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Making a reliable 
reporting system 
with Kafka
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Choosing the 
right tools
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● Lots of instances and microservices producing 

reports at the same time

● Messages can not be lost, this logs are used to 

provide statistics and audits

● Unknown number of simultaneous consumers

● Having the messages in order is prefered

                          REQUIREMENTS
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Flume RabbitMQ Sparrow Starling Azure 

ZMQ Kestrel Kafka ActiveMQ 

SQS EagleMQ Celery

The options
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● High throughput and low latency

● Used by:

 

● Redundancies built into the system

● LinkedIn talent

WHY KAFKA?
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● Distributed architecture

● The concept of topics and partitions

● The replication factor, offering redundancy

● The performance

WHAT MAKES KAFKA SPECIAL?
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Implementation
The Erlang side
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OUR OBJECTIVE

Support all features that made 
us choose Kafka initially
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LIBRARY REQUIREMENTS

● Reliable

● High message volume

● Minimal performance impact

● Lose no messages

● Maintain message order whenever possible
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The libraries
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wooga/kafka-erlang

Great company! 

The protocol is tested

Buffers the entire response in RAM before parsing it

No support for 0.8 (the latest version)
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klarna/brod

It’s a really good name

The protocol is tested

Well documented

Serializes all messages through gen_server so it will 
not handle message bursts as gracefully

The consumer buffers the entire binary before 
attempting parsing
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Excellent documentation

Currently being maintained

Code has lots of comments and it’s pleasing to the eye

Using a FSM is a good choice

Suffers from some of the same issues the previous 
libraries have

It has no consumer

helpshift/ekaf
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Kafkerl
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● Fast binary creation

● Request caching for better use of bandwidth

● Highly concurrent

● Messages are not lost

● Handles all server side responses

● Can parse and consume partial messages

● Simple API

● By design, it supports for all Kafka features we needed

● No connection to Zookeeper

HernanRivasAcosta/kafkerl
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How?
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Avoids serialization by storing the messages on ETS 
tables.

Provides as much concurrency as the system it’s 
running on has.

More on this later.

AVOID SERIALIZATION
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Parses partial responses. The entire response binary is never 
stored.

How?

-type state()    :: {binary(), integer(), [any()]} | void.

-type response() :: {ok, correlation_id(), messages()} |
                    {incomplete, corr_id(), messages(), state()} |
                    error().

MESSAGE PARSING
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Backups!

- ETS, until receiving confirmation.
- Disk, if the ETS becomes too big.

ETS tables are also supervised separately.

FAULT TOLERANCE

ETS ETS

Supervisor

Supervisor

Kafkerl Broker 2 Broker 1
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The same features that provide fault tolerance allow us 
to handle this changes gracefully

The broker connections hold no information

BROKER CHANGES
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Usually a good idea.

Not this time.

DON’T LET IT CRASH
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Using ETS tables 
for concurrency
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Kafkerl starts by requesting the metadata to the Kafka server

Kafkerl
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Kafkerl starts by requesting the metadata to the Kafka server

Kafkerl

Metadata
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In this case, the metadata has 2 brokers and 3 topics-partitions

Kafkerl

Metadata
3 Topic-partition pairs

2 Brokers
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Then, we create an ETS table per topic-partition pair on the Kafka server

ETS

ETS

ETS
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And one broker connection per Kafka broker

Broker connection

Broker connection

ETS

ETS

ETS
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A message arrives from an erlang process!

Broker connection

Broker connection

ETS

ETS

ETS

!
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The message is routed to the right ETS

Broker connection

Broker connection

ETS

ETS

ETS
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The message is routed to the right ETS

Broker connection

Broker connection

ETS

ETS

ETS
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Another message arrives!

Broker connection

Broker connection

ETS

ETS

ETS

!
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And again, the message is sent to the right ETS

Broker connection

Broker connection

ETS

ETS

ETS
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Remember that the message was written by the process that created it

Broker connection

Broker connection

ETS

ETS

ETS
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If multiple messages arrive

Broker connection

Broker connection

ETS

ETS

ETS

!
!

!
!

!
!

!
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They are concurrently written to the ETS tables

Broker connection

Broker connection

ETS

ETS

ETS
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And the whole operation puts no pressure in the system, just the tables

Broker connection

Broker connection

ETS

ETS

ETS
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Now, a broker decides to publish the messages

Broker connection

Broker connection

ETS

ETS

ETS

!
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The brokers are not tied to the ETS tables

Broker connection

Broker connection

ETS

ETS

ETS



www.erlang-solutions.com

This broker reads all messages from 2 different tables

Broker connection

Broker connection

ETS

ETS

ETS

!

!

!
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The broker builds and sends the binary, but the system works as before

Broker connection

Broker connection

ETS

ETS

ETS
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Broker connection

Broker connection

ETS

ETS

ETS

Now, we receive a message about a leadership change

!

!

!
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ETS

ETS

ETS

We remove both brokers
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ETS

ETS

ETS

And seamlessly rebuild the brokers according to the new leadership

Broker connection

Broker connection

Broker connection

!

!
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IN SUMMARY

All messages are stored in ETS tables, so we can take 
advantage of this built-in BIF to allow simultaneous 
writes/reads.

Messages are not serialized so big bursts of messages 
will not affect performance.

No error in logic can crash any single process holding 
the unsent messages.
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No downtime

No missing messages

No special cases

No errors

AND A BETTER SUMMARY
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Good design
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We chose a service already (like Kafka), why would you 
reinvent the wheel when designing the API?

Be consistent when naming methods.

Prefer simple datatypes and avoid complex 
structures.

REINVENTING THE WHEEL
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-export([produce/3, produce/4, produce/5,
         consume/2, stop_consuming/2,
         request_metadata/0]).

If you make the interface similar to the service, 
anyone can pick it up!

If there’s one thing you can count on is that all your 
users should be familiar with it.

For Example:

MAKING IT EASIER
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Let the API accept very strict datatypes (ie not being 
liberal in what you accept)

Any programming errors will be caught quickly and it 
also serves as documentation.

No surprises, no edge cases.

For Example:

GOOD API DESIGN

-spec produce(topic(), partition(), payload()) -> ok.
-spec consume(topic(), partition()) -> ok | error().
-spec request_metadata() -> ok.
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Easy to understand API

Put everything into a single module.

Hide the complexity from the developer.

SIMPLIFYING
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Testing the 
untesteable
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dialyzer

Should always be the first step.

Prevents basic errors.

Changes in plans (and we had many) can leave traces, 
dialyzer tracks them down.
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Even without integration tests, we should make sure 
different parts of the system work properly

Things that can be tested this way:

- Protocol
- ETS tables
- The basic functionality

UNIT TESTING
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Great way to test libraries since we have strict 
contracts that we need to make sure we are obeying?

PropEr
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Blackbox testing is not enough.

Use the staging environment as early as possible.

Errors will be found while debugging other parts of the 
system.

IT’S ALIVE!
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So, how did it go?
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8 Months passed...
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There was a downtime...



www.erlang-solutions.com

Whatever, just find the logs on disk!
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We had no permission to write!
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But it did last 8 
months!



www.erlang-solutions.com

THANK YOU!

Any questions?
hernan@inakanetworks.com
www.erlang-solutions.com www.inaka.net
@inaka
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