Bigsets...CRDT sets
but BIGGER

Russell Brown, Basho Technologies
russelldb@basho.com

mailto:russelldb@basho.com

N SYMCFREE /X

This project is funded by the European
Union,
/th Research Framework Programme, ICT
call 10,
grant agreement n°609551.

4 Sections
1.What are CRDTs (good for)?

2.History of CRDT Sets
3.Sets in Riak

4. Bigger Sets in Riak

mCRDTS?

Fundamental Trade Off

Low Latency/Availability:
- Increased Revenue
- User Engagement

| e Lipton/Sandberg 88|
e Attiya/Welch '94
e Gilbert/Lynch'02 |

Strong Consistency:
- Easier for Programmers
- Less user “surprise”

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems): Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available

Created by Creative Stall
from Noun Project

—
a’

Created by Creative Stall
from Noun Project

Created by Creative Stall
from Noun Project

Created by Creative Stall
from Noun Project

Created by Creative Stall Created by Creative Stall
from Noun Proz:ct from Noun Project
- - . . E = = == == = = = = = = = = =H =5 =5 =5 =H =5 =H =H =H =5 = =H =5 =H = = = &= &= =

5000080
L L 1L 1 1

Yol by Puvghn June reatend by Puvgan Juse reatenl Gy Puvgan use reatenl by Fuvgan Juse rentend by Puvgan Juse restend by Fuvgan Juse reaten) by Puvgar Juse reaten) by Puvghn Juse reated ry Puvghn June reutenl Gry Puvghn Juse reatend by Puvgan Juse reatenl Gy Puvgan use

v Ny Py g Vorm Neaany Py Vo N Py R Vorm Ny Py Vowm Neaay Py R Vo Ny Py Vorm Neaay Py g Vo N Py g Vorm ey Py Vo N Py

Created by Creative Stall Created by Creative Stall
from Noun Project from Noun Project

REPLICATE

Created by Creative Stall
from Noun Project

Created by Creative St
from Noun Project

PUT

GET

+-——

UPDATE

|

o O

Created by Amy Schwartz
from the Noun Project

Created by Amy Schwartz
from the Noun Project

 E——
Created by Creative Stall Created by Creative St
from Noun Project from Noun Project

Created by Amy Schwartz

from the Noun Frojeot Created by Amy Schwartz

from the Noun Project

Created by Creative Stall
from Noun Project

£

Created by Charlie Bob Gordon
from Noun Project

Created by Creati
from Noun Pres

TEMPORAL TIME

a’

Created by Creative Stall
Created by Creative Stall from Noun Project Created by Creative Stall
from Noun Project P UT G ET from Noun Project P UT
e Y T o o g T I g I g e g o ol o o o T T

Created by Creative Stall

rom Noun Project
GET

—
——

]

o o o o

Created by Amy Schwartz Created by Amy Schwartz Created by Amy Schwartz Created by Amy Schwartz
from the Noun Project from the Noun Project from the Noun Project from the Noun Project

Logical Clocks

write
handled by Sx

v

D1 ([Sx,1])

write

happens betore handled by Sx

v

D2 ([Sx,2])

write write
handled by Sy handled by Sz

concurrent

, D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])
divergent

reconciled
and wntten by

convergent D5 ([Sx.3L.[Sy.11[Sz,1])

Logical Clocks

write
handled by Sx

v

D1 ([Sx,1])

write

happens before handled by Sx

v

D2 ([Sx 2])

, wnte -
_ .' =T andled by Sy handied by Sz &

Concuwent
dlvergent

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

reconciled
and wntten by

convergent D5 ([Sx 3] [Sy,1][Sz 1])

if {resultlhaSConfiicts{)) {
TODO: What should we do???

Timestamp based reconciliation

155196119890 > 155196118001

O O

reated by Amy Schwartz
rom the Noun Project

Created by Amy Schwartz
from the Noun Project

Created by Amy Schwartz
from the Noun Project

Business Logic/Semantic Reconciliation

Created by Amy Schwartz Created by Amy Schwartz
from the Noun Project from the Noun Project

Created by Amy Schwartz
from the Noun Project

Logical Clocks

write
handled by Sx

v

D1 ([Sx,1])

write

happens before handled by Sx

v

D2 ([Sx,2])

write write
handled by Sy handled by Sz

concurrent
divergent

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1])

ST L ~w T NSRS
= oy

.»_.‘

and written by %
Sx

Y
. -
AL
= N Ay N

o L SRE -

convergent

D5 ([Sx,3],[Sy.11[Sz,1])

2T o

- c “' ﬂ". b "’4_""' "- o
el - _ B G P -~

Removes?

TEMPORAL TIME

>reated by Creative Stall Created by Creative Stall
rom Noun Project Created by Creative Stall from Noun Project Created by Creative Stall
G ET from Noun Project P UT G ET from Noun Project P UT

O o

Created by Amy Schwartz
from the Noun Project Created by Amy Schwartz Created by Amy Schwartz
from the Noun Project
Created by Amy Sc_:hwartz] from the Noun Project
from the Noun Project

—
a’

Created by Creative Stall Created by Creative Stall
from Noun Project from Noun Project

Created by Amy Schwartz Created by Amy Schwartz

o AL — RAT i Yo" & frnrms Fha MNMAarmm Deaiasd

by Creative Stal
Noun Project

Created by BenPixels
from Noun Progect

Reated by Dara Ulirich
poun Project

Removes?

“merging” different versions of a customer’s shopping cart. Using
this reconciliation mechanism, an “add to cart” operation is never

lost. However, deleted items can resurface.

Google F1

“Designing applications to cope
with concurrency anomalies In
their data is very error-prone,
time-consuming, and ultimately
not worth the performance

gains.”

"...writing merge functions was
Ikely to confuse the hell out of
all our developers and slow
down development...

http://www.infog.com/articles/key-lessons-learned-from-
transition-to-nosq|

CRDTs

DATA TYPES
That CONVERGE

CRDTs

Off the shelf
MERGE functions

CRDTs

CRDTs are Data Types
(maps/sets/booleans/graphs/
etc)

THAT CONVERGE

oJdall £u i |

ZINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A comprehensive study of
Convergent and Commutative Replicated Data Types

Marc Shapiro, INRIA & LIP6, Paris, France
Nuno Preguiga, CITI, Universidade Nova de Lisboa, Portugal
Carlos Baquero, Universidade do Minho, Portugal

Marek Zawirski, INRIA & UPMC, Paris, France

"...after some analysis we found that
much of our data could be modelled
within sets so by leveraging CRDT's our
developers don't have to worry about
writing bespoke merge functions for 95%
of carefully selected use cases...”

http://www.infog.com/articles/key-lessons-learned-from-
transition-to-nosq|

Evelution of a
CRDT Set

Evolutiontef a Set

G-SET

Replica A
Shelly
BOD

Péete
Ahna

Replica B

Alex
Shelly

Replica A
Shelly
BOD

Péete
Ahna

Replica B

Alex
Shelly

Removes?

Evolutiontef a Set

G-SET
2P-SET

ACICS REMONES
Shelly Shelly

fpets

e
2P-SET

ACIAS REMONES

aluey/= Structure

ACIAS REMONES

| changed
my‘mind!

ACIAS REMONES

Evolutiontef a Set

U-SET

Replica A Replica B

Shelly BN ATEX

-l 6F ISHETY

1
2

9 | Pete
4 FARha

1,6 "Shelly

Evolutiontef a Set

U-SET
OR-SET

Evolutiontef a Set

Wi\ oJik= |

AW-SET

Replica A

EVES
Shelly
2 Bob

3 Pete

Replica B

1,5 Shelly

2 Bob

3 Pete

4 Anna

Observed
Remove

Semantics

Add
Wins

Evolutiontef a Set

AVW-SET

I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

An Optimized Conflict-free Replicated Set

Annette Bieniusa, INRIA & UPMC, Paris, France
Marek Zawirski, INRIA & UPMC, Paris, France
Nuno Preguica, CITI, Universidade Nova de Lisboa, Portugal
Marc Shapiro, INRIA & LIPS, Paris, France
Carlos Baquero, HASLab, INESC TEC & Universidade do Minho, Portugal
Valter Balegas, CITI, Universidade Nova de Lisboa, Portugal

Sél‘giO Duarte cIT1, Universidade Nova de Lisboa, Portugal

Evolutiontef a Set

OR-SWOT

Evolutiontef a Set

W I\ VYW WV I

Optimised
AW-SET

Version Vectors

Version Vectors
[ta, 24, {b, 1]]
@

A

°
&

S

EVENTS/TAGS

Replica A

Replica A Replica B

[{a, 1}]

o

Replica A Replica B

[{a, 1}, {b, 3}]

[{a, 1}]

Replica A Replica B

[{a, 1}, {b, 3}]

[{a, 1}, {b,3}]

<

Replica A Replica B

[{a, 2}, {b, 3}] [{a, 1}, {b, 4}]

{b, 2} Phil

{b, 3} | Pete

Replica A Replica B

[{a, 1}, {b, 4}]

[{a, 2}, {b, 3}]

>

{6, 2} =l [{a: 2}, {b; 3]

il

‘= a2} {b, 3}]

Replica A Replica B MERGE
[{a, 2}, {b, 3}] [{a, 1}, {b, 4]

ta, 2} M- [{a, 1}, {b, 4}]

Anna

Replica A Replica B MERGE
[{a, 2}, {b, 3}] [{a, 1}, {b, 4]

I_l Phil —

[{a, 2}, {b, 4}]

CRDT Sets

a semantic of “Add-Wins”
via
“Observed Remove”

SETS In RIAK 2.0+

riak_dt_orswot

Version Vector

[{vhodeA, 10}, {vnodeB, 4}, {vhodeC,11}...]

Entrie?
Bob = o [{vnodeA, 2}]
Cameron =P [{vnodeB, 2}, {vhodeC, 5}]
Charlene —» [{vnodeB, 4}]
Deferred Ops
[{vhodeA, 4}, {vhodeX, 22}] P Tim
[{vnodeB, 7}] > Zooey

Riak 2.0

riak_dt -> Riak Data Types

riak_dt orswot

Version Vector
[{vhodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]
TN
Entries
Bob = o [{vnodeA, 2}]
Cameron =P [{vnodeB, 2}, {vhodeC, 5}]
Charlene = o [{vnodeB, 4}]
Deferred Ops
[{vnodeA, 4}, {vhodeX, 22}] P Tim
[{vnodeB, 7}] > Zooey

Sets In Riak

riak_dt orswot

Version Vector

[{vhnodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

Entrie?
Bob P [{vnodeA, 2}]
Cameron =P [{vhodeB, 2}, {vhodeC, 5}]
Charlene —P» [{vnodeB, 4}]
Deferred O}?
[{vnodeA, 4}, {vnodeX, 22)] =P Tim
[{vnodeB, 7}] > Zooey

An optimized conflict-free replicated set
Annette Bieniusa et al
http://arxiv.org/abs/1210.3368

http://arxiv.org/abs/1210.3368

WHO USES THE LIB?

<
2
S—

B

s
N

who’s the actor?

Client 10000

Client 10000

B

A

=1 | o=
i

c1 1} SheIIy

Read

Writes

REPLICAS
ACTORS

HOW TO USE
THE LIB?

SHOPPING CART

[HAIRDRYER, PENCIL CASE]

ZUCK’s FOLLOWERS?

..

..

..

| zuck's FOLLOWERS [y gl IR S SS
e — ecry o cenl | lpexy vy oo ey ey e cony o

ZUCK's FOLLOWERS o ey e s g v

Add “Shelly” Add “Bob”

Client Y

ZUCK'’s FOLLOWERS

remove “Shelly’

Client X

ZUCK's FOLLOWERS [Cy =

) wany enep suep saep wvep eep wenp wesy wesy sesy suep see
N A

remove “Bob”

Client Y

Observed
Remove

ZUCK'’s FOLLOWERS

J eeep eeey

o) seey seeg seey seey

) A

eeey ssep esep seey saep ssep seey

J esep esep eeey

o) seep

Client X

[over coer cees es e e ey s ey ey ey ey

“sey sssy ssep ssep sesy sesy sesp sesy sesy sesy sesy sesy sesy

ceey

Seap sesp sesy sesp sesy sesy seey

eeep seeg ssep ssep seey

ZUCK'’s FOLLOWERS

Client Y

[vs conr vuer venr cer vaeg ey g g ey vy ey

“eap sesy sesy seap sesp sesy sesy sesy sesy sesy sesy sesy seeg

eeep seep seep o

csep sesp sesp o

N) P

~

esey sssy ssey sssp sesy sesy sssp sesp sesy sesy sesy

esey seey ssep ssep sesy seep ssep seep seep seep sesy

ceep seep seep sesy

[over coer cees ves e e ey s ey ey ey ey

Yy

' ey weap waey weap saey aeap seey wesp sney avey snep sasy seep
ZUCK's FOLLOWERS [Cy =
! ’

ZUCK'’s FOLLOWERS

remove “Bob”
[{A1, B5}]

remove “Shelly”
[{A3, B4}]

Sets in Riak

* Operation Based AP

* With causal Context for removes!
e \V\node As Actor/Replica

* Action-at-a-distance

* Full state replication

Sets In Riak

riak_dt orswot

Version Vector

[{vhnodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

Entrie?
Bob P [{vnodeA, 2}]
Cameron =P [{vhodeB, 2}, {vhodeC, 5}]
Charlene —P» [{vnodeB, 4}]
Deferred O}?
[{vnodeA, 4}, {vnodeX, 22)] =P Tim
[{vnodeB, 7}] > Zooey

An optimized conflict-free replicated set
Annette Bieniusa et al
http://arxiv.org/abs/1210.3368

http://arxiv.org/abs/1210.3368

Sets in Riak

Version Vector

[{vhodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

#r_conterh
Metadata |

Dot —3P»| {vnodeA, 4}
27?7 —P» 27?7
EE—— ?27?7?7?

Sets in Riak

vhode backem

<<key>>

<<key>>

<<key>>

<<key>>

<<key>>

<<key>>

<<key>>

<<key>>

Sets in Riak

OTO © 2011 J. RONALD LEE, CC ATTRIBUTION 3.0.
https://www.flickr.com/photos/jronaldlee/5566380424

https://www.flickr.com/photos/jronaldlee/5566380424

ZUCK'’s FOLLOWERS

Add “Shelly”

ZUCK's FOLLOWERS [y =2

’ LT) ’ I
7 i ooon 7 7
’ fj eoop ’ ’

ZUCK's FOLLOWERS [y 2

7 fj 000f 7 7
’ fj coof ’ ’
’ ALY ! ’

ZUCK's FOLLOWERS [y 2

’ f; 000 7 7
’ £ ooch ’ !
1 1 v 1 !

ZUCK'’s FOLLOWERS

cesy

ey

cesy

op esey esey

ceep seey

ceep eeey

ceep seey

cesy
Y]

Y]

']I

ceep o

cesp sesy
ceep eeey

ceep seey

[conf oo

vesy

Y]

sesy

y oeseqp e

cesy

ey

cesy

oy eeey

cesy

ooy

Y]

Y

ceey

Yy

.7

L7

sesp sesy seey

ceap sesp seey

sesp sesy seey

sesy sesy

zucks FOLLOWERS [y 2

zucks FOLLOWERS [y 2

ZUCK's FOLLOWERS [y 2

’ f; 000 7 7
’ £ ooch ’ !
1 1 v 1 !

ZUCK's FOLLOWERS [y 2

7 fj 000f 7 7
’ fj coof ’ ’
’ ALY ! ’

REPLICATE

ZUCK's FOLLOWERS [y =2

’ LT) ’ I
7 i ooon 7 7
’ fj eoop ’ ’

zucks FOLLOWERS [y gl [N |

r ’ I I r r I r r r I
ZUCK'’s FOLLOWERS
deap weny weny weay eaey saey saep suep vep ey weny wesy sesy

ZUCKs FOLLOWERS [y 2

..

ZUCKs FOLLOWERS [y muy gl S

Problem??

o Tkey -> 1 Set
 Poor Write speed

o Can't have “big” sets

Every time we change the
set we read and write the
whole set!

SPU0J2S0IDI

Elements

30000

AN
20000

Latency (m

J

W
o

0000

N

l.atepcy (ms)

<O

o,
@ 30000 -

20000
o

Laten

J

—
@ 30000 -

= 20000
>L VUV

OO
0000

Latenc

~
J

14 NN
0000 -

N0 -
Q000

0

N
o -
o

Mean, Median, and 95th Percentile Latency

S

99th Percentile Latency

Throughput

Elapsed Secs

insert

Elapsed Secs

insert

TN
v

1000

N N N S N ST

.‘I

P

250

250

500

atef

Elapsed Secs

99.9th Percentile Latency
insert

Maximum Latency

500

Elapsed Secs

Elapsed Secs

1000

1000

1000

10k sets, 100k elements, 50 workers - write

AR _ B LN J

1250

Response
B error
= ok

Percentile
95th
mean

" median

Percentile
= 90th

Percentile
= 99.9th

Percentile
- max

Sets In Riak

Small : riak object
TMB [imit

Bigsets:
Make writes faster
ana
sets bigger

Bigset Design: Overview

™
LevelDb

{SetX, VnodeA, clock} <

{SetX, VnodeA, tombstone}

{SetX, Bob, VnodeA, 2}

{SetX, Cameron, VnodeB, 2}

{SetX, Cameron, VnodeC, 5}

{SetX, Charlene, VnodeB, 4}

{SetX, endkey} <

riak dt orswot

Version Vector

|

[{vnodeA, 10}, {vhadeB, /}, {vnodeC,11}...]

vnode\t(a&«a?cq

—» {Setx,\QodeA, clock} <
: {SetX, VnodeA, tombstone} ¢
Entrles|
—” {SetX, Bob, VnodeA, 2}
Bob [{vnodeA, 2}]
—| {(SetX, Cameron, VnodeB, 2}
Cameron f=> [{vnodeB, 2}, {vnodeC, 5}]
- {SetX, Cameron, VnodeC, 5}
Charlene l < [{vnodeB, 4}] T ——
{SetX, Charlene, VnodeB, 4}
Deferred Ops | \l {SetX, endkey}
[{vnodeA, 4}, {vnodeX, 22)] J=b Tim

[{vnodeB, 7}] ' Zooey

INnitial Results

* o
..
a L3
w
o
C
8 o »
@
o
9 o
3] *
=

Elements

15000

Throughput

- . e .' :.. | . | . :\
§ e Response
@ = error
8 5000 - = ok
0 250 500 750 1000 1250
Elapsed Secs
Mean, Median, and 95th Percentile Latency
. insert
»12.5-
é'c- 0 Percentile
10 95th
Q 7.5~
= mean
% 5.0 - _ median
25-
0 250 500 750 1000 1250
Elapsed Secs
99th Percentile Latency
. insert
w16~ -
E . - - = °
=14 PR R PPPEIL I VOO | /. . P Byt o LR T L et i Al Y Percentiie
8. oty - o] e ltde P . ety ¥ s ct. s T, Wl » & - A AT Bt : S = 90th
%'Z . ‘.‘3 \..’:o ' - 3.‘. ". .0 “Peey T~ . 0.‘: . .':.1 o oo .t. .': "‘.2." * A, ':.‘ s '? o€
10- | . . ’ . o - .
0 250 500 750 1000 1250
Elapsed Secs
99.9th Percentile Latency
. insert
m .
§f1 00 - . .
3 . - o Percentile
S 50- +99.9th
5 |
1250
Elapsed Secs
Maximum Latency
insert
’a -
E.120- - -
> = . . . Percentile
g 80 = max
D 40-
3

500 750 1000 1250
Elapsed Secs

10k sets, 100k elements, 50 workers - write

o
N
-
o

Throughput

Throughput

1200 15000 .
; ? wew % i 3
Qo 900 o " -
3 AN 8 10000
a 600 B
Q S 5000-
O 300 (@]
0- , ‘ 0- ' . . .
0 250 500 750 0 250 500 750
Elapsed Secs Elapsed Secs
Mean, Median, and 95th Percentile Lat Mean, Median, and 95th Percentile Latency
insert insert
» 30000 wi2h- = s - —
‘c’-“"r"‘ - P . . . e ‘c, 7.5~
S 0000 - ° ‘ - 9 5.0- ¢ . L
S o , : . s 3 2s- . ' :
0 250 500 750 0 250 500 750
Elapsed Secs Elapsed Secs
99th Percentile Latency 99th Percentile Latency
insert insert
TéT:u': 000 - ’Ea?T 6-
20000 .v - L e 14
%) o
g 10000 - 7o~ el e] o 4 g 12
3 |‘: : L L L L L ----’ S EIE @0 W EmEne ® = .c——o-'—uuoc - - 3 .AC') . .
0 250 500 750 0 250 500 750
Elapsed Secs Elapsed Secs
99.9th Percentile Latency 99.9th Percentile Latency
insert insert
B 30001 M
é. gt 00 - . .
>‘ZC o0 - . -
Q Q
& 10000 & 50-
S |:) - - LR 1 - . - l' L - . L LR L - LA S
0 250 500 750 0 50 500
Elapsed Secs Elapsed Secs
Maximum Latency Maximum Latency
insert insert
@ 30000 - M
s E120- . .
20000 - o
8 » 8 80
g 10000 S 4.
S |: ‘I - LR 2 . . - . L e = L LR L - LA S
0 250 500 750 0))0
Elapsed Secs Elapsed Secs

10k sets, 100k elements, 50 workers - write

bobc12

_—

‘ Zooey b 97 ‘

Add “Shelly”

bobc12

_—

‘ Zooey b 97 ‘

[{a, 10}, {b 99}...{z, 89}]

B — | 1. 101 (991 ¢z, 89y

bobc12

‘ Zooey b 97 \

[{a, 11}, {b 99}...{z, 89}]

Shelly a 11

B — | 1. 101 (991 ¢z, 89y

bobc12

‘ Zooey b 97 \

bobc12

.)

‘ Zooey b 97 ‘

Shellya 11

REPLICATE

bobc12
Shellva 11 |

Zooey b 97

ZUCK's FOLLOWERS CLOCK e 2

Shelly a 11

bobc12

‘ Zooey b 97

[{a, 10}, {b 99}..{z, 89}]

Shelly a 11

ZUCK's FOLLOWERS CLOCK e 2

bobc12
o

‘ Zooey b 97 |/

[{a, 10}, {b 99}...{z, 89}]

Shelly a 11

bobc12

‘ Zooey b 97

[{a, 11}, {b 99}...{z, 89}]

Shelly a 11

bobc12

‘ Zooey b 97

I — | (. 11), (0 99)..2, 59

Shelly a 11

. '_/
‘ Zooey b 97 \

THAT'S IT!

THAT'S IT7

Reads!
Version Vector!
Hand-Off!
AAE!

Reads”

MicroSeconds

INnitial Read Results

Type

Type
* bigset
* nak

26500
.......

Elements

Ops/sec

4000 -

—
w
‘;:1:-:0 -

) -
(00

Throughput

.....%.:: .&..‘ :.“ - . L - - P ‘‘. - ... - d . - T - e

200 400 600

Elapsed Secs

Mean, Median, and 95th Percentile Latency

SREe e - . - oee LAL R L B J BREA S ANE M AR - L Ll Sl o L -'..C..... SRAAAM ARSI ARE N A A WIS l.....
0 200 400 600
Elapsed Secs

99th Percentile Latency
read

L T e e i e e il R 2 ‘!MM'*‘?’-‘"
/

SRS AL e L —— LR AR SRR S AR AR AR L ARAAARAARARERRIE L A0 S R AR R AR AR - ..-.'--....QQOIOD“C..
0 200 400 600

Elapsed Secs

99.9th Percentile Latency
read

I N :‘v.-‘?nq:oms'.-ng"" meﬂ'MQWc*M'NI{WwV,Moa'ap.?ac.-.\w.‘.r.l .“‘:‘54:-'{ ‘(MW\-J;“:«

/

SRR AL A » - LR SR SRR AR AR RRER AR AR R RRARRRRE S A -‘-Qnooooo AR AR SR A AR R R e e l..l..
0 200 400 600

Elapsed Secs

Maximum Latency
read

IR .-‘v.:r..q:o.;\.b;\—dﬁpfww,.'“‘w‘}um'mwﬂ'f,.uonﬁ‘s_?ac..s.w:.w '\,:s,,‘{ﬁ' 'emw\-c:-“':n

0 200 400 600
Elapsed Secs

10k sets, 100k elements, 20 workers - read

Response
error
ok

Percentile
95th
mean
[median

Percentile
=+ 99th

Percentile
= 99.9th

Percentile
“* max

clock

— Read Clock

set-tombstone

element-|

lterate keys

element-N

end_key

clock

riak _dt orswot

set-tombstone

Version Vector

element-| [{vnodeA, 10}, {vnodeB, #}, {vnodeC,11}...]

Entrie?]

I -N
element Bob 1=> [{VnOdeA, 2}]
end_key Cameron ¥ [{vnodeB, 2}, {vnodeC, 5}]
Charlene = [{vhodeB, 4}]

clock

set-tombstone

element-|

element-N

end_key

riak_dt_orswot

Version Vector

[{vnodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

Entries |

Bob S [{vnodeA, 2}]
Cameron | [{vnodeB, 2}, {vnodeC, 5}]
Charlene S [{vnodeB, 4}]

|) ——

— Read Clock

lterate each key

clock

— Read Clock

set-tombstone

element-|

100k buffer of keys

C++

Version Vect
[{vnodeA, 10}, {vhodeB, 4}, {vhodeC,11}...]

Entries |

element-N

end_key

Bob S [{vnodeA, 2}]
Cameron | [{vnodeB, 2}, {vnodeC, 5}]
Charlene S [{vnodeB, 4}]

) ey

<<Set, \0, $¢c, \0, Actor, \0>>

<<Set, \0, $e, \O, Element-1, \0,

Actor, Cnt:/64/big-unsigned- N O S eXt

Integer=>>=

<<Set, \0, $e, \0, Element-1, \0, NO TZB

Actor; Cnt:/64/big-unsigned-
Integer=>>

<<Set, \0, 7%z, \0, \0>>

Bigset Design: read

blockN blockN

block1 block

elenisigl Incremental merge

prCkN
biock 1

Opswec

Latency (ms) Latency (ms)

Latercy ()

Lmn?y (ms)

Reads loday

e

-

i |
*1
Ops'sec

Elapsed Secs

Mean, Median, and 95t Percentle Latency
read

: : : : 5 rucese | £ —
v“a - e
r—_ g o

[remten g | e

Llapsad Secs

90th Percentie Latency 991h Percentile Latency
et -t

S e " aAr AL Bt A ATV e e S ¥ 4 '\.-'i-’- A ow, o, UL L 'o_."'ﬁ-u\

.

g
= Poreontiie > — .y of o on - - — . - .. - Pervemtio
- — - — - g " R N e e e i T e e Wl e | - om
—4—“‘.\'— - Pl Bt vt g N A Aot atl e~ -~ . . wt
] AN .n-vaﬁ\.'?‘.". ',". L 3] .F:‘ Tis Yﬁ{-.. -'-(’.\- et Az, \" "‘,-'-N:'.", e o ..‘:"‘\‘;‘- ’_-{'(W
N | e — w——— - " — .y —— e — . —— T s — — S - - P - e - 3 - - - .

Elapand Secs) ‘ Elapaad Secs

99.9th Percentile Latency 99 .9th Percentile Latency
read o

N TR s N (AN NS INT N T 2 Sy I L8 M, SN T 0y NI e

I — — Porcantite

mrq ims)

L) -
A TR L L S PRI Ll L L. -y . B R MR e AATRAREE e ST 4 G R R R RE Ry TR e
Elapsed Secs Elapsed Secs
Maximum Latency Maximum Latency
read — ol
- - o .. ' . - . -~ - - e - .l - - -
g A SN AN T 2 ST 8 P, S TN B I e L e E -
R ———— — ~ — Percentite A . “~e 2 . = Porcontie
. aedan .y";:"’-'v-‘.v"-' N et -"»-‘ LA - -t 1: - o
e O O SN U R~ i A r o R o o
T B AN QTR R E SN 4 o mae AL B Be N MTE S e ATRAREE e SR 4 Se e R R RS e TE R B ER . e . .

Elapsed Secs ' Elapsed Secs

10k sets, 100k elements, 20 workers - read

Reads loday

40 Prconto Lotoncy 4 Prconto Lotocy
w ol

WOe A b e A

—— P

L,‘..-Ct »w Crras)

N A R et A et P o g R g A e P e

Elbpiad S | | Elbpiod Socs

10k sets, 100k elements, 20 workers - read

Full Set Read or Queries?
Why read the whole set”?

'Cos you HAVE TO!

Full Set Read or Queries?

Why read the whole set”?

Full Set Read or Queries?
Why read the whole set”?

'Cos you HAVE TO!

Bigset Queries

e Subset
e [s Member?
 Range queries SORTED!

* Pagination

Removes

e Observed-Remove - context
 Requires _some kind_ of read

* cheap membership check

s Member(X)

read(<<bob>>)

read fsm

IS_member(<<bob>>).

Client X

's Member(X)

read clock ~_

ReplicaA, clocl 3 (b3
Seek <<bob>> [, 35, {b,3}]
— ST

{<<bob>>,a, |}

{<<bob>>, b, 2}

{<<shelly>>,b, I}

{ReplicaA, end_key}

's Member(X)

read clock
\
ReplicaA, clock 31 1h3
Seek <<bob>> [, 35, {b,3}]

'lll:'lll:
. nt .

{<<bob>>,a, |}

{<<bob>>, b, 2}

s Member(X)

[{a, 3}, {b,3]] [{a,3}, fc, 1}]
<<bob>> [{a,1}, {b,2}] <<bob>>

<<bob>> Set

v

\4

s Member(X)
[{a,3}, {c, 1}]

<<bob>> e ot

{true, [{b,2}, {c, 1}]} c v
> lent
[{a, 3}, {b,3]]

<<bob>> [{a, 1}, {b,2}]

(52] fc.1]

Next?

- Other “Big” Types - Maps

- Quorum Read Secondary Indexes
- Big Sets of Maps - Tables

- Joins? SQL?

Summary

- CRDTs make eventual consistency easier
on developers

- There exists an Optimised Add-Wins Set...

- |t takes more more than a lib

- Alittle engineering goes a long way

Bigset Paper
https://arxiv.org/abs/1605.06424

THANK YOU!

WE’RE HIRING!

UK Client Service Engineer
Developer Advocate EMEA
bashojobs.theresumator.com

VISIT OUR STAND

Experience our Riak TS demo and be
entered to win a Scalextric set!

Get your invitation to our loT Riak TS
Roadshow

https://arxiv.org/abs/1605.06424

