
Scalable load testing using properties

Tutor
ial

Diana Corbacho
Erlang Solutions

!
Jun 10, 2015

EUC

What is ‘load testing’?

!
!
!
!
!
Responsiveness and stability under a
particular workload

2

Stress testingSpike testingSoak testing Load testing

How are web services load tested?

Generate a test description from the API
description using a textual or graphical
representation

Execute the test description

Analyse results

Maybe start again
!

3

How do we load test web services?

Generate a test description from the API description using
a textual representation

Use PBT to generate random user and load profiles based
in the test description

Let QuickCheck automate the execution and analyse each
individual result

Yes! QuickCheck will run as many tests as required
until it finds the boundaries of the service

After hours, days or weeks of testing (maybe we are soak
testing?) it will provide the final results

4

What that means?

Less resources
!
24/7 hardware utilisation, no downtime
!
More complete results

Better understanding of the service
Informed decisions

5

PBT & Megaload

Property-based testing applied to load testing

!
Scalable platform to run load tests: cloud & physical hardware

!
Web interface

!
Real-time statistics and graphs

!
DSL to ease test description

!
Multiprotocol

6

Megaload scalability

7

Industrial example: VoDKA TV

8

Properties (I)

At what number of users the system breaks its
service-level agreement?

SLA metrics
Average response time
Number of connection refused
Number of timeout requests

9

Properties (I)

At what number of users the system breaks its
service-level agreement?

10

Properties (II)

What number of users with each profile is the system
able to support within the SLA boundaries?

Semi-static users profiles
Short-lived users
TV users
EPG users

11

Properties (II)

What number of users with each profile is the system
able to support within the SLA boundaries?

Semi-static users profiles
Short-lived users
TV users
EPG users

12

Properties (III)

What are the combinations of users the system is
able to support within the SLA boundaries?

Fix some parameters - as number of users - within
limits discovered in previous properties
Output example: 60% TV users - 40% EPG users

13

Properties (IV)

What are the URLs that cause the most performance
problems?

Measure response time and other metrics defined in
the SLA for each individual request

14

Generators

15

U
se

rs

0

2500

5000

7500

10000

Step
1 2 3 4 5

eqc_loadtest:exponential (10, 100)
eqc_loadtest:linear (500, 100)

Shrinking strategy

16

Binary search between largest success and smaller failure

OK! 1000 Failed! 100005500

Faster convergence for load testing than normal QuickCheck
heuristics

Shrinking

17

U
se

rs

0

2500

5000

7500

10000

Step
1 2 3 4 5 6 7 8 9 10 11 12

5500

3250
2125

1562 1843 1984 1913

Exponential (10, 100) Shrinking

Fails from 1900 users - Shrinking to 1913

18

prop_users() ->!
 eqc_loadtest:loadcheck(!
 ?FORALL(!
 Users, eqc_loadtest:exponential(10, 100),!
 begin!
 {ok, ok} =loader:update_phase(<<phase1>>,!
 [{<<"concurrent_scenarios">>, Users},!
 {<<"arrival_rate">>, 15},!
 {<<"duration">>, Users * 150 + Duration}]),
! loader:start_load(“onlinetv_eqc"),!
 wait_until_terminated(),!
 {AvgResponseTime, _ConnRefused, _Timeouts} = get_stats(),!
! (AvgResponseTime < 200000)!
 end)).

How many users the system is able to support within the
SLA boundaries?

GUI
integration

19

Results

20

21

list_gen(Scenarios) ->!
 ?SUCHTHAT(List, non_empty(list(elements(Scenarios))),!
 lists:all(fun(S) -> lists:member(S, List) end, Scenarios)).!
!
prop_scenario_combinations() ->!
 ?FORALL(!
 Component, list_gen([<<"watchtv">>, <<"tv">>, <<"epg">>]),!
 begin!
 {ok, ok} = loader:update_scenario(<<"general_user">>,!
 [{<<"components">>, Component}]),!
 loader:start_load("onlinetv_eqc"),!
 wait_until_terminated(),!
 {AvgResponseTime, ConnRefused, Timeouts} = get_stats(),!
 Prop = (AvgResponseTime < 185000) and (ConnRefused == 0)!
 and (Timeouts == 0),!
 update_stats(Component, AvgResponseTime, Prop),!
 Prop!
 end).

What combinations of user behaviour the system is able
to support within the SLA boundaries?

22

.!
Failed! After 2 tests.!
[<<"epg">>,<<"watchtv">>,<<"tv">>,<<"epg">>,<<"epg">>]!
Shrinking!
.!
.!
.!
(1 times)!
[<<"epg">>,<<"watchtv">>,<<"tv">>,<<"epg">>]!
| Components | Runs | ResTime | Failed |!
|———————————————————————————————————————|!
| <<"watchtv">> 20% <<"tv">> 20% <<"epg">> 60% | 1 | 210ms | * |!
| <<"watchtv">> 25% <<"tv">> 25% <<"epg">> 50% | 1 | 200ms | * |!
| <<"watchtv">> 25% <<"tv">> 50% <<"epg">> 25% | 3 | 181ms | |!
| <<"watchtv">> 33% <<"tv">> 33% <<"epg">> 33% | 2 | 168ms | |!
| <<"watchtv">> 50% <<"tv">> 25% <<"epg">> 25% | 2 | 145ms | |

Demo

23

Let’s run some tests!

24

Questions?
!

Feel free to contact us
for any queries at

megaload@erlang-solutions.com
!

http://prowessproject.eu/megaload

