THE GENTLEMAN'S BOOKMAP

i e =
RUIML Moow] oCC
et b -~ d

1 WEMi Yot 5

£ NRadLL PRl

2 BiLVin I8 Tt
A PIOIE Sli o
5 SUNR @ /kRRky
CMTRCRM b wn
e EEL U R "-\"
i O PENGI &1 Pigs i
QTOTAl 1ae TR
PR MORraIn 1Rs
T MONTAL Y g
12 IENNI Y Mirs '
TN wewrensy == f
YANE Moliwkras
19 mol Trn TP

0 W Eranr s, |

1.%.%.4 vav: lgch /
|I -

http://martinsumner.github.io/presentations/leveled_euc#/

MY JOURNEY TOWARDS ERLANG -
2004

I'm the network guy on a huge health database project
Every problem looks like a network problem ...
Started fixing things in the application ...

... the business decided to fix things through
process/management

MY JOURNEY TOWARDS ERLANG -
2011

Spine now had:

e more than 3000 servers

e more than 18 thousand people years behind it
e more than £30m in change costs ... per change
e total bill has passed £1bn

s this the genuine cost of availability?

Lets replace it with a fundamentally different approach

MY JOURNEY TOWARDS ERLANG -
2014

Spine Il Core goes live!

Better than five nines availability since go-live

Less than hundred people years to go-live

Base of open-source Erlang products - Riak, RabbitMQ

Architecture based on message passing between processes

Architecture based on normalising failure

Change is normal, weekly and automated

WHY AN ERLANG KEY-VALUE STORE?

Riak has been a rock - durability and availability

e | know it, and know of problems with it, and have a path
to production

Pluggable backends, but no fully-featured Erlang backend

e Except for HanoiDB, so someone else thought this was
worth doing

Ck tree o Cq tree Cp tree

mege mege A eme
SEASA

| | |
| Disk Memory

Figure 3.1. An LSM-tree of K+1 components

LEVELED - THE HYPOTHESIS

Disk 1/O is an unpredictable bottleneck -> split VALUE
... See also WiscKey, Badger
Riak doesn't always need to know the value -> HEAD

Store behaviour may differ by object -> TAG

LEVELDR

few eiedve

7
G 3 o e

" Tovinar OF CHAMES

LEVELED - OPERATIONS

PUT - Inker commits to Journal, Bookie caches change to
Ledger

GET - Penciller fetches SQN, Inker fetches value

HEAD - Penciller fetches metadata from Ledger
INDEX - Additional key/metadata changes in Ledger

FOLD - Efficient in key-ordered ledger through clones of
Penciller

CLONE - By manifest copy, with delete_pending file state,
allowing reads in parallel

LoraowS (€T " hm

. Sowor Thad? («]) (aT,

2. Buwo ADPOwST o¥ Fisr o (r) ASSPONNS

3. SEND LD fo s R YT

. WAT FPL MAL R PonsE (boa0r Lold™ MAWAW
(Mew ey

BETTEV Fow
Ve (MEE Uhuv

AarE “ear” Pym

. dewwe>r tage (a] HEWO

1 IF onv TWoO (-] dfewsed ’aud' JoMi v areh

L sewo Sivee€ “Ger" gemuerr
on ELsé MM wé

LJ Sew) Mol LTt s Guen /{m l/u

3. Gm.o'mfome AL wdfen

LEVELED - STATUS

Functionally complete backend
Initial integration testing into Riak

Four months of cloud-based volume tests with
Improvements

Good ct/eunit coverage, plus initial propery-based testing

LEVELED - VOLUME TESTS

Significant throughput improvements where disk I/O is the
dominant constraint

e With sync enabled (flushing each and every write)
e With spinning disk drives not solid-state drives

Focused on testing without sync on SSD since

e Throughput advantage at > 4KB values

e Advantage increases with value size

e Lower mean PUT times, higher median GET times
e Dramatic reduction in tail latency and volatility

Riak + leveled Riak + leveldb

Throughput

10000 10000
Elapsed Secs Elapsed Secs

Mean and Median Latenﬁ Mean and Median Latenﬁ
. querydob querypostcode updatewithzl updatewithal

0 5000 100001500020000 0 5000 100001500020000 0 su'gi:nt»sin&:gsclouzuéonﬁ 5000 100001500020000 0 5000 100001500020000 6 5000 100001500020000 0 5000 100001500020000 0 sogrlwgsoouzmnn 5000 100001500020000 0 5000 100001500020000
apsed Secs apsed Secs

99th Percentile Latenc 99th Percentile Latenc:

5000~
-

w
4000 -

E
3000~

Ezow. : .m
« 5“'”2: e _M .M

5000 100001500020000 0 5000 100001500020000 0 5000 100001500020000 O 5000 100001500020000 0 5000 10DAD1500020000 0 5000 100001500020000 0 5000 100001500020000 0 5000 100001500020000 0 5000 100001500020000 O 5000 100001500020000
Elapsed Secs Elapsed Secs

Maximum Laten Maximum Laten
© update updatewithdi o querydob © o update updatewith2i

st TSP W T P R N TR VCAY T W T R

0 5000100001500020000 ¢ 5000 1000D1500020000 0 suézlmu'u;rls?"uozoéoué 5000 100001500020000 0 5000 100001500020000 0 5000100001500020000 0 5000 100001500020000 D suézlowﬁo 15200206006 5000 100001500020000 0 5000 100001500020000
apsed Secs apsed Secs

LEVELED - THE HARD BITS

Picking data structures in Erlang
Handling OTP16 compatability
Compacting the Journal (value store)
Vnode coordination issues

Avoiding long-tail blocking (e.g. the 40ms cast)

Naming things

LEVELED - WAS IT WORTH IT?

Learned loads about Erlang - will continue to use
Erlang/OTP coped well with my mistakes
Pleasantly surprised by the throughput comparison
Actors made more sense to me than objects
Relevance increased by support issues with Riak

Now progressing to pre-production testing on Spine

@masleeds

https://github.com/martinsumner/leveled

