
http://martinsumner.github.io/presentations/leveled_euc#/



MY JOURNEY TOWARDS ERLANG -
2004

I'm the network guy on a huge health database project

Every problem looks like a network problem ...

Started fixing things in the application ...

... the business decided to fix things through
process/management



MY JOURNEY TOWARDS ERLANG -
2011

Spine now had:

more than 3000 servers
more than 18 thousand people years behind it
more than £30m in change costs ... per change
total bill has passed £1bn

Is this the genuine cost of availability?

Lets replace it with a fundamentally different approach



MY JOURNEY TOWARDS ERLANG -
2014

Spine II Core goes live!

Better than five nines availability since go-live

Less than hundred people years to go-live

Base of open-source Erlang products - Riak, RabbitMQ

Architecture based on message passing between processes

Architecture based on normalising failure

Change is normal, weekly and automated





WHY AN ERLANG KEY-VALUE STORE?
Riak has been a rock - durability and availability

I know it, and know of problems with it, and have a path
to production

Pluggable backends, but no fully-featured Erlang backend

Except for HanoiDB, so someone else thought this was
worth doing





LEVELED - THE HYPOTHESIS
Disk I/O is an unpredictable bottleneck -> split VALUE

... See also WiscKey, Badger

Riak doesn't always need to know the value -> HEAD

Store behaviour may differ by object -> TAG







LEVELED - OPERATIONS
PUT - Inker commits to Journal, Bookie caches change to
Ledger

GET - Penciller fetches SQN, Inker fetches value

HEAD - Penciller fetches metadata from Ledger

INDEX - Additional key/metadata changes in Ledger

FOLD - Efficient in key-ordered ledger through clones of
Penciller

CLONE - By manifest copy, with delete_pending file state,
allowing reads in parallel







LEVELED - STATUS
Functionally complete backend

Initial integration testing into Riak

Four months of cloud-based volume tests with
improvements

Good ct/eunit coverage, plus initial propery-based testing



LEVELED - VOLUME TESTS
Significant throughput improvements where disk I/O is the
dominant constraint

With sync enabled (flushing each and every write)
With spinning disk drives not solid-state drives

Focused on testing without sync on SSD since

Throughput advantage at > 4KB values
Advantage increases with value size
Lower mean PUT times, higher median GET times
Dramatic reduction in tail latency and volatility





LEVELED - THE HARD BITS
Picking data structures in Erlang

Handling OTP16 compatability

Compacting the Journal (value store)

Vnode coordination issues

Avoiding long-tail blocking (e.g. the 40ms cast)

Naming things



LEVELED - WAS IT WORTH IT?
Learned loads about Erlang - will continue to use

Erlang/OTP coped well with my mistakes

Pleasantly surprised by the throughput comparison

Actors made more sense to me than objects

Relevance increased by support issues with Riak

Now progressing to pre-production testing on Spine



@masleeds

https://github.com/martinsumner/leveled


