
readSpec
showing QuickCheck results to stake-holders

Laura M. Castro

University of A Coruña

Jun 10, 2015

EUC (tutorial)

1 of 37

Mmm. . . QuickWhat?

QuickCheck:

■ Short version: a testing tool for Erlang

■ Extended version:
ä Powerful alternative to EUnit
ä You write properties/models instead of unit tests
ä Provided by Quviq, not part of OTP
ä Licenced (Quviq QuickCheck Mini runs w/out licence)
ä The original idea was first implemented in Haskell
ä A number of OS clones: PropEr, Triq

2 of 37

Mmm. . . QuickWhat?

QuickCheck:

■ Short version: a testing tool for Erlang

■ Extended version:
ä Powerful alternative to EUnit
ä You write properties/models instead of unit tests
ä Provided by Quviq, not part of OTP
ä Licenced (Quviq QuickCheck Mini runs w/out licence)
ä The original idea was first implemented in Haskell
ä A number of OS clones: PropEr, Triq

2 of 37

Mmm. . . QuickWhat?

QuickCheck:

■ Short version: a testing tool for Erlang

■ Extended version:
ä Powerful alternative to EUnit
ä You write properties/models instead of unit tests
ä Provided by Quviq, not part of OTP
ä Licenced (Quviq QuickCheck Mini runs w/out licence)
ä The original idea was first implemented in Haskell
ä A number of OS clones: PropEr, Triq

2 of 37

What do you mean by powerful?

■ EUnit (manual test design):
ä As many test cases as you can write
ä Same test cases every time

■ QuickCheck (test property definition):
ä As many test cases as you have time to execute
ä Slightly different data/test sequences every time

3 of 37

So, how does it look like?

prop_simple() ->

?FORALL(I, int(),

?FORALL(L, list(int()),

not lists:member(I, lists:delete(I, L)))).

4 of 37

So, how does it look like?

prop_simple() ->

?FORALL(I, int(),

?FORALL(L, list(int()),

not lists:member(I, lists:delete(I, L)))).

5 of 37

So, how does it look like?

prop_simple() ->

?FORALL(I, int(),

?FORALL(L, list(int()),

not lists:member(I, lists:delete(I, L)))).

6 of 37

So, how does it look like?

prop_simple() ->

?FORALL(I, int(),

?FORALL(L, list(int()),

not lists:member(I, lists:delete(I, L)))).

7 of 37

So, how does it look like?

prop_simple() ->

?FORALL(I, int(),

?FORALL(L, list(int()),

not lists:member(I, lists:delete(I, L)))).

8 of 37

And how does it work?

> eqc:quickcheck(simple_eqc:prop_simple()).

Starting Quviq QuickCheck version 1.35.0

Licence for University of A Coruna

reserved until {{2015,6,6},{18,44,22}}

..

..

....

OK, passed 100 tests

true

9 of 37

And how does it work?

> eqc:quickcheck(simple_eqc:prop_simple()).

Starting Quviq QuickCheck version 1.35.0

Licence for University of A Coruna

reserved until {{2015,6,6},{18,44,22}}

..

..

....

OK, passed 100 tests

true

10 of 37

Wait... what did I just test?

Peek at samples of generated values:

> eqc_gen:sample(eqc_gen:list(eqc_gen:int())).

[-2,8,-2] [-7]

[] [-16,-10,-2,17,8]

[0,8,6] [11,2,0,-17,4,2]

[11,-11,-4,10] [-10]

[9,-6,-12] [9,12,-12,9,-20,-8,8]

ok

11 of 37

Wait... what did I just test?

Peek at samples of generated values:

> eqc_gen:sample(eqc_gen:list(eqc_gen:int())).

[-2,8,-2] [-7]

[] [-16,-10,-2,17,8]

[0,8,6] [11,2,0,-17,4,2]

[11,-11,-4,10] [-10]

[9,-6,-12] [9,12,-12,9,-20,-8,8]

ok

11 of 37

Wait... what did I just test?

Collect statistics from property execution:

prop_simple() ->

?FORALL(I, int(),

?FORALL(L, list(int()),

collect(lists:member(I, L),

not lists:member(I, lists:delete(I, L))))).

12 of 37

Wait... what did I just test?

Collect statistics from property execution:

> eqc:quickcheck(simple_eqc:prop_simple()).

(...)

OK, passed 100 tests

87% false

13% true

13 of 37

Folk who do not speak Erlang

■ This is good for technical people

■ This may not be good enough for other stakeholders

■ How do we communicate this to them?

14 of 37

Folk who do not speak Erlang

■ This is good for technical people

■ This may not be good enough for other stakeholders

■ How do we communicate this to them?

14 of 37

What have others done?

15 of 37

What have others done?

Feature: Deletion of element from list

In order to operate lists

As a user of the lists module

I want to delete an element from a list

Scenario: Delete integer from list of integers

Given I have the integer 3

And I have the list of integers [0,8,6]

When I use the function lists:delete/2

Then the resulting list should not contain 3
16 of 37

What have others done?

17 of 37

What have others done?

■ Original Ruby implementation

■ Implementations in many other languages
ä Java, JavaScript, Clojure, Lua,.NET, PHP, C++

■ Several Erlang implementations
ä BravoDelta, Cucumberl, Kucumberl

18 of 37

How does it work?

Feature: Deletion of element from list

In order to operate lists

As a user of the lists module

I want to delete an element from a list

Scenario: Delete integer from list of integers

Given I have the integer 3

And I have the list of integers [0,8,6]

When I use the function lists:delete/2

Then the resulting list should not contain 3
19 of 37

How does it work?

-export([setup/0, teardown/0,

given/3, ’when’/3, then/3]).

setup() -> [].

teardown() -> ok.

given("I have the integer (\\d+)", State, [Num]) ->

{ok, State ++ [erlang:list_to_integer(Num)]};

...
20 of 37

How does it work?

’when’ ("I use the function (\\w+)

from the module (\\w+)", State, [F, M]) ->

{ok, erlang:apply(erlang:list_to_atom(M),

erlang:list_to_atom(F), State)}.

21 of 37

How does it work?

then("the resulting list

should not contain (\\d+)", State, [Num]) ->

Value = erlang:list_to_integer(Num),

case not lists:member(Value, State) of

true -> {ok, State};

false -> {failed, State}

end.

22 of 37

How does it work?

23 of 37

So... Cucumber or QuickCheck?

■ For testing, definitely QuickCheck!

■ But to communicate in a friendly manner to

non-technical stakeholders,

why not follow Cucumber’s example?

24 of 37

readSpec

■ Cucumber-like descriptions for the test cases your
properties produce
ä you write QC properties
ä readSpec translates them into Cucumber-like features

■ QC’s coverage-based suite generation (eqc_suite)

■ Available at:

https://github.com/prowessproject/readspec

25 of 37

https://github.com/prowessproject/readspec

readSpec (ii)

prop_simple() ->

?FORALL(I, int(),

?FORALL(L, list(int()),

not lists:member(I, lists:delete(I, L)))).

26 of 37

readSpec (ii)

> readspec:suite(simple_eqc, prop_simple).

Generating feature based test suite...

[line,simple_eqc,19,line,simple_eqc,20]

1 test cases generated.

Generating feature based test suite...

[line,simple_eqc,19,line,simple_eqc,20]

1 test cases generated.

...

ok

27 of 37

readSpec (ii)

FEATURE: simple File: simple.feature

Simple QuickCheck properties

SCENARIO: Deleting an integer from a list should

result in a list that does not

contain that integer.

GIVEN I have the integer 0

AND I have the list []

THEN lists:member(0, lists:delete(0, [])) IS FALSE.

28 of 37

readSpec (ii)

...

SCENARIO: Deleting an integer from a list should

result in a list that does not

contain that integer.

GIVEN I have the integer 6

AND I have the list [-1, 2, 13, 0, 5]

THEN lists:member(6, lists:delete(6, [-1,2,13,0,5])) IS FALSE.

...
29 of 37

readSpec (iii)

■ As in test execution, specific values change every time

■ Representativity of the examples does not change (empty

list, list with one element, etc.)

■ Uses edoc comments if present in source

■ Works for counterexamples as well

30 of 37

readSpec (iii)

■ As in test execution, specific values change every time

■ Representativity of the examples does not change (empty

list, list with one element, etc.)

■ Uses edoc comments if present in source

■ Works for counterexamples as well

30 of 37

readSpec (iv)

> eqc:quickcheck(simple_eqc:prop_simple()).

..

....................Failed! After 69 tests.

15

[-13,-15,-2,-17,-20,15,15]

Shrinking xxxxxxxx.xx.xxxxxxxx(2 times)

15

[15,15]

false

31 of 37

readSpec (iv)

> C = eqc:counterexample().

[15,[15,15]]

> readspec:counterexample(simple_eqc,

prop_simple,[C]).

ok

32 of 37

readSpec (iv)

File: prop_simple.counterexample.feature

GIVEN I have the integer 15

AND I have the list [15, 15]

THEN lists:member(15,lists:delete(15,[15,15]))

IS TRUE

33 of 37

readSpec (v)

■ As in test execution, specific values change every time

■ Representativity of the examples does not change (empty

list, list with one element, etc.)

■ Uses edoc comments if present in source

■ Works for counterexamples as well

■ Works for stateful models as well

34 of 37

VoDKATV: pilot study

35 of 37

VoDKATV: pilot study

35 of 37

VoDKATV: properties

■ What we found about properties written by VoDKATV
developers:
ä Heavy use of MACROS and funs (unclear descriptions)
ä Heavy re-use of generators (slower suite generation)
ä Ambiguities in tuples of arguments, arguments as tuples

36 of 37

Conclusions

■ readSpec offers a different way to present QC artifacts

■ use it, report your issues, contribute!

■ and thanks for listening!! :-)

37 of 37

Conclusions

■ readSpec offers a different way to present QC artifacts

■ use it, report your issues, contribute!

■ and thanks for listening!! :-)

37 of 37

