Scalable load testing using properties

’ ROWESS

Diana Corbacho
Erlang Solutions

Jun 10, 2015
EUC



What is ‘load testing’'?

sliliels l'ol llll [T
>

Soak testing Spike testing Stress testing Load testing

Responsiveness and stability under a
particular workload



How are web services load tested?

o Generate a test description from the API
description using a textual or graphical
representation

v Execute the test description
© Analyse results
© Maybe start again



How do we load test web services?

o Generate a test description from the API description using
a textual representation

o Use PBT to generate random user and load profiles based
in the test description

o Let QuickCheck automate the execution and analyse each
individual result

v Yes! QuickCheck will run as many tests as required
until it finds the boundaries of the service

o After hours, days or weeks of testing (maybe we are soak
testing?) it will provide the final results



What that means?

> Less resources
©24/7 hardware utilisation, no downtime
© More complete results

o Better understanding of the service
o Informed decisions



PBT & Megaload

© Property-based testing applied to load testing

 Scalable platform to run load tests: cloud & physical hardware

(

- Web interface

(

(

 Real-time statistics and graphs

o DSL to ease test description

(

' Multiprotocol



Megaload scalability

Eonrent

Node NOde

N

N/

SUT



Industrial example: VoDKA TV




Properties (I)

o At what number of users the system breaks its
service-level agreement?
o SLA metrics
© Average response time
o Number of connection refused
o Number of timeout requests



Properties (I)

o At what number of users the system breaks its
service-level agreement?

—8— average
30 — response time limit

25 -

Response time in seconds

| | | 1 | | | 1 I |
1 10 100 212 268 325 381 437 550 1000

Number of users



Properties (1I)

> What number of users with each profile is the system
able to support within the SLA boundaries?
> Semi-static users profiles
> Short-lived users
> TV users
> EPG users

Maximum number of users

2476

775

500 1000 1500 2000 2500 3000

3 -

TV user Short-lived user EPG user

0
L

User type



Properties (II)

o What number of users with each profile is the system
able to support within the SLA boundaries?
o Semi-static users profiles
© Short-lived users
o TV users
o EPG users

Response time per user type

1

1 | |

10 15 20 25 30 35

|

Response time in seconds

5
1

0
!

I I | 1 I 1 | | I | 1

i
1 10 100 1000 2406 2546 3250 10000

Number of users [§2



Properties (III)

o What are the combinations of users the system is
able to support within the SLA boundaries?

© Fix some parameters - as number of users - within
limits discovered in previous properties

© Qutput example: 60% TV users - 40% EPG users

W TV user W EPG user
“ Shon-lived user

100%

75%

50%

25%

43 45 43 232 12433
Response time (ms)



Properties (1IV)

o What are the URLs that cause the most performance
problems?

o Measure response time and other metrics defined in
the SLA for each individual request



Generators

O eqgc_loadtest:exponential (10, 100)
O eqgc_loadtest:linear (500, 100)

10000
7500
%
Q5000
)
2500
0

Step



Shrinking strategy

Binary search between largest success and smaller failure

OK! 1000 5500 Failed! 10000

Faster convergence for load testing than normal QuickCheck
heuristics



Users

Shrinking

O Exponential (10, 100) O Shrinking
10000
7500
5000 550
2500 3250
2125
1562 1843 1984 1913
0
1 2 3 4 5 6 7 8 9 10 11 12

Step

Fails from 1900 users - Shrinking to 1913



How many users the system is able to support within the
SLA boundaries?

prop_users() ->
eqc_loadtest:loadcheck(
?FORALL(
Users, eqc_loadtest:exponential(10, 100),
begin
{ok, ok} =loader:update_phase(<<phase1>>,
[{<<"concurrent_scenarios'">>, Users},
{<<"arrival_rate">>, 15},
{<<"duration">>, Users * 150 + Duration}]),
loader:start_load(“onlinetv_eqc"),
wait_until_terminated(),
{AvgResponseTime, _ConnRefused, _Timeouts} = get_stats(),
(AvgResponseTime < 200000)
end)).



Property niormrator o 1

Find the madimum number of concurent scenanios such that the selecied metnc of

the Sanvica 5 Bss than X miliseconds

Teatid

integration = °

Teut parameters

Test duraton

N

Load gorarstion

= Exponential growth Unear growth

“r
-



Results — = ™

Execution 1 ~

Users

Response time (ms)

250

200

150

100

S0

0

2.5

Metric (ms)

205

Response time vs number of users

Users

-1 -2

10

12,5

15



What combinations of user behaviour the system is able
to support within the SLA boundaries?

list_gen(Scenarios) ->
?SUCHTHAT (List, non_empty(list(elements(Scenarios))),
lists:all(fun(S) -> lists:member(S, List) end, Scenarios)).

prop_scenario_combinations() ->
?FORALL(

Component, list_gen([<<"watchtv">>, <<"tv">>, <<"epg">>]),

begin
{ok, ok} = loader:update_scenario(<<"general_user">>,

[{<<"components">>, Component}]),
loader:start_load("onlinetv_eqc"),
wait_until_terminated(),
{AvgResponseTime, ConnRefused, Timeouts} = get_stats(),
Prop = (AvgResponseTime < 185000) and (ConnRefused == 0)
and (Timeouts == 0),

update_stats(Component, AvgResponseTime, Prop),
Prop

end).



Failed! After 2 tests.

[<<"epg">>,<<"watchtv'">>,<<"tv">>,<<"epg">>,<<"epg">>]

Shrinking

(1 times)
[<<"epg">>,<<"watchtv'">>,<<"tv">>,<<"epg">>]
I Components

| <<"watchtv">> 20% <<"tv">> 20% <<"epg">> 60%
| <<"watchtv">> 25% <<"tv"'>> 25% <<"epg">> 50%
| <<"watchtv">> 25% <<"tv'">> 50% <<"epg">> 25%
| <<"watchtv">> 33% <<"tv"'>> 33% <<"epg">> 33%
| <<"watchtv">> 50% <<"tv'>> 25% <<"epg">> 25%

| Runs | ResTime | Failed |

DW= =

| 210ms
| 200ms
| 181ms
| 168ms
| 145ms



Demo

Let’s run some tests!



Questions?

Feel free to contact us
for any queries at
megaload@erlang-solutions.com

http://prowessproject.eu/megaload



