readSpec
showing QuickCheck results to stake-holders

Laura M. Castro

University of A Corufia

Jun 10, 2015
EUC (tutorial)

10f37



Mmm. .. QuickWhat? ’RUWESS

QuickCheck:

= Short version: a testing tool for Erlang

2 of 37



Mmm. .. QuickWhat? ’RUWESS

QuickCheck:

= Short version: a testing tool for Erlang

= Extended version:

O

Powerful alternative to EUnit

You write properties/models instead of unit tests
Provided by Quviq, not part of OTP

Licenced (Quvig QuickCheck Mini runs w/out licence)
The original idea was first implemented in Haskell

o A number of OS clones: PropEr, Triq

2 of 37

O

O

O

[m]



Mmm. .. QuickWhat? ’RUWESS

QuickCheck:

= Short version: a testing tool for Erlang

= Extended version:

O

Powerful alternative to EUnit

O

You write properties/models instead of unit tests
Provided by Quviq, not part of OTP

Licenced (Quvig QuickCheck Mini runs w/out licence)
The original idea was first implemented in Haskell

o A number of OS clones: PropEr, Triq

2 of 37

O

O

[m]



What do you mean by powerful? ’ ROWESS

= EUnit (manual test design):

o As many test cases as you can write
o Same test cases every time

= QuickCheck (test property definition):

o As many test cases as you have time to execute
o Slightly different data/test sequences every time

3 0f 37




So, how does it look like? ’ ROWESS

prop_simple() ->
?FORALL(I, int(),
?FORALL(L, list(int()),
not lists:member(I, lists:delete(I, L)))).

4 of 37



So, how does it look like? ’ ROWESS

prop_simple() ->
?FORALL(I, int(),
?FORALL(L, list(int()),
not lists:member(I, lists:delete(I, L)))).

50f 37



So, how does it look like? ’ ROWESS

prop_simple() ->
?FORALL(I, int(),
?FORALL(L, list(int()),
not lists:member(I, lists:delete(I, L)))).

6 of 37



So, how does it look like? ’ ROWESS

prop_simple() ->
?FORALL(I, int(),
?FORALL(L, list(int()),
not lists:member(I, lists:delete(I, L)))).

7 of 37



So, how does it look like? ’ ROWESS

prop_simple() ->
?FORALL(I, int(),
?FORALL(L, list(int()),
not lists:member(I, lists:delete(I, L)))).

8 of 37



And how does it work? ’ ROWESS

> eqc:quickcheck(simple_eqc:prop_simple()).
Starting Quviq QuickCheck version 1.35.0
Licence for University of A Coruna

reserved until {{2015,6,6},{18,44,22}}

0K, passed 100 tests
true

9 of 37



And how does it work? ’ ROWESS

> eqc:quickcheck(simple_eqc:prop_simple()).
Starting Quviq QuickCheck version 1.35.0
Licence for University of A Coruna

reserved until {{2015,6,6},{18,44,22}}

0K, passed 100 tests
true

10 of 37



Wait... what did | just test? ’ ROWESS

11 0f 37



Wait... what did | just test? ’ ROWESS

Peek at samples of generated values:

> eqc_gen:sample(eqc_gen:list(eqc_gen:int())).

[-2,8,-2] [-7]

[] [-16,-10,-2,17,8]
[0,8,6] [11,2,0,-17,4,2]
[11,-11,-4,10] [-10]

[9,-6,-12] [9,12,-12,9,-20,-8,8]

ok

11 0f 37



Wait... what did | just test? ’ ROWESS

Collect statistics from property execution:

prop_simple() ->
?FORALL(I, int(),
?FORALL(L, list(int()),
collect(lists:member(I, L),
not lists:member(I, lists:delete(I, L))))).

12 of 37
I EEEEE———



Wait... what did | just test? ’ ROWESS

Collect statistics from property execution:

> eqc:quickcheck(simple_eqc:prop_simple()).
(...)

0K, passed 100 tests

87% false

13% true

13 of 37



Folk who do not speak Erlang Frowess

= This is good for technical people

= This may not be good enough for other stakeholders

= How do we communicate this to them?

14 of 37



Folk who do not speak Erlang Frowess

= This is good for technical people

= This may not be good enough for other stakeholders

= How do we communicate this to them?

14 of 37



What have others done? ’ ROWESS

cucumber

Simple, human collaboration



What have others done? ’ ROWESS

Feature: Deletion of element from list
In order to operate lists
As a user of the lists module
I want to delete an element from a list

Scenario: Delete integer from list of integers
Given I have the integer 3

And I have the list of integers [0,8,6]

When I use the function lists:delete/2

Then the resulting list should not contain 3

16 of 37
I EEEEE———



What have others done? ROWESS

Compare Searchterms v

Cucumber

Sottware dd term

Beta: Measuring search interest in topics is a beta feature which quickly provides accurate measurements of overall search interest. To
measure search interest for a specific query, select the "search term” option.

Interest over time

Forecast
i
Ad
A
N
AN T
/ 7
" PNVATATS
I'l\s A ! WA f’VY !
RN Y| AR v
NN Y -
AN~
F N N_J
IRV
! N
s
/
-

N
L

17 of 37
I EEEEE———



What have others done? ’ ROWESS

= Original Ruby implementation
= Implementations in many other languages

o Java, JavaScript, Clojure, Lua,.NET, PHP, C++
= Several Erlang implementations

o BravoDelta, Cucumberl, Kucumberl

18 of 37
I EEEEE———



How does it work? Prowess

Feature: Deletion of element from list
In order to operate lists
As a user of the lists module
I want to delete an element from a list

Scenario: Delete integer from list of integers
Given I have the integer 3

And I have the list of integers [0,8,6]

When I use the function lists:delete/2

Then the resulting list should not contain 3

19 of 37
I EEEEE———



How does it work? Prowess

-export([setup/0, teardown/0,
given/3, ’'when’/3, then/3]).

setup() -> [].
teardown() -> ok.

given("I have the integer (\\d+)", State, [Num]) ->
{ok, State ++ [erlang:list_to_integer(Num)]};

20 of 37
I EEEEE———



How does it work? Prowess

'when’ ("I use the function (\\w+)
from the module (\\w+)", State, [F, M]) ->
{ok, erlang:apply(erlang:list_to_atom(M),
erlang:list_to_atom(F), State)}.

21 0f 37
I EEEEE———



How does it work? Prowess

then("the resulting list
should not contain (\\d+)", State, [Num]) ->
Value = erlang:list_to_integer(Num),
case not lists:member(Value, State) of
true -> {ok, State};
false -> {failed, State}
end.

22 of 37
I EEEEE———



How does it work? Prowess

1> kucumberl cli:main([]).
Feature: Deletion of element from list
Scenario: Delete integer from list of integers

Given I have the integer 3 0K
And I have the list of integers 0,8,6 0K
When I use the function delete from the module lists 0K
Then the resulting list should not contain 3 0K

1 Scenarios (0 failed, 1 passed)
4 Steps (0 failed, 4 passed, 0 skipped, 0 not implemented)
ok

23 of 37
I EEEEE———



So... Cucumber or QuickCheck? ’RUWESS

= For testing, definitely QuickCheck!

= But to communicate in a friendly manner to
non-technical stakeholders,
why not follow Cucumber’s example?

24 of 37



readSpec Frowess

= Cucumber-like descriptions for the test cases your
properties produce

o you write QC properties
o readSpec translates them into Cucumber-like features

= QC'’s coverage-based suite generation (eqc_suite)
= Available at:
https://github.com/prowessproject/readspec

25 of 37
I EEEEE———


https://github.com/prowessproject/readspec

eadSpec (i Frowess

prop_simple() ->
?FORALL(I, int(),
?FORALL(L, list(int()),
not lists:member(I, lists:delete(I, L)))).

26 of 37
I EEEEE———



eadSpec (i) Frowess

> readspec:suite(simple_eqc, prop_simple).

Generating feature based test suite...

[line,simple_eqc,19,line,simple_eqc,20]

1 test cases generated.

Generating feature based test suite...

[line,simple_eqc,19,line,simple_eqc,20]

1 test cases generated.

ok

27 of 37
I EEEEE———



eadSpec (i) Frowess

FEATURE: simple ‘File: simple.feature‘
Simple QuickCheck properties

SCENARIO: Deleting an integer from a list should
result in a list that does not
contain that integer.

GIVEN I have the integer 0O

AND I have the list []

THEN lists:member(0, lists:delete(®, [])) IS FALSE.

28 of 37
I EEEEE———



readSpec (i) Frowess

SCENARIO: Deleting an integer from a list should
result in a list that does not
contain that integer.

GIVEN I have the integer 6

AND I have the list [-1, 2, 13, 0O, 5]

THEN lists:member(6, lists:delete(6, [-1,2,13,0,5]))

29 of 37
I EEEEE———



readSpec (iii) ’ ROWESS

= As in test execution, specific values change every time

= Representativity of the examples does not change (empty
list, list with one element, etc.)

= Uses edoc comments if present in source

30 of 37



readSpec (iii) ’ ROWESS

As in test execution, specific values change every time

Representativity of the examples does not change (empty
list, list with one element, etc.)

Uses edoc comments if present in source

Works for counterexamples as well

30 of 37




eadSpec (iv Frowess

> eqc:quickcheck(simple_eqc:prop_simple()).

15

[-13,-15,-2,-17,-20,15,15]

Shrinking XXXXXXXX.XX.XXXXXXXX(2 times)
15

[15,15]

false

31 0f 37



eadSpec (v) Frowess

> C = eqc:counterexample().
[15,[15,15]]

> readspec:counterexample(simple_eqc,
prop_simple, [C]).
ok

32 of 37
I EEEEE———



eadSpec (iv Frowess

‘ File: prop_simple.counterexample. feature‘

GIVEN I have the integer 15

AND I have the list [15, 15]

THEN lists:member(15,lists:delete(15,[15,15]))
IS TRUE

33 of 37



readSpec (V) Frowess

As in test execution, specific values change every time

Representativity of the examples does not change (empty
list, list with one element, etc.)

Uses edoc comments if present in source

Works for counterexamples as well

Works for stateful models as well

34 of 37




VoDKATV: pilot study RUWESS

ADMIN CORE BACKEND

L
THIRD-PARTY APP




VoDKATV: pilot study RUWESS

ADMIN CORE BACKEND

L
THIRD-PARTY APP




VoDKATV: properties Frowess

= What we found about properties written by VoDKATV
developers:
o Heavy use of MACROS and funs (unclear descriptions)
o Heavy re-use of generators (slower suite generation)
o Ambiguities in tuples of arguments, arguments as tuples

36 of 37
I EEEEE———



Conclusions ’ ROWESS

= readSpec offers a different way to present QC artifacts

= use it, report your issues, contribute!

37 of 37
I EEEEE———



Conclusions ’ ROWESS

= readSpec offers a different way to present QC artifacts
= use it, report your issues, contribute!

= and thanks for listening!! :-)

37 of 37
I EEEEE———



