
Let’s talk gossipLet’s talk gossip



am I qualified?



Rad(oslaw) Gruchalski

distributed computing 
tools 
programming languages



what is gossip



m2m communication protocol

epidemic, biased



dissemination protocols

events 
background data



anti-entropy protocols

repair replicated data



aggregate protocols

calculate system-wide values



how does it work?



seeds and members

different role, no structural difference, membership



electing seeds

DNS, configuration management



UDP, usually

casual ordering 
latency acceptable 



gossip communication

digest, digestAck(, digestAckAck) 
membership 
gossip round



seed, 192.168.0.100



seed, 192.168.0.100

Member A, 192.168.0.101



seed, 192.168.0.100

Member A, 192.168.0.101
both members know about each other, 
membership list has 2 entries for each of them



seed, 192.168.0.100

Member A, 192.168.0.101
Member A only knows about itself and the seed. 
The seed knows about Member A and B.

Member B, 192.168.0.102



seed, 192.168.0.100

Member A, 192.168.0.101
Member A only knows about itself and the seed. 
The seed knows about Member A and B. 
Member B knows about the seed, itself and Member A.

Member B, 192.168.0.102



seed, 192.168.0.100

Member A, 192.168.0.101
Everybody knows about everybody. 
But what if the seed blows up?

Member B, 192.168.0.102



seed, gone

Member A, 192.168.0.101
The members already know about each other. 
They are unaffected and can still communicate. 

No new members can join!

Member B, 192.168.0.102



security

no formal specification 
implementation ideas in an example



real-world products

• Apache Cassandra 
• Basho Riak 
• Netflix Dynomite



gossiperl

gossip daemon written in Erlang 
content indenpendent 
Apache Thrift



reasoning

gossip a service for the host, not a library



features

language agnostic, multiple overlays, double 
security layer, managed via REST API, multicast 
overlays, IPv6 support, simple pub/sub,  
multi-datacenter support *



*pub/sub demo*



clients

Erlang, Java, Scala with Akka, Ruby, JavaScript 
with Chrome support, C#, more to come



use cases

service discovery 
distributed state



little demo

gossiperl on RPi with multicast



the code

• https://github.com/gossiperl/gossiperl 
• https://gossiperl/gossiperl 
• http://gossiperl.com 

https://github.com/gossiperl/gossiperl
https://gossiperl/gossiperl
http://gossiperl.com


questions?



mentioned products

• Apache Cassandra: https://github.com/apache/cassandra 
• Basho Riak: https://github.com/basho/riak_core 
• Netflix Dynomite: https://github.com/netflix/dynomite

https://github.com/apache/cassandra
https://github.com/basho/riak_core
https://github.com/netflix/dynomite


(some) relevant resources
• Exploiting Gossip for Self-Management in 

Scalable Event Notification Systems: 
Ken Birman, Anne-Marie Kermarrec, Krzystof Ostrowski, Marin Bertier, 
Danny Dolev, Robbert Van Renesse; Cornell University, Ithaca; INRIA/
IRISA and IRISA/INSA, Rennes; Hebrew University, Jerusalem 

• A Gossip-Style Failure Detection Service:  
Robbert van Renesse, Yaron Minsky, and Mark Hayden*; Dept. of 
Computer Science, Cornell University; 4118 Upson Hall, Ithaca, NY 14853 

• A Middleware for Gossip Protocols: 
Michael Chow, Robbert van Renesse; Cornell University 

• Astrolabe: A Robust and Scalable Technology 
For Distributed System Monitoring, Management, 
and Data Mining: 
Robert van Renesse, Kenneth P. Birman, and Werner Vogels; Department 
of Computer Science; Cornell University, Ithaca, NY 14853

http://www.cs.huji.ac.il/~dolev/pubs/DEPSA-07-v5.pdf
https://www.cs.cornell.edu/home/rvr/papers/GossipFD.pdf
http://www.usenix.org/event/iptps10/tech/full_papers/Chow.pdf
https://www.cs.cornell.edu/home/rvr/papers/astrolabe.pdf

