
Building an XBlock

Copyright © 2017 OpenCraft GmbH
This text and images in this presentation are released under the Creative Commons Attribution-ShareAlike 3.0 licence, except for any logos.

Code samples are released under the AGPL v3 license unless otherwise noted.

Eugeny Kolpakov
eugeny@opencraft.com

Tim Krones
tim@opencraft.com

Agenda

Agenda
● Setting up development environment
● Scaffolding project using XBlock cookiecutter template
● Setting up and configuring development tools

○ Dependency management (pip-tools)
○ Tests (pytest and tox)
○ Static code analysis, code style checks (pycodestyle, pylint, isort)

● XBlock development
○ XBlock Workbench integration
○ XBlock fields and field scopes
○ Views
○ Action handlers
○ Installing XBlock into devstack

Dev environment setup

Development environment
● Install python and pip

○ Debian/Ubuntu: sudo apt-get install python-pip
○ Mac: brew install python pip
○ Windows: http://bit.ly/2oT7SZA

● Install virtualenv
○ Debian/Ubuntu/Mac: (sudo) pip install virtualenv
○ Windows: same link

● Create virtualenv for the project
○ All systems: virtualenv env_name

● Activate virtualenv
○ Debian/Ubuntu/Mac: source venv/bin/activate
○ Windows: venv\Scripts\activate

● Install cookiecutter
○ All systems: pip install cookiecutter

http://bit.ly/2oT7SZA

Baking the project

Baking the project
● cookiecutter https://github.com/edx/cookiecutter-xblock.git

● Asks some questions:
○ project_desc - short description of your XBlock
○ package_name - the name of python package for your XBlock; Caveat: No dashes, no spaces
○ repo_name - the name of git repository for your XBlock
○ tag_name - computer-readable name of your XBlock
○ class_name - name of python class for your XBlock

● Creates <repo_name> directory in current working directory
○ setup.py - script that installs your block into python environment
○ Makefile - some helpful automation commands, i.e. make dev.run
○ Dockerfile - instructions on building Docker image for the XBlock
○ <package_name> - main contents of your XBlock

Version control
● Running cookiecutter does not create a git repository
● Run the following commands to create one yourself:

cd <repo-name>

git init

● This step is fine to skip if you don’t have git installed

Initial fixes
● Apply changes from

https://github.com/open-craft/quote-of-the-day-xblock/pull/2
● Commit them

https://github.com/open-craft/quote-of-the-day-xblock/pull/2

Development tools

Dependency management
● Two mechanisms to do dependency management:

○ setup.py - manages installation when your package is “transient dependency”, i.e. when
installing an XBlock into workbench/edx-platform runtime

○ requirements files - manages installation when your package is installed in development
environment and tries to achieve “repeatable installs”

● Pip - python package manager
● Pip-tools - extensions to pip to address some shortcomings:

○ Hard to keep dependency packages up-to-date; almost impossible for transient
dependencies

○ Hard to remove stale dependencies (except destroying virtualenv and installing fresh)

● Pip-tools workflow:
○ Declare dependencies in requirements/*.in files
○ Compile dependencies list into requirements/*.txt files using pip-compile requirements/*.in
○ Install dependencies using pip-sync requirements/*.txt

Installation
● Apply changes from

https://github.com/open-craft/quote-of-the-day-xblock/pull/3
● Make sure to use tabs for indentation in Makefile, not spaces!
● Run make dev.update to install development tools

https://github.com/open-craft/quote-of-the-day-xblock/pull/3

Tests
● Unit and integration tests

○ Unit tests - class/module is tested in isolation, all dependencies are mocked/stubbed
○ Integration tests - workflows are tested as a whole, real dependencies (i.e. actual DB)

● Pytest - python test framework
○ Documentation: https://docs.pytest.org/en/latest/
○ At a glance: name functions/classes/modules with test_ prefix, assert using assert x == y

● Tox - python test automation tools
○ Runs tests in different environments, i.e. python 2.7 and python 3.5
○ tox.ini can be used to provide configuration for many other tools (i.e. pylint, pycodestyle etc.)

● The result should resemble
https://github.com/open-craft/quote-of-the-day-xblock/pull/4

https://docs.pytest.org/en/latest/
https://github.com/open-craft/quote-of-the-day-xblock/pull/4

Static code analysis and code style
tools● These tools analyse your code without actually running it

● Detect common errors and caveats
● Code style tools enforce coding standards:

○ Tabs vs spaces (where applicable)
○ Formatting
○ Naming conventions
○ And so on

● Pycodestyle (former pep8) - checks if code conforms to PEP8 guidelines
● Pylint - static code analyzer; detects potential problems, also does code style

checks
● isort - tiny tool to make sure import statements are sorted
● The result should resemble

https://github.com/open-craft/quote-of-the-day-xblock/pull/5

https://github.com/open-craft/quote-of-the-day-xblock/pull/5

XBlock development

Goal: develop a
sample XBlock and

integrate it with
devstack

Sample XBlock
To illustrate different aspects of a XBlock, we will implement sample XBlock that
will pull random quotes from a 3rd-party quotes API

Features:

● Displays random quote each time it is shown on the page
● Allows user to “star” quotes - those will be remembered and always

displayed
● (if time allows) Allow course authors to configure API URL and parameters.

Reference implementation:
https://github.com/open-craft/quote-of-the-day-xblock

https://github.com/open-craft/quote-of-the-day-xblock

XBlock workbench
● Simple XBlock runtime for development and testing your blocks
● Slightly different from actual edx-platform runtime, but it won’t affect us
● Dockerfile contains instructions on creating a workbench box

○ … but we’ll have to extend them a bit to have our XBlock actually available there

● Useful for development and testing
○ Some of more sophisticated XBlocks use workbench to run integration tests

● Scenarios - XML snippets specifying XBlocks and their settings
○ Our XBlock already contains two scenarios: the most basic one and one with multiple

instances of the block on the same page

● Caveat: comes pre-bundled with a couple of simple XBlocks and scenarios -
don’t get confused

XBlock fields and field scopes
● Fields are attributes of your XBlock

○ Different data types: String, Integer, DateTime etc.
○ Also contain meta information: help text, description etc.

● Scopes specify what kind of attribute the field is
○ Docs on scopes

● Simply put there are two major groups of fields:
○ Content and settings - provided by course authors, same for each student, exported with the

block
○ Student data - provided by the student (i.e. answers), different between students

http://edx.readthedocs.io/projects/xblock-tutorial/en/latest/concepts/fields.html#field-scope

Views
● Views are instructions to render your XBlock
● Predefined views:

○ student_view - how block is presented to student
○ studio_view - confusing name: editor interface presented to course author
○ author_view - how block is presented to author in Studio (optional, defaults to student_view)

● Ok to define custom views, but runtime won’t know how to use them - so
those views should be called from one of the predefined views

● Fragments - chunks of HTML+CSS+JS code to be rendered
○ Used to be part of XBlock package, recently moved to dedicated python package

Action handlers
● Most XBlocks need to react to student actions

○ Most if not all are AJAX calls

● Action handlers are methods on the XBlock that handle answering those
calls

○ XBlock.handler - decorator for basic action handler (just marks a method as action handler)
○ XBlock.json_handler - automatically parses request body as JSON and formats return value

as JSON

● XBlock frontend code will need to know where those handlers are:
○ runtime.handlerUrl(“handler_method_name”) - returns URL of the handler

● Side note: to support editing XBlock in Studio a handler must be present
○ However, this was tedious to replicate in each XBlock - we (OpenCraft) created a couple of

xblock-utils helpers to automate it (but it implies using Django template engine)
○ https://github.com/edx/xblock-utils/blob/master/xblockutiltemplates/studio_editable.py

https://github.com/edx/xblock-utils/blob/master/xblockutils/studio_editable.py

Installing XBlock into devstack
● Development install - good for developing (faster feedback cycle)

○ Set up shared directory in Vagrantfile (i.e. /home/you/xblocks => /edx/xblocks)
○ SSH into devstack
○ sudo su edxapp
○ pip install -e /edx/xblocks/your_xblock

● Production install - good for deployment
○ Add XBlock to requirements/custom.txt
○ SSH into devstack
○ Run paver install_prereqs (make sure to have NO_PREREQ_INSTALL env var unset)

● Using in the course:
○ Remember that tag_name parameter? This is XBlock’s tag (if you don’t remember it - look it

up in setup.py entry_points)
○ In Studio: Course Settings => Advanced Settings => Advanced XBlocks; add XBlock tag to the

list and save
○ XBlock will appear in “Advanced” menu in course outline

Thanks!

Eugeny Kolpakov
eugeny@opencraft.com

Tim Krones
tim@opencraft.com

