
1

2

Using Erlang, Riak and the ORSWOT

CRDT at bet365 for Scalability and

Performance

Michael Owen

Research and Development Engineer

3

Background

4

bet365 in stats

• Founded in 2000

• Located in Stoke-on-Trent

• The largest online sports betting company

• Over 19 million customers

• One of the largest private companies in the UK

• Employs more than 2,000 people

• 2013-2014: Over £26 billion was staked
– Last year is likely to be around 25% up

• Business growing very rapidly!

• Very technology focused company

5

bet365 technology stats

• Over 500 employees within technology

• £60 million per year IT budget

• Fifteen datacentres in seven countries worldwide

• 100Gb capable private dark fibre network

• 9 upstream ISPs

• 150 Gigabits of aggregated edge bandwidth
– 25 Gbps and 6M HTTP requests/sec at peak

• Around 1 to 1.5 million markets on site at any time

• 18 languages supported

• Push systems burst to 100,000 changes per second
– Almost all this change generated via automated models

• Database systems running at > 500K TPS at peak

• Over 2.5 million concurrent users of our push systems

• We stream more live sport than anyone else in Europe

6

Production systems using Erlang and

Riak

• Cash-out

A system used by customers to close out bets early.

• Stronger

An online transaction processing (OLTP) data layer.

7

Why Erlang and

Riak?

8

Our historical technology stack

• Very pragmatic

• What would deliver a quality product to market in record time

• Mostly .NET with some Java middleware

• Lot and lots of SQL Server

9

But we needed to change

• Complexity of code and systems

• Needed to make better use of multi-core CPUs

• Needed to scale out

– Could no longer scale our SQL infrastructure
• Had scaled up and out as far as we could

– Lack of scalability caused undue stress on the infrastructure
• Lead to loss of availability

10

Erlang Adoption

11

Erlang – Key learnings

• You can get a lot done in a short space of time. A plus and a minus!

• Tooling is limited

• Hot code upgrades with state can be hard

• Dependency management could be better

• Get as much visibility into the system as possible e.g. stats, data etc

• Use OTP / reuse proven code

• Keep to standards (e.g. code layout etc)

12

Erlang – Key learnings

• Check your supervision tree

• Message passing is a double edged sword

• Keep state small (e.g. gen_server state)

• Binaries and GC: Heap vs reference-counted

• Explore whether you need the Transparent Huge Pages (THP) feature

in the Linux kernel

• Don’t use error_logger as your main logger

• Validate all data coming into the Erlang system at the edge

13

Riak Adoption

14

Riak – Brief overview

• Key value store

• Inspired by the Dynamo paper
– http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf

• Traditionally, an eventually consistent system (AP from CAP)
– Riak 2.0+: Introduction of a strongly consistent option (CP from CAP)

• A Riak cluster is a 160-bit integer space – the Riak Ring

• Split into partitions – a virtual node (vnode) is responsible for each one

• A vnode lives on one of the Riak nodes

• Data is stored in a number of partitions (n_val setting – default 3)
– Consistent hashing technique helps with identifying the partitions for putting and

getting the data

http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf

15

Riak – Why?

• Open source aspect

• Uses Erlang

• Based on solid ideas

• Horizontally scalable

• Highly available

• Masterless: No global locks – performance is predictable

• Designed to be operationally simple

• Support and community exists

16

Riak – Key learnings

• Eventually consistent: Eventually the data will converge to the

consistent value
– Keep in mind:

• A get/read may return an old value

• A put/write may be accepted for a key at the same time as another concurrent put for the same key in the

cluster (i.e. no global locking)

– Bend your problem! E.g. Look at it from another side

• Data model for your use case i.e. normalisation isn’t key: Trade off

puts vs gets for your use case

• No bigger object sizes than 1MB

• Store data in a structure which helps with version upgrades

• Riak Enterprise
– Multi-Datacenter Replication + Support

17

Riak – Key learnings

• Consult Riak’s System Performance Tuning documentation

• Different internode network vs inbound

• Monitor network and disk usage

• Use the “riak-admin diag” command

• Use Basho Bench to load test your cluster

• For bitcask backend: load test merging and tune for your use case
– Setting log_needs_merge to true will help with this tuning

• Allow siblings (i.e. allow_mult = true)
– With resolving siblings asap

18

Riak – What are siblings?

• A sibling happens when Riak does not know which value is the

causally recent (E.g. because of concurrent puts/writes)

– Uses version vectors to know this
• Version vector A is Concurrent to version vector B (as opposed to Descends or Dominates)

• Explained later

– Referenced as vector clocks in the Riak documentation – should have been named

version vectors
• Talk: A Brief History of Time in Riak. Sean Cribbs (Basho). RICON 2014

• https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/

• Similar logic, however:

– Vector clocks is about tracking events to a computation

– Version vectors is about tracking updates to data replicas

– Riak 2.0 introduced the option of dotted version vectors instead
• Similar idea to the ORSWOT CRDT dot functionality (explained later)

• Reduces potential number of siblings (i.e. causality tracking is more accurate) -> limits sibling explosion

• All sibling values are returned (i.e. more than one)
– Big difference to the normal experience with SQL type data stores

https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/

19

Riak – allow_mult=false

• You can set allow_mult to false (i.e. no siblings to the client) with:

– last_write_wins set to false

• Uses version vectors. In conflict, the sibling with the highest timestamp wins.

– last_write_wins set to true

• Doesn't use version vectors – new value overwrites current value

• However, not recommended* because of potential data loss

– Network problems

• Reading: Fallacies of Distributed Computing Explained, Arnon Rotem-Gal-Oz

– Complexity of time synchronisation across servers (speed of light, machines fail etc)

• Reading: There is No Now - Problems with simultaneity in distributed systems, Justin Sheehy.

2015

* Perhaps for immutable data with separate unique keys

20

Riak – Dealing with siblings

• Sibling values are returned on a get request

• Need to have a merge function to produce the correct value

• The merge function should be deterministic by having the following

properties:
– Associativity

• Order of the merge function being applied to the data doesn’t matter as long as the sequence of the data items is

not changed

– Commutativity
• Order into the merge function does not matter

– Idempotence
• Merge function applied twice to the same value results in the same value

• Can be hard to get right
– Can lead to possible data loss and incorrect data

21

CRDTs

22

CRDTs – What are they?

• Conflict-Free Replicated Data Types

• Can be:
– Operation based: Commutative Replicated Data Types

– State based: Convergent Replicated Data Types

• Reduces complexity by having no client side siblings
– But still having no data loss

• Readings:
– A comprehensive study of Convergent and Commutative Replicated Data Types. Marc

Shapiro, Nuno Preguiça, Carlos Baquero, Marek Zawirski. 2011.

– Conflict-free replicated data types. Marc Shapiro, Nuno Preguiça, Carlos Baquero, Marek

Zawirski. 2011.

– CRDTs: Consistency without concurrency control. Mihai Letia, Nuno Preguiça, Marc Shapiro.

2009.

– http://christophermeiklejohn.com/crdt/2014/07/22/readings-in-crdts.html

http://christophermeiklejohn.com/crdt/2014/07/22/readings-in-crdts.html
http://christophermeiklejohn.com/crdt/2014/07/22/readings-in-crdts.html
http://christophermeiklejohn.com/crdt/2014/07/22/readings-in-crdts.html
http://christophermeiklejohn.com/crdt/2014/07/22/readings-in-crdts.html
http://christophermeiklejohn.com/crdt/2014/07/22/readings-in-crdts.html
http://christophermeiklejohn.com/crdt/2014/07/22/readings-in-crdts.html
http://christophermeiklejohn.com/crdt/2014/07/22/readings-in-crdts.html
http://christophermeiklejohn.com/crdt/2014/07/22/readings-in-crdts.html
http://christophermeiklejohn.com/crdt/2014/07/22/readings-in-crdts.html

23

CRDTs – Operation based

• Commutative Replicated Data Types

• All replicas of the data are sent operational updates

• Relies more on a good network and reliably delivering updates

• Knowing the current true membership is more important

24

CRDTs – State based

• Convergent Replicated Data Types

• Data is locally updated, sent to replicas and merged

• Update function must be monotonically increasing

• Generally easier to understand than operation based

• Easier to have an elastic membership of replicas

• However, more data is sent around the network

25

CRDTs – Types

• Different data type implementations exist for:
– Counters

– Sets

– Maps

– …

• For our core use case the Sets data type made sense

• However, we were and are using Riak 1.4+ and a Sets CRDT isn’t

available
– Introduced in Riak 2.0+

– At the time, Riak 2.0+ wasn’t even a release candidate

26

CRDTs – riak_dt

• We decided to use the riak_dt dependency and integrate it ourselves

into our system using Riak 1.4+
– https://github.com/basho/riak_dt

• Apache License Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)

• Different set based implementations exist (all state based CRDT’s):

– G-Set: Grow only set
• i.e. no remove

– OR-Set: Observe Remove Set
• Able to add and remove

• However, when an element is removed a tombstone still exists i.e. Size problem

– ORSWOT: Observe Remove Set Without Tombstones
• Able to add and remove, but doesn’t have tombstones

• In a concurrent add and remove of the same element –> add-wins

• Reading: An optimized conflict-free replicated set. Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro,

Carlos Baquero, Valter Balegas, Sérgio Duarte. 2012.

• For our core use case – we chose to use the ORSWOT

https://github.com/basho/riak_dt
https://github.com/basho/riak_dt
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

27

CRDTs – ORSWOT overview

• Example:

 <<“KEY_NAME”>> = { [{x,1}, {y,2}] , [{<<“Data1”>>, [{x,1}] }, {<<“Data2”>>, [{y,1}] }, {<<“Data3”>>, [{y,2}] }] }

Version vector exists as part of the ORSWOT:

– List of tuples

– Each tuple being {UniqueActorName, Counter}

– ORSWOT operations happen through an unique actor

– Similar but a different instance of version vector to what will also exist for the overall key/value

Dots exist for each element in the ORSWOT set:

– Just a minimal version vector

– Each dot pair represents a tuple in the ORSWOT version vector at a particular point

– Usually a list of one

• Can be a list of more than one when, for example, two ORSWOTs for two concurrent adds of the same

element (i.e. using two different unique actors) are merged

ORSWOT entries (a list for the purpose of example)

ORSWOT element (i.e. data) ORSWOT entry

Value i.e. the ORSWOT

28

• Adding an element:

– Version vector as part of the ORSWOT incremented

• Counter for unique actor being used is incremented (or set as 1 if not currently in the version vector)

– The updated {UniqueActorName, Counter} pair is stored with the element as its dots

• If an entry already exists in the ORSWOT for the element, this is replaced

Example:

 Adding <<“Data2”>> using unique actor y to the existing ORSWOT:

 { [{x,1}] , [{<<“Data1”>>, [{x,1}] }] }

Results in the new ORSWOT:

 { [{x,1}, {y,1}] , [{<<“Data1”>>, [{x,1}] }, {<<“Data2”>>, [{y,1}] }] }

and ORSWOT value (i.e. ignoring metadata / what a client would be interested in) of:

 [<<"Data1">>, <<"Data2">>]

CRDTs – ORSWOT overview

29

• Removing an element:

– Version vector as part of the ORSWOT does not change

• Of course when the put happens to store the ORSWOT’s updated value, the version vector for the

overall key/value is incremented

– The elements entry is simply removed from the ORSWOT

• i.e. No tombstones

Example:

 Removing <<“Data1”>> from the existing ORSWOT:

 { [{x,1}, {y,1}] , [{<<“Data1”>>, [{x,1}] }, {<<“Data2”>>, [{y,1}] }] }

Results in the new ORSWOT:

 { [{x,1}, {y,1}] , [{<<“Data2”>>, [{y,1}] }] }

* Further options do exist, such as being able to delay removes

– E.g. the ORSWOT object doing a remove might have not seen the original add for the element yet (e.g. because of being

a replica not merged with the add yet)

– Would also add further logic to the merge operation

CRDTs – ORSWOT overview

30

• Merging ORSWOT’s: ORSWOT A and ORSWOT B

– E.g. because of siblings detected by version vectors for the overall key/value

– Version vectors for ORSWOT A and ORSWOT B merged

• i.e. the least possible common descendant of both (*)

– Elements merged:

• Common elements only kept if there exists a non-empty dots for them from merging (*):

– Common dot pairs for the element in ORSWOT A and ORSWOT B

– Dot pairs for the element only in ORSWOT A where the dot pair count is greater than any count*

for the same actor in ORSWOT B’s version vector

– Dot pairs for the element only in ORSWOT B where the dot pair count is greater than any count*

for the same actor in ORSWOT A’s version vector

• Elements only in ORSWOT A only kept if there exists a non-empty dots for them after:

– Keeping only dot pairs for the element where the dot pair count is greater than any count* for the

same actor in ORSWOT B’s version vector

• Elements only in ORSWOT B only kept if there exists a non-empty dots for them after:

– Keeping only dot pairs for the element where the dot pair count is greater than any count* for the

same actor in ORSWOT A’s version vector

 * As you might think, if there doesn’t exist an appropriate actor pair/count in the version vector then the dot pair is merged/kept

CRDTs – ORSWOT overview

31

• Merging example:

CRDTs – ORSWOT overview

Merged ORSWOT: { [{x,1}, {y,2}, {z,2}] , [{<<“Data2”>>, [{y,1}] }, {<<“Data3”>>, [{y,2}, {z,1}] }, {<<“Data4”>>, [{z,2}] }] }

ORSWOT A: { [{x,1}, {y,2}] , [{<<“Data1”>>, [{x,1}] }, {<<“Data2”>>, [{y,1}] }, {<<“Data3”>>, [{y,2}] }] }

Seen:

 1. Adding element <<“Data1”>> via actor x

 2. Adding element <<“Data2”>> via actor y

 3. Adding element <<“Data3”>> via actor y

ORSWOT B: { [{x,1}, {y,1}, {z,2}] , [{<<“Data2”>>, [{y,1}] }, {<<“Data3”>>, [{z,1}] }, {<<“Data4”>>, [{z,2}] }] }

Seen:

 1. Adding element <<“Data1”>> via actor x

 2. Adding element <<“Data2”>> via actor y

 3. Adding element <<“Data3”>> via actor z

 4. Adding element <<“Data4”>> via actor z

 5. Removing element <<“Data1”>> via actor z

32

• Merging example:

• [{x,1}, {y,2}, {z,2}] is the least possible common descendant for the version vectors of ORSWOT A and ORSWOT B

• Common elements:

• <<“Data2”>> : ORSWOT’s have common dot pair {y,1} – no other dot pairs to consider/merge with it => element in

• <<“Data3”>> : ORSWOT A has {y,2} which has a greater count than {y,1} in ORSWOT B’s version vector [{x,1}, {y,1}, {z,2}]

 ORSWOT B has {z,1} which is included because ORSWOT A’s version vector [{x,1}, {y,2}] doesn’t have a

 count for z.

 Therefore {y,2} and {z,1} are merged to give [{y,2}, {z,1}] => element in

• Elements only in ORSWOT A:

• <<“Data1”>> : From ORSWOT A, no dots exist from [{x,1}] which are greater than ORSWOT B’s version vector

 [{x,1}, {y,1}, {z,2}] => element not in

• Elements only in ORSWOT B:

• <<“Data4”>> : From ORSWOT B, dot pair {z,2} for the element is kept because ORSWOT A’s version vector [{x,1}, {y,2}]

 doesn’t have a count for z => element in

CRDTs – ORSWOT overview

ORSWOT A: { [{x,1}, {y,2}] , [{<<“Data1”>>, [{x,1}] }, {<<“Data2”>>, [{y,1}] }, {<<“Data3”>>, [{y,2}] }] }

ORSWOT B: { [{x,1}, {y,1}, {z,2}] , [{<<“Data2”>>, [{y,1}] }, {<<“Data3”>>, [{z,1}] }, {<<“Data4”>>, [{z,2}] }] }

Merged = { [{x,1}, {y,2}, {z,2}] , [{<<“Data2”>>, [{y,1}] }, {<<“Data3”>>, [{y,2}, {z,1}] }, {<<“Data4”>>, [{z,2}] }] }

33

CRDTs – riak_dt integration

• Erlang middle layer between clients and Riak

• Middle layer needed to have unique actors (gen_server’s) as part of

using the ORSWOT implementation
– With getting a balance on the number of them e.g. due to impacting ORSWOT version vector size

• Unique actor names pre-defined as part of server setup configuration
– With making them small e.g. due to impacting ORSWOT version vector size

• Clients don’t have to deal with siblings

• Middle layer (i.e. client to Riak) does need to bring back siblings
– Not as good as a Riak server side CRDT (i.e. Riak 2.0+)

• Still using version vectors on the overall key/value’s
– i.e. to know to do the ORSWOT merge operation

34

Getting It Live

35

Tooling

• From day 1 we ate our own dog food

• Monitoring

• Performance counters

• Error reporting (including correlation between systems)

• Built custom adhoc query tool
– On replicated Riak cluster

• Custom reconciliation between new system and old system

• Created build and release scripts for automation

36

Released in phases

• Able to build on stable ground

• Able to get data to impact future decisions

• Built confidence

• Move functionality to using Erlang and Riak

• Not all phases were immediately business impacting

• However, overall able to get business impacting functionality out

sooner

37

Replay testing

• Captured logs asynchronously in one phase

• Common interface between old and new systems

• Able to do reconciliation between the systems

• Big range of test data / realistic load profile

• Used for functional and performance testing

• Different logs for long weekend run vs quick run

• Complemented other testing such as specific unit/integration testing,

fuzz testing and formal UAT

38

Performance testing

• Done early and repeated

• Built custom client using replay logs

• Able to increase load profile easily

• Used our custom tooling / monitoring

• Identified bottlenecks / tested horizontal scalability of system

• Adhoc changes and fed back into development

• Had a specific profile which could give a fair test between changes

• Basho Bench used to sanity test Riak cluster setup

39

Failure testing

• Did failure testing

• Built confidence and understanding

• Trying to make sure a failure seen in production isn’t the first time it’s

experienced

• Tested common procedures e.g. taking nodes in and out of service

• Failures will happen – embrace them

40

Today with Stronger

• The project was a success!

• We have a system which is:

– Performant and able to deal with many times our peak load

– Reliable and deals with failure using minimal human intervention

• We have introduced the business to a number of new technologies

• We have grown the capabilities of the business and our people

41

Questions?

42

