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What is ‘load testing’'?
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Soak testing Spike testing Stress testing Load testing

Responsiveness and stability under a
particular workload



How are web services load tested?

o Generate a test description from the API
description using a textual or graphical
representation

v Execute the test description
© Analyse results
© Maybe start again



How do we load test web services?

o Generate a test description from the API description using
a textual representation

o Use PBT to generate random user and load profiles based
in the test description

o Let QuickCheck automate the execution and analyse each
individual result

v Yes! QuickCheck will run as many tests as required
until it finds the boundaries of the service

o After hours, days or weeks of testing (maybe we are soak
testing?) it will provide the final results



What that means?

> Less resources
©24/7 hardware utilisation, no downtime
© More complete results

o Better understanding of the service
o Informed decisions



PBT & Megaload

© Property-based testing applied to load testing

 Scalable platform to run load tests: cloud & physical hardware
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Megaload scalability
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Industrial example: VoDKA TV




Properties (I)

o At what number of users the system breaks its
service-level agreement?
o SLA metrics
© Average response time
o Number of connection refused
o Number of timeout requests



Properties (I)

o At what number of users the system breaks its
service-level agreement?
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Properties (1I)

> What number of users with each profile is the system
able to support within the SLA boundaries?
> Semi-static users profiles
> Short-lived users
> TV users
> EPG users
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Properties (II)

o What number of users with each profile is the system
able to support within the SLA boundaries?
o Semi-static users profiles
© Short-lived users
o TV users
o EPG users

Response time per user type
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Properties (III)

o What are the combinations of users the system is
able to support within the SLA boundaries?

© Fix some parameters - as number of users - within
limits discovered in previous properties

© Qutput example: 60% TV users - 40% EPG users
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Properties (1IV)

o What are the URLs that cause the most performance
problems?

o Measure response time and other metrics defined in
the SLA for each individual request



Generators

O eqgc_loadtest:exponential (10, 100)
O eqgc_loadtest:linear (500, 100)
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Shrinking strategy

Binary search between largest success and smaller failure

OK! 1000 5500 Failed! 10000

Faster convergence for load testing than normal QuickCheck
heuristics



Users

Shrinking

O Exponential (10, 100) O Shrinking
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Fails from 1900 users - Shrinking to 1913



How many users the system is able to support within the
SLA boundaries?

prop_users() ->
eqc_loadtest:loadcheck(
?FORALL(
Users, eqc_loadtest:exponential(10, 100),
begin
{ok, ok} =loader:update_phase(<<phase1>>,
[{<<"concurrent_scenarios'">>, Users},
{<<"arrival_rate">>, 15},
{<<"duration">>, Users * 150 + Duration}]),
loader:start_load(“onlinetv_eqc"),
wait_until_terminated(),
{AvgResponseTime, _ConnRefused, _Timeouts} = get_stats(),
(AvgResponseTime < 200000)
end)).
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What combinations of user behaviour the system is able
to support within the SLA boundaries?

list_gen(Scenarios) ->
?SUCHTHAT (List, non_empty(list(elements(Scenarios))),
lists:all(fun(S) -> lists:member(S, List) end, Scenarios)).

prop_scenario_combinations() ->
?FORALL(

Component, list_gen([<<"watchtv">>, <<"tv">>, <<"epg">>]),

begin
{ok, ok} = loader:update_scenario(<<"general_user">>,

[{<<"components">>, Component}]),
loader:start_load("onlinetv_eqc"),
wait_until_terminated(),
{AvgResponseTime, ConnRefused, Timeouts} = get_stats(),
Prop = (AvgResponseTime < 185000) and (ConnRefused == 0)
and (Timeouts == 0),

update_stats(Component, AvgResponseTime, Prop),
Prop

end).



Failed! After 2 tests.

[<<"epg">>,<<"watchtv'">>,<<"tv">>,<<"epg">>,<<"epg">>]

Shrinking

(1 times)
[<<"epg">>,<<"watchtv'">>,<<"tv">>,<<"epg">>]
I Components

| <<"watchtv">> 20% <<"tv">> 20% <<"epg">> 60%
| <<"watchtv">> 25% <<"tv"'>> 25% <<"epg">> 50%
| <<"watchtv">> 25% <<"tv'">> 50% <<"epg">> 25%
| <<"watchtv">> 33% <<"tv"'>> 33% <<"epg">> 33%
| <<"watchtv">> 50% <<"tv'>> 25% <<"epg">> 25%

| Runs | ResTime | Failed |

DW= =

| 210ms
| 200ms
| 181ms
| 168ms
| 145ms



Demo

Let’s run some tests!



Questions?

Feel free to contact us
for any queries at
megaload@erlang-solutions.com

http://prowessproject.eu/megaload



