
Property-based testing for
Web Services

The PROWESS consortium

EU PROWESS project

!
Aims to improve testing, particularly for web services,
through uptake and use of property-based testing (PBT).
!
The QuickCheck tool for PBT can be used to test web
services as well as systems built in Erlang, Java, C, …
!
… but system models and properties are written in Erlang.

Consortium

University of Sheffield - UK
University of Kent - UK
Chalmers University of Technology - Sweden
Universidad Politécnica de Madrid - Spain
University of Coruna - Spain
Quviq AB - Sweden
Erlang Solutions Ltd - UK
Interoud Innovation S.L. - Spain
SP Technical Research Institute of Sweden - Sweden

Erlang ecosystem

Erlang

Megaload

QuickCheck

Wrangler

Web Services

C

Erlang

Java

fault_check
WSToolkit

JSONgen

James
ranking !

complexity

smother

pulse

Mu2

Overview -
Big picture

test results

implementationtests

test results

implementationtests

QuickCheck

QuickCheck – random
test generation

test results

properties

implementationtests

QuickCheck

test results

properties

implementationtests

ReadSpec

QuickCheck

ReadSpec – helps you
understand properties
and models as natural
language.

test results

properties

implementationtests

ReadSpec

QuickCheck

GoodExamples

GoodExamples – helps
you understand properties by
example.

test results

properties

specification

implementationtests

existing tests

QuickCheck

test results

properties

specification

implementationtests

existing tests

QuickCheck

Synapse
Synapse – visualise
systems as FSMs.

test results

properties

specification

implementationtests

existing tests

QuickCheck

Synapse
James

James – infer models
for web services.

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen

JSONgen – makes
QC generators from
JSON data.

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen
WSDL dsl

WSDL – how to
express WSDL types
as QC generators.

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen
WSDLdsl

WStoolkit

WStoolkit – generates
an Erlang interface to
underlying web service.

test results

properties

specification

implementationtests

existing tests

QuickCheck

UI testing: Webdriver

Erlang implementation
of Webdriver.

test results

properties

implementationtests

QuickCheck

PULSE

test results

properties

implementationtests

QuickCheck

PULSE – additional
support for concurrency
testing.

test results

properties

implementationtests

QuickCheck

FaultCheck

FaultCheck – combines
fault-injection and PBT.

test results

properties

implementationtests

QuickCheck

Mu2

Mu2 – supports mutation
Testing.

test results

properties

implementationtests

QuickCheck

Mu2
Smother

Smother – measures
test coverage.

test results

properties

implementationtests

QuickCheck

ComplexityCheck

ComplexityCheck – identify
scalability issues in code.

test results

properties

implementationtests

QuickCheck

test results

properties

implementationtests

QuickCheck

implementation

test results

properties

implementationtests

QuickCheck

implementation
implementation

test results

properties

implementationtests

QuickCheck

implementation

Ranker

implementation

Ranker – comparing
different implementations.

test results

propertiesspecification

implementationtests

QuickCheckMegaload

Megaload – cloud-based
testing.

Case study - VoDKATV

Internet-Protocol TV (IPTV) / “Over the top” content (OTT)
Cloud Middleware Architecture.
!
Interactive services for IPTV/OTT environments, eg, hotels.
!
Runs on a set-top-box (STB) , connected to a TV + remote.
!
Component-based; on client side: STB, tablet, PC, phone, …

Set-top box

The STB includes
!
● a portable middleware layer implemented in Erlang,
● a UI layer developed in HTML, JavaScript and CSS

(Webkit browser);
● communication between the UI layer and the

middleware via a WebSocket-based protocol.

Web services for interactions

Some APIs respond in XML, others in JSON
!
Different kinds of authentication for access to the APIs:
● none required,
● authentication with cookies
● authentication with tokens, e.g. expiration time, max #

logins per user, …

The toolset

Property-based testing

At centre of our ‘ego-system’ is property-based testing with
QuickCheck.
!
Controlled random test generation from a QuickCheck
specification – which describes properties of interest.
!
QuickCheck provides combinators to define properties,
observe the distribution of test data, and define test data
generators. Contact: Quviq.

test results

properties

specification

implementationtests

WStoolkit

Combine WStoolkit with

^

test results

properties

specification

implementationtests

specification

WStoolkit

properties

Wrangler
… Wrangler to support…

Evolution in PBT with WStoolkit

Using Wrangler, Kent’s tool for refactoring Erlang systems.
!
Infer changes between WSDL descriptions …
!
… from these generate refactoring scripts …
!
… which automate model evolution as much as possible.
!
Contact: Kent

test results

propertiesspecification

implementationtests

QuickCheckMegaload

Megaload – Load testing VoDKA

Cloud-based load testing of systems.
!
Megaload: loads, monitors and presents results.
!
Generating load profiles …
 … and shrinking to minimal (counter-) examples in the
most load-effective way.
!
Contact: ESL

test results

properties

specification

implementationtests

existing tests

QuickCheck

Synapse
Synapse – visualise
systems as FSMs.

test results

properties

specification

implementationtests

existing tests

QuickCheck

Synapse
James

James – infer models
for web services.

Inference and PBT

How to develop properties for a system. Two tools:
!
● James – infer models for web services from unit tests

written in Java, using JUnit.
!
● Synapse - infer FSMs from systems, and visualise the

difference between models / systems.

James
!
New JUnit tests from existing tests, by model inference.
!
Track a combination of data- / control-flow information …
 … extracted from running the test suite on the SUT
 … run the tests on the Java VM
 … track information using C++ agent and JVM-TI API
!
Contact: Kent

James
!
Track and send to an Erlang server:
● the execution order of the calls in the JUnit tests, and
● how objects are reused.
!
Server generates a model … visualised through GraphViz.
!
Translate model into QuickCheck … then generate new
tests, that can be added to the original test suite.

Synapse

An Erlang interface to grammar inference tools.
!
Synapse interfaces to the StateChum tool for passive and
active inference of FSM models, as well as:
!
● active and passive learning,
● model differencing, and
● FSM and difference visualisation. Contact: Sheffield

Understanding properties and models

Synapse tool allows users to visualise differences between
variants of models / systems as FSMs.
!
ReadSpec to render QuickCheck models in (semi-)natural
language.
!
GoodExamples tool to make the meaning of a property
more concrete by viewing it as a set of unit tests.

test results

properties

implementationtests

ReadSpec

QuickCheck

ReadSpec – helps you
understand properties
and models as natural
language.

test results

properties

implementationtests

ReadSpec

QuickCheck

GoodExamples

GoodExamples – helps
you understand properties by
example.

ReadSpec

ReadSpec uses QuickCheck to automatically generate
semi-natural language descriptions of QuickCheck
properties and QuickCheck state machine models.
!
Example: simple_eqc.erl contains a property to test the
delete operation of the lists module:
!
Contact: UDC

!
?FORALL({I,L}, {int(), list(int())}, !

not lists:member(I,lists:delete(I,
L)))!

!
FEATURE: Simple QuickCheck properties
SCENARIO: Deleting an integer from a list should result in a list that
does not contain that integer.
GIVEN I have the integer 19
AND I have the list [7, -24, -18, 17, -8, -9, -8]
THEN lists:member(19, lists:delete(19, [7,-24,-18,17,-8,-9,-8]))
IS FALSE.

GoodExamples tool

It can be hard to tell what a property tests…
 properties - powerful and general;
 unit tests - easy to understand but specific.
!
GoodExamples - makes the meaning of a property more
concrete by viewing it as a set of unit tests.
!
Contact: Chalmers

Support for Web Services

Tools to support data generation for web services models:
!
JSONgen is a library for generating QuickCheck generators
from descriptions of JSON data using JSON schemas, and
for automatically exploring and testing JSON web services.
!
wsdl_dsl is a QuickCheck library that implements a domain
specific language which re-uses the WSDL syntax to allow
users to express WSDL types as QuickCheck generators.

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen
WSDL dsl

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen
WSDLdsl

WStoolkit

JSONgen – convert and explore

Convert JSON schema to mochijson2 Erlang term. !
Convert JSON schema into a QuickCheck generator. !
Convert JSON data value in mochijson2 format to text !
Explore and test a JSON based web service using the web
links / data types embedded in the JSON schema args. !
Can tailor the actions with a QuickCheck state machine.

test results

properties

implementationtests

QuickCheck

Scaling PBT

Model using components
instead of a single model. !
Library for mocking the
behaviour of callout
components. !
Clustered system resulting
from the component models.

MoreBugs

QuickCheck “by hand”: run QC, fix bug, repeat …
!
With MoreBugs, can find “all” bugs at once, through
● find bug,
● generalise
● modify generator to avoid it
and repeat …
!
Contact: Chalmers

Support for graphical editing

Contact: Quviq

test results

properties

implementationtests

QuickCheck

Mu2

Mu2 – supports mutation
Testing.

How good is your test suite?

test results

properties

implementationtests

QuickCheck

Mu2
Smother

Smother – measures
test coverage.

Validating quality of test suites

Smother used to assess
the MC/DC coverage of a
test suite.
!
Mu2 supports mutation
testing – if I make small
changes to the code, can
I spot these ‘errors’ with
my test suite?

Add screen-shot of
smother here.

Contact: Sheffield

test results

properties

implementationtests

QuickCheck

FaultCheck

Testing non-functional requirements

FaultCheck …
!
… a fault-injection tool for C
code that combines fault-
injection and property based
testing using QuickCheck.
!
Contact: SP

QuickCheck CI

QuickCheck CI is a continuous integration server that runs
QuviQ QuickCheck on a project.
!
Open Source Developers can use QuickCheck CI to get free
access to QuviQ QuickCheck.
!
QuickCheck CI runs the full version of QuickCheck, including
the connection to C.
!
Contact: Quviq

Results

test results

properties

specification

implementationtests

existing tests

QuickCheck

test results

properties

specification

implementationtests

existing tests

QuickCheck

Scalable PBT:
components
and mocking

test results

properties

specification

implementationtests

existing tests

QuickCheck

Accessible PBT:
ReadSpec,
GoodExamples

test results

properties

specification

implementationtests

existing tests

QuickCheck

PBT for web
services: WStoolkit,
JSONgen

test results

properties

specification

implementationtests

existing tests

QuickCheck

Discovering
properties:
James, Synapse

test results

properties

specification

implementationtests

existing tests

QuickCheck

Improved
testing: Smother,
Mu2, FaultCheck

test results

properties

specification

implementationtests

existing tests

QuickCheck

Evolution and
PBT: QC CI,
WStoolkit, Ranker

implementation

Acknowledgement

!
The Universities of Sheffield, Kent, A Coruña, Chalmers
Technical University and the Polytechnic University of
Madrid; Quviq AB, Interoud, Erlang Solutions Ltd and SP
gratefully acknowledge the support of the European
Commission for the PROWESS project, funded under
Framework Programme 7.

Results

Scalable PBT: components, mocking
Accessible PBT: ReadSpec, GoodExamples
PBT for web services: WStoolkit, JSONgen
Discovering properties: James, Synapse
Improved testing: Smother, Mu2, FaultCheck
Evolution and PBT: QC CI, WStoolkit, Ranker
!
www.prowess-project.eu

