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EU PROWESS project

!
Aims to improve testing, particularly for web services, 
through uptake and use of property-based testing (PBT).  
!
The QuickCheck tool for PBT can be used to test web 
services as well as systems built in Erlang, Java, C, … 
!
… but system models and properties are written in Erlang.
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ReadSpec – helps you 
understand properties 
and models as natural 
language.
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JSONgen – makes 
QC generators from 
JSON data.
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WSDL – how to 
express WSDL types 
as QC generators.
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WStoolkit – generates 
an Erlang interface to 
underlying web service.
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UI testing: Webdriver

Erlang implementation 
of Webdriver.
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PULSE – additional 
support for concurrency 
testing.



test results

properties

implementationtests

QuickCheck

FaultCheck

FaultCheck – combines 
fault-injection and PBT.
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Mu2 – supports mutation 
Testing.
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Smother – measures 
test coverage.
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ComplexityCheck – identify 
scalability issues in code.
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Ranker – comparing 
different implementations.
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Megaload – cloud-based 
testing.



Case study - VoDKATV

Internet-Protocol TV (IPTV) / “Over the top” content (OTT) 
Cloud Middleware Architecture.  
!
Interactive services for IPTV/OTT environments, eg, hotels. 
!
Runs on a set-top-box (STB) , connected to a TV + remote. 
!
Component-based; on client side: STB, tablet, PC, phone, …





Set-top box

The STB includes  
!
● a portable middleware layer implemented in Erlang,  
● a UI layer developed in HTML, JavaScript and CSS 

(Webkit browser);  
● communication between the UI layer and the 

middleware via a WebSocket-based protocol.



Web services for interactions

Some APIs respond in XML, others in JSON 
!
Different kinds of authentication for access to the APIs: 
● none required,  
● authentication with cookies 
● authentication with tokens, e.g. expiration time, max # 

logins per user, …



The toolset



Property-based testing

At centre of our ‘ego-system’ is property-based testing with 
QuickCheck. 
!
Controlled random test generation from a QuickCheck 
specification – which describes properties of interest. 
!
QuickCheck provides combinators to define properties, 
observe the distribution of test data, and define test data 
generators.      Contact: Quviq.
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Evolution in PBT with WStoolkit

Using Wrangler, Kent’s tool for refactoring Erlang systems. 
!
Infer changes between WSDL descriptions … 
!
… from these generate refactoring scripts … 
!
… which automate model evolution as much as possible. 
!
Contact: Kent
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Megaload – Load testing VoDKA

Cloud-based load testing of systems. 
!
Megaload: loads, monitors and presents results. 
!
Generating load profiles …  
 … and shrinking to minimal (counter-) examples in the 
most load-effective way. 
!
Contact: ESL
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Inference and PBT

How to develop properties for a system. Two tools: 
!
● James – infer models for web services from unit tests 

written in Java, using JUnit. 
!
● Synapse - infer FSMs from systems, and visualise the 

difference between models / systems.



James 
!
New JUnit tests from existing tests, by model inference.  
!
Track a combination of data- / control-flow information … 
 … extracted from running the test suite on the SUT 
 … run the tests on the Java VM 
 … track information using C++ agent and JVM-TI API  
!
Contact: Kent





James 
!
Track and send to an Erlang server: 
● the execution order of the calls in the JUnit tests, and  
● how objects are reused.  
!
Server generates a model … visualised through GraphViz.  
!
Translate model into QuickCheck … then generate new 
tests, that can be added to the original test suite.



Synapse

An Erlang interface to grammar inference tools.  
!
Synapse interfaces to the StateChum tool for passive and 
active inference of FSM models,  as well as: 
!
● active and passive learning,  
● model differencing, and  
● FSM and difference visualisation. Contact: Sheffield





Understanding properties and models

Synapse tool allows users to visualise differences between 
variants of models / systems as FSMs. 
!
ReadSpec to render QuickCheck models in (semi-)natural 
language.  
!
GoodExamples tool to make the meaning of a property 
more concrete by viewing it as a set of unit tests.
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and models as natural 
language.
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ReadSpec

ReadSpec uses QuickCheck to automatically generate 
semi-natural language descriptions of QuickCheck 
properties and QuickCheck state machine models. 
!
Example: simple_eqc.erl contains a property to test the 
delete operation of the lists module: 
!
Contact: UDC



!
?FORALL({I,L}, {int(), list(int())}, !

not lists:member(I,lists:delete(I, 
L)))!

!
FEATURE: Simple QuickCheck properties 
SCENARIO: Deleting an integer from a list should result in a list that 
does not contain that integer. 
GIVEN I have the integer 19 
AND I have the list [7, -24, -18, 17, -8, -9, -8] 
THEN lists:member(19, lists:delete(19, [7,-24,-18,17,-8,-9,-8]))  
IS FALSE.



GoodExamples tool

It can be hard to tell what a property tests…  
 properties - powerful and general; 
 unit tests - easy to understand but specific. 
!
GoodExamples - makes the meaning of a property more 
concrete by viewing it as a set of unit tests. 
!
Contact: Chalmers



Support for Web Services

Tools to support data generation for web services models: 
!
JSONgen is a library for generating QuickCheck generators 
from descriptions of JSON data using JSON schemas, and 
for automatically exploring and testing JSON web services. 
!
wsdl_dsl is a QuickCheck library that implements a domain 
specific language which re-uses the WSDL syntax to allow 
users to express WSDL types as QuickCheck generators.
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JSONgen – convert and explore

Convert JSON schema to mochijson2 Erlang term. !
Convert JSON schema into a QuickCheck generator. !
Convert JSON data value in mochijson2 format to text  !
Explore and test a JSON based web service using the web 
links / data types embedded in the JSON schema args.  !
Can tailor the actions with a QuickCheck state machine. 
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Scaling PBT

Model using components 
instead of a single model. !
Library for mocking the 
behaviour of callout 
components. !
Clustered system resulting 
from the component models.



MoreBugs

QuickCheck “by hand”: run QC, fix bug, repeat … 
!
With MoreBugs, can find “all” bugs at once, through 
● find bug, 
● generalise 
● modify generator to avoid it 
and repeat … 
!
Contact: Chalmers



Support for graphical editing

Contact: Quviq
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Mu2 – supports mutation 
Testing.

How good is your test suite?
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Validating quality of test suites

Smother used to assess 
the MC/DC coverage of a 
test suite. 
!
Mu2 supports mutation 
testing – if I make small 
changes to the code, can 
I spot these ‘errors’ with 
my test suite?

Add screen-shot of  
smother here.

Contact: Sheffield
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Testing non-functional requirements

FaultCheck … 
!
… a fault-injection tool for C 
code that combines fault-
injection and property based 
testing using QuickCheck.  
!
Contact: SP



QuickCheck CI

QuickCheck CI is a continuous integration server that runs 
QuviQ QuickCheck on a project.  
!
Open Source Developers can use QuickCheck CI to get free 
access to QuviQ QuickCheck.  
!
QuickCheck CI runs the full version of QuickCheck, including 
the connection to C.  
!
Contact: Quviq
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Scalable PBT: components, mocking 
Accessible PBT: ReadSpec, GoodExamples 
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