readable name of your XBlock
o class_name - name of python class for your XBlock

e (ireates <repo_name> directory in current working directory
o setup.py - script that installs your block into python environment
o Makefile - some helpful automation commands, i.e. make dev.run
o DocKkerfile - instructions on building Docker image for the XBlock
o <package_name> - main contents of your XBlock

Version control

Running cookiecutter does not create a git repository
Run the following commands to create one yourself:

cd <repo-name>
git init

This step is fine to skip if you don’t have git installed

Initial fixes

e Apply changes from
https://github.com/open-craft/quote-of-the-day-xblock/pull/2
e (Commit them

https://github.com/open-craft/quote-of-the-day-xblock/pull/2

Development tools

Dependency management

Two mechanisms to do dependency management:
o setup.py - manages installation when your package is “transient dependency”, i.e. when
installing an XBlock into workbench/edx-platform runtime
o requirements files - manages installation when your package is installed in development
environment and tries to achieve “repeatable installs”

Pip - python package manager

Pip-tools - extensions to pip to address some shortcomings:
o Hard to keep dependency packages up-to-date; almost impossible for transient
dependencies
o Hard to remove stale dependencies (except destroying virtualenv and installing fresh)
Pip-tools workflow:
o Declare dependencies in requirements/*.in files

o Compile dependencies list into requirements/*.txt files using pip-compile requirements/*.in
o Install dependencies using pip-sync requirements/*.txt

[nstallation
Apply changes from

https://github.com/open-craft/quote-of-the-dayv-xblock/pull/3
Make sure to use tabs for indentation in Makefile, not spaces!
Run make dev.update to install development tools

https://github.com/open-craft/quote-of-the-day-xblock/pull/3

Tests
Unit and integration tests

o Unit tests - class/module is tested in isolation, all dependencies are mocked/stubbed

o Integration tests - workflows are tested as a whole, real dependencies (i.e. actual DB)
Pytest - python test framework

o Documentation: https://docs.pytest.org/en/latest/

o Ataglance: name functions/classes/modules with test prefix, assert using assert x ==y
Tox - python test automation tools

o Runs tests in different environments, i.e. python 2.7 and python 3.5

o tox.ini can be used to provide configuration for many other tools (i.e. pylint, pycodestyle etc.)

The result should resemble
https://github.com/open-craft/quote-of-the-day-xblock/pull/4

https://docs.pytest.org/en/latest/
https://github.com/open-craft/quote-of-the-day-xblock/pull/4

Static code analysis and code style

These tools analyse your code without actually running it t l
Detect common errors and caveats OO S

Code style tools enforce coding standards:
o Tabs vs spaces (where applicable)
o Formatting
o Naming conventions
o And soon

Pycodestyle (former pep8) - checks if code conforms to PEPS8 guidelines
Pylint - static code analyzer; detects potential problems, also does code style
checks

isort - tiny tool to make sure import statements are sorted

The result should resemble
https://github.com/open-craft/quote-of-the-day-xblock/pull/5

https://github.com/open-craft/quote-of-the-day-xblock/pull/5

XBlock development

Goal: develop a
sample XBlock and
integrate 1t with
devstack

Sample XBlock

To illustrate different aspects of a XBlock, we will implement sample XBlock that
will pull random quotes from a 3rd-party quotes API

Features:

e Displays random quote each time it is shown on the page

e Allows user to “star” quotes - those will be remembered and always
displayed

e (if time allows) Allow course authors to configure API URL and parameters.

Reference implementation:
https://github.com/open-craft/quote-of-the-day-xblock

https://github.com/open-craft/quote-of-the-day-xblock

XBlock workbench

Simple XBlock runtime for development and testing your blocks
Slightly different from actual edx-platform runtime, but it won’t affect us
Dockerfile contains instructions on creating a workbench box

o ...but we’ll have to extend them a bit to have our XBlock actually available there

Useful for development and testing
o Some of more sophisticated XBlocks use workbench to run integration tests

Scenarios - XML snippets specifying XBlocks and their settings
o Our XBlock already contains two scenarios: the most basic one and one with multiple
instances of the block on the same page

Caveat: comes pre-bundled with a couple of simple XBlocks and scenarios -
don’t get confused

XBlock fields and field scopes

e [ields are attributes of your XBlock
o Different data types: String, Integer, DateTime etc.
o Also contain meta information: help text, description etc.
e Scopes specify what Kind of attribute the field is
o Docs on scopes
e Simply put there are two major groups of fields:

o Content and settings - provided by course authors, same for each student, exported with the
block
o Student data - provided by the student (i.e. answers), different between students

http://edx.readthedocs.io/projects/xblock-tutorial/en/latest/concepts/fields.html#field-scope

Views

Views are instructions to render your XBlock

Predefined views:

o student_view - how block is presented to student
o studio_view - confusing name: editor interface presented to course author
o author_view - how block is presented to author in Studio (optional, defaults to student_view)

Ok to define custom views, but runtime won’t know how to use them - so
those views should be called from one of the predefined views

Fragments - chunks of HTML+CSS+]S code to be rendered
o Used to be part of XBlock package, recently moved to dedicated python package

Action handlers

Most XBlocks need to react to student actions
o Mostif not all are AJAX calls

Action handlers are methods on the XBlock that handle answering those

calls
o XBlock.handler - decorator for basic action handler (just marks a method as action handler)
o XBlock.json handler - automatically parses request body as JSON and formats return value
as JSON
XBlock frontend code will need to know where those handlers are:
o runtime.handlerUrl(*handler method name”) - returns URL of the handler

Side note: to support editing XBlock in Studio a handler must be present

o However, this was tedious to replicate in each XBlock - we (OpenCraft) created a couple of
xblock-utils helpers to automate it (but it implies using Django template engine)
o https://github.com/edx/xblock-utils/blob/master/xblockutiltemplates/studio editable.py

https://github.com/edx/xblock-utils/blob/master/xblockutils/studio_editable.py

Installing XBlock into devstack

e Development install - good for developing (faster feedback cycle)
Set up shared directory in Vagrantfile (i.e. /home/you/xblocks => /edx/xblocks)
SSH into devstack

sudo su edxapp

pip install -e /edx/xblocks/your _xblock

e Production install - good for deployment
o Add XBlock to requirements/custom.txt

o SSH into devstack
o Run paver install _prereqs (make sure to have NO_PREREQ_INSTALL env var unset)

e Using in the course:
o Remember that tag_name parameter? This is XBlock’s tag (if you don’t remember it - look it
up in setup.py entry_points)
o In Studio: Course Settings => Advanced Settings => Advanced XBlocks; add XBlock tag to the
list and save
o XBlock will appear in “Advanced” menu in course outline

O O O

@)

Thanks!

Eugeny Kolpakov

eugeny@opencraft.com

OpenCraft_.

v/

Tim Krones
tim@opencraft.com

