
The Wild West of High 
Availability in Open edX



Copyright © 2017 OpenCraft GmbH
This text and images in this presentation are released under the Creative Commons Attribution-ShareAlike 3.0 licence, except for any logos.

Code samples are released under the AGPL v3 license unless otherwise noted.

Brandon DeRosier
brandon@opencraft.com

Feanil Patel
feanil@edx.org



Agenda

Managing 
Infrastructure

Fork 
Management

Choosing Your 
Stack

Examples



Choosing your stack



Outline
● Infrastructure Choices

○ On Prem

○ AWS

○ OpenStack

○ Other Cloud Providers



On Premise
● Most Control

● Most expertise required

○ You'll be setting up a lot of it yourself

● You might need this based on your organization or local law requirements



Amazon Web Services
● Most managed services Available

● Used by edX Inc.

○ Our tools can become your tools

○ Con: Our tools are not always built for everyone



OpenStack
● Pro: Used by OpenCraft

○ OpenCraft adding support into existing edX tools where possible

● Con: no two openstack clouds are the same



Other Infra Providers
● Usually provide the basic abstractions you need

○ Compute

○ Load Balancers

○ Storage

○ RDBMS as a Services

● Biggest differentiators are usually price, reliability, and tooling availability



Example:
The bare minimum



❖ Not Stateless
❖ Not Scalable
❖ Not Highly Available

Sandbox



❖ Not Stateless
❖ Not Scalable… kind of
❖ Not Highly Available

❖ Can fully monitor 
services separately

❖ But, more single 
points of failure

Sandbox?
… sort of



❖ Not Stateless
❖ Not Scalable
❖ Not Highly Available

❖ Can fully monitor 
services separately

❖ But, more single 
points of failure

❖ No single points of 
failure

Definitely not
a sandbox!



➔ Less infrastructure to 
take care of

➔ Easy to scale

➔ More expensive than 
the bare infrastructure

➔ Check for 
education/user privacy 
law compliance

If desired, use 
managed databases





Example:
A large stack



Where we left off:



Separate forums...



Separate workers...



Analytics!



€commer¢e $$$



How do we make this 
smaller?

Well...



How do we make this 
smaller?

Maybe try the managed 
services again…?

Well...



External RabbitMQ...



External MongoDB...



That didn’t do very 
much….

Hmm...



That didn’t do very 
much….

But maybe we can 
replace all these load 
balancers…?

Hmm...



Service Discovery!



Service Discovery!

Very little benefit for a small
deployment, though...



Managing 
Infrastructure



Tools
● For things that change slowly

○ Ansible Infrastructure Modules

○ Cloudformation

○ Terraform



Tools
● For things that change more often

○ Configuration Repo

○ Asgard

○ GoCD





























Fork management tips



Fork management tips
The Four Horsemen Of

Technical Debt



1. KEEP YOUR DIFFS SMALL
● Tiny stuff adds up quickly
● Investing upfront pays off here - deal with it before it’s a problem
● Named release rebasing will start costing you a fortune otherwise
● Huge diffs are simply a nightmare



2. Upstream Everything
● Distribute the burden of Maintenance

○ Someone broke your feature’s tests?
○ They have to fix it before merging

● Build better software
○ Forces your architecture and code to be high quality

● Be a good citizen



3. Don’t edit Ansible output
● lms.env.json
● lms.auth.json
● cms.env.json
● cms.auth.json

● Do it like edX: Use configuration management
● These files may not always be the config destination
● edX configuration keeps up as the schema changes
● Things are actually much simpler this way



3. Don’t edit Ansible output
● lms.env.json
● lms.auth.json
● cms.env.json
● cms.auth.json

● Do it like edX: Use configuration management
● These files may not always be the config destination
● edX configuration keeps up as the schema changes
● Things are actually much simpler this way

3.5. Also, don’t edit settings code directly
● lms/envs/common.py
● cms/envs/aws.py
● ...etc.



4. Avoid template overrides in themes
● Sometimes you have to do it
● ...but try to make style modifications as much as possible
● Context changes in views will have you fixing your templates every release



Brandon DeRosier
brandon@opencraft.com

Feanil Patel
feanil@edx.org

Questions?



Not part of presentation: Cloud 
Agnostic Stack Choices

● The OpenEdx platform uses many off the shelf tools.

● You may want to use SaaS providers

● Rabbit as a service

● Mongo as a service

● Elasticsearch as a service



Infrastructure as Code Options
The next 3 pages talk about different tools for managing infrastructure as code.



Ansible Modules
● Support

○ Number of Modules to manage ec2 resources is growing

○ Interfaces between modules not consistent

○ Modules not available for most other clouds

● Imperative nature

○ Great for orchestration

○ Bad for predicting what’s going to happen

● If you’re already using ansible, you don’t have to learn a new tool



Cloudformation
● Declarative Syntax

○ Declare your resources in a file

○ Provide it to Cloudformation

○ Cloudformation ensures that all declared resources exist 

● Con: Only works with AWS

● Con: Works best in one file

○ Can do multi files but is complicated

● Pro: Supports Planning for making changes

○ You update your template and it can show you what it will do to your resources



Terraform
● Similar in capability to current state of cloudformation

○ Declarative

○ Planning Capability

● Differences

○ Can easily span multiple files

○ Can work with multiple cloud providers

■ Provider plugin system is very flexible



GoCD: https://gocd.io
● Gomatic - DSL to make GoCD pipelines

○ https://github.com/edx/edx-gomatic/

○ https://github.com/edx/gomatic/tree/edx

● Tubular - Convenience scripts and utilities

○ Can be used independently of GoCD

○ https://github.com/edx/tubular

https://gocd.io
https://github.com/edx/edx-gomatic/
https://github.com/edx/gomatic/tree/edx
https://github.com/edx/tubular


Configuration Repo
● Ansible playbooks for building App specific machines

● Optimized for separate machines per application

○ Though roles can be combined flexibly

● https://github.com/edx/configuration

https://github.com/edx/configuration


Asgard
● Used to managed deployments at edX

● Allows for Imaged based blue/green deployments

● Con: No longer supported by Netflix

● https://github.com/edx/asgard

https://github.com/edx/asgard

