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Fundamental Trade Off

Low Latency/Availability:
- Increased Revenue
- User Engagement

| e Lipton/Sandberg 88|
e Attiya/Welch '94
e Gilbert/Lynch'02 |

Strong Consistency:
- Easier for Programmers
- Less user “surprise”
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Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems): Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
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TEMPORAL TIME
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Logical Clocks
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Logical Clocks
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TODO: What should we do???




Timestamp based reconciliation

155196119890 > 155196118001
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Business Logic/Semantic Reconciliation
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Logical Clocks
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Removes?
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Removes?

“merging” different versions of a customer’s shopping cart. Using
this reconciliation mechanism, an “add to cart” operation is never

lost. However, deleted items can resurface.




Google F1

“Designing applications to cope
with concurrency anomalies In
their data is very error-prone,
time-consuming, and ultimately
not worth the performance

gains.”



"...writing merge functions was
Ikely to confuse the hell out of
all our developers and slow
down development...

http://www.infog.com/articles/key-lessons-learned-from-
transition-to-nosq|



CRDTs

DATA TYPES
That CONVERGE




CRDTs

Off the shelf
MERGE functions




CRDTs

CRDTs are Data Types
(maps/sets/booleans/graphs/
etc)

THAT CONVERGE
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INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A comprehensive study of
Convergent and Commutative Replicated Data Types

Marc Shapiro, INRIA & LIP6, Paris, France
Nuno Preguiga, CITI, Universidade Nova de Lisboa, Portugal
Carlos Baquero, Universidade do Minho, Portugal
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"...after some analysis we found that
much of our data could be modelled
within sets so by leveraging CRDT's our
developers don't have to worry about
writing bespoke merge functions for 95%
of carefully selected use cases...”

http://www.infog.com/articles/key-lessons-learned-from-
transition-to-nosq|



Evelution of a
CRDT Set



Evolutiontef a Set
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Removes?



Evolutiontef a Set

G-SET
2P-SET
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ACIAS REMONES
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ACIAS REMONES



Evolutiontef a Set

U-SET
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Evolutiontef a Set

U-SET
OR-SET




Evolutiontef a Set
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Semantics

Add
Wins



Evolutiontef a Set

AVW-SET
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Evolutiontef a Set

OR-SWOT



Evolutiontef a Set
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Version Vectors




Version Vectors
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Replica A Replica B
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Replica A Replica B
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Replica A Replica B

[{a, 2}, {b, 3}] [{a, 1}, {b, 4}]
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Replica A Replica B MERGE
[{a, 2}, {b, 3}] [{a, 1}, {b, 4]
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Replica A Replica B MERGE
[{a, 2}, {b, 3}] [{a, 1}, {b, 4]

I_l Phil —




[{a, 2}, {b, 4}]




CRDT Sets

a semantic of “Add-Wins”
via
“Observed Remove”



SETS In RIAK 2.0+

riak_dt_orswot

Version Vector

[{vhodeA, 10}, {vnodeB, 4}, {vhodeC,11}...]

Entrie?
Bob = o [{vnodeA, 2}]
Cameron =P [{vnodeB, 2}, {vhodeC, 5}]
Charlene —» [{vnodeB, 4}]
Deferred Ops
[{vhodeA, 4}, {vhodeX, 22}] P Tim
[{vnodeB, 7}] > Zooey




Riak 2.0

riak_dt -> Riak Data Types

riak_dt orswot

Version Vector
[{vhodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]
TN
Entries
Bob = o [{vnodeA, 2}]
Cameron =P [{vnodeB, 2}, {vhodeC, 5}]
Charlene = o [{vnodeB, 4}]
Deferred Ops
[{vnodeA, 4}, {vhodeX, 22}] P Tim
[{vnodeB, 7}] > Zooey




Sets In Riak

riak_dt orswot

Version Vector

[{vhnodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

Entrie?
Bob P [{vnodeA, 2}]
Cameron =P [{vhodeB, 2}, {vhodeC, 5}]
Charlene —P» [{vnodeB, 4}]
Deferred O}?
[{vnodeA, 4}, {vnodeX, 22)] =P Tim
[{vnodeB, 7}] > Zooey

An optimized conflict-free replicated set
Annette Bieniusa et al
http://arxiv.org/abs/1210.3368
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WHO USES THE LIB?
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Read

Writes
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ACTORS



HOW TO USE
THE LIB?



SHOPPING CART

[HAIRDRYER, PENCIL CASE]




ZUCK’s FOLLOWERS?
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ZUCK'’s FOLLOWERS
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[{A1, B5}]

remove “Shelly”
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Sets in Riak

* Operation Based AP

* With causal Context for removes!
e \V\node As Actor/Replica

* Action-at-a-distance

* Full state replication



Sets In Riak

riak_dt orswot

Version Vector

[{vhnodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

Entrie?
Bob P [{vnodeA, 2}]
Cameron =P [{vhodeB, 2}, {vhodeC, 5}]
Charlene —P» [{vnodeB, 4}]
Deferred O}?
[{vnodeA, 4}, {vnodeX, 22)] =P Tim
[{vnodeB, 7}] > Zooey

An optimized conflict-free replicated set
Annette Bieniusa et al
http://arxiv.org/abs/1210.3368
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Sets in Riak

Version Vector

[{vhodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

#r_conterh
Metadata |

Dot —3P»| {vnodeA, 4}
27?7 —P» 27?7
EE—— ?27?7?7?




Sets in Riak
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Sets in Riak

OTO © 2011 J. RONALD LEE, CC ATTRIBUTION 3.0.
https://www.flickr.com/photos/jronaldlee/5566380424
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REPLICATE
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Problem??

o Tkey -> 1 Set
 Poor Write speed

o Can't have “big” sets



Every time we change the
set we read and write the
whole set!
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Sets In Riak

Small : riak object
TMB [imit



Bigsets:
Make writes faster
ana
sets bigger



Bigset Design: Overview

™
LevelDb

{SetX, VnodeA, clock} <

{SetX, VnodeA, tombstone}

{SetX, Bob, VnodeA, 2}

{SetX, Cameron, VnodeB, 2}

{SetX, Cameron, VnodeC, 5}

{SetX, Charlene, VnodeB, 4}

{SetX, endkey} <




riak dt orswot

Version Vector

|

[{vnodeA, 10}, {vhadeB, /}, {vnodeC,11}...]

vnode\t(a&«a?cq

—» {Setx,\QodeA, clock} <
: {SetX, VnodeA, tombstone} ¢
Entrles|
—” {SetX, Bob, VnodeA, 2}
Bob [{vnodeA, 2}]
—|  {(SetX, Cameron, VnodeB, 2}
Cameron f=> [{vnodeB, 2}, {vnodeC, 5}]
- {SetX, Cameron, VnodeC, 5}
Charlene l < [{vnodeB, 4}] T ——
{SetX, Charlene, VnodeB, 4}
Deferred Ops | \l {SetX, endkey}
[{vnodeA, 4}, {vnodeX, 22)] J=b Tim

[{vnodeB, 7}] ' Zooey
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Reads!
Version Vector!
Hand-Off!
AAE!
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clock

— Read Clock

set-tombstone

element-|

lterate keys

element-N

end_key

clock

riak _dt orswot

set-tombstone

Version Vector

element-| [{vnodeA, 10}, {vnodeB, #}, {vnodeC,11}...]

Entrie?]

I -N
element Bob 1=> [{VnOdeA, 2}]
end_key Cameron ¥ [{vnodeB, 2}, {vnodeC, 5}]
Charlene = [{vhodeB, 4}]




clock

set-tombstone

element-|

element-N

end_key

riak_dt_orswot

Version Vector

[{vnodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

Entries |

Bob S [{vnodeA, 2}]
Cameron | [{vnodeB, 2}, {vnodeC, 5}]
Charlene S [{vnodeB, 4}]

| ) ——

— Read Clock

lterate each key




clock

— Read Clock

set-tombstone

element-|

100k buffer of keys

C++

Version Vect
[{vnodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

Entries |

element-N

end_key

Bob S [{vnodeA, 2}]
Cameron | [{vnodeB, 2}, {vnodeC, 5}]
Charlene S [{vnodeB, 4}]

) ey



<<Set, \0, $¢c, \0, Actor, \0>>

<<Set, \0, $e, \O, Element-1, \0,

Actor, Cnt:/64/big-unsigned- N O S eXt

Integer=>>=

<<Set, \0, $e, \0, Element-1, \0, NO TZB

Actor; Cnt:/64/big-unsigned-
Integer=>>

<<Set, \0, 7%z, \0, \0>>



Bigset Design: read

blockN blockN

block1  block

elenisigl Incremental merge

prCkN
biock 1
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Reads loday
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Full Set Read or Queries?
Why read the whole set”?

'Cos you HAVE TO!



Full Set Read or Queries?
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Full Set Read or Queries?
Why read the whole set”?

'Cos you HAVE TO!



Bigset Queries

e Subset
e [s Member?
 Range queries SORTED!

* Pagination



Removes

e Observed-Remove - context
 Requires _some kind_ of read

* cheap membership check



s Member(X)

read(<<bob>>)

read fsm

IS_member(<<bob>>).

Client X



's Member(X)

read clock ~_

ReplicaA, clocl 3 (b3
Seek <<bob>> [, 35, {b,3}]
— ST

{<<bob>>,a, |}

{<<bob>>, b, 2}

{<<shelly>>,b, I}

{ReplicaA, end_key}



's Member(X)

read clock
\
ReplicaA, clock 31 1h3
Seek <<bob>> [, 35, {b,3}]

'lllllllllllllllllllllllllllllllllllllllllllllllll:'lllllllllllllllllllllllllllllllllllllllllllllllll:
. nt .

{<<bob>>,a, |}

{<<bob>>, b, 2}




s Member(X)

[{a, 3}, {b,3]] [{a,3}, fc, 1}]
<<bob>> [{a,1}, {b,2}] <<bob>>

<<bob>> Set

v

\4




s Member(X)
[{a,3}, {c, 1}]

<<bob>> e ot

{true, [{b,2}, {c, 1}]} c v
> lent
[{a, 3}, {b,3]]

<<bob>> [{a, 1}, {b,2}]

(52] fc.1]




Next?

- Other “Big” Types - Maps

- Quorum Read Secondary Indexes
- Big Sets of Maps - Tables

- Joins? SQL?



Summary

- CRDTs make eventual consistency easier
on developers

- There exists an Optimised Add-Wins Set...

- |t takes more more than a lib

- Alittle engineering goes a long way



Bigset Paper
https://arxiv.org/abs/1605.06424
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WE’RE HIRING!

UK Client Service Engineer
Developer Advocate EMEA
bashojobs.theresumator.com

VISIT OUR STAND

Experience our Riak TS demo and be
entered to win a Scalextric set!

Get your invitation to our loT Riak TS
Roadshow
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