
www.erlang-solutions.com

ERLANG FACTORY
SAN FRANCISCO
2016

www.erlang-solutions.com

HELLO!

Hernán Rivas Acosta
hernan@inakanetworks.com
www.erlang-solutions.com www.inaka.net
@inaka

http://www.erlang-solutions.com
http://www.erlang-solutions.com

www.erlang-solutions.com

Making a reliable
reporting system
with Kafka

www.erlang-solutions.com

Choosing the
right tools

www.erlang-solutions.com

● Lots of instances and microservices producing

reports at the same time

● Messages can not be lost, this logs are used to

provide statistics and audits

● Unknown number of simultaneous consumers

● Having the messages in order is prefered

 REQUIREMENTS

www.erlang-solutions.com

Flume RabbitMQ Sparrow Starling Azure

ZMQ Kestrel Kafka ActiveMQ

SQS EagleMQ Celery

The options

www.erlang-solutions.com

● High throughput and low latency

● Used by:

● Redundancies built into the system

● LinkedIn talent

WHY KAFKA?

www.erlang-solutions.com

● Distributed architecture

● The concept of topics and partitions

● The replication factor, offering redundancy

● The performance

WHAT MAKES KAFKA SPECIAL?

www.erlang-solutions.com

Implementation
The Erlang side

www.erlang-solutions.com

OUR OBJECTIVE

Support all features that made
us choose Kafka initially

www.erlang-solutions.com

LIBRARY REQUIREMENTS

● Reliable

● High message volume

● Minimal performance impact

● Lose no messages

● Maintain message order whenever possible

www.erlang-solutions.com

The libraries

www.erlang-solutions.com

wooga/kafka-erlang

Great company!

The protocol is tested

Buffers the entire response in RAM before parsing it

No support for 0.8 (the latest version)

www.erlang-solutions.com

klarna/brod

It’s a really good name

The protocol is tested

Well documented

Serializes all messages through gen_server so it will
not handle message bursts as gracefully

The consumer buffers the entire binary before
attempting parsing

www.erlang-solutions.com

Excellent documentation

Currently being maintained

Code has lots of comments and it’s pleasing to the eye

Using a FSM is a good choice

Suffers from some of the same issues the previous
libraries have

It has no consumer

helpshift/ekaf

www.erlang-solutions.com

Kafkerl

www.erlang-solutions.com

● Fast binary creation

● Request caching for better use of bandwidth

● Highly concurrent

● Messages are not lost

● Handles all server side responses

● Can parse and consume partial messages

● Simple API

● By design, it supports for all Kafka features we needed

● No connection to Zookeeper

HernanRivasAcosta/kafkerl

www.erlang-solutions.com

How?

www.erlang-solutions.com

Avoids serialization by storing the messages on ETS
tables.

Provides as much concurrency as the system it’s
running on has.

More on this later.

AVOID SERIALIZATION

www.erlang-solutions.com

Parses partial responses. The entire response binary is never
stored.

How?

-type state() :: {binary(), integer(), [any()]} | void.

-type response() :: {ok, correlation_id(), messages()} |
 {incomplete, corr_id(), messages(), state()} |
 error().

MESSAGE PARSING

www.erlang-solutions.com

Backups!

- ETS, until receiving confirmation.
- Disk, if the ETS becomes too big.

ETS tables are also supervised separately.

FAULT TOLERANCE

ETS ETS

Supervisor

Supervisor

Kafkerl Broker 2 Broker 1

www.erlang-solutions.com

The same features that provide fault tolerance allow us
to handle this changes gracefully

The broker connections hold no information

BROKER CHANGES

www.erlang-solutions.com

Usually a good idea.

Not this time.

DON’T LET IT CRASH

www.erlang-solutions.com

Using ETS tables
for concurrency

www.erlang-solutions.com

Kafkerl starts by requesting the metadata to the Kafka server

Kafkerl

www.erlang-solutions.com

Kafkerl starts by requesting the metadata to the Kafka server

Kafkerl

Metadata

www.erlang-solutions.com

In this case, the metadata has 2 brokers and 3 topics-partitions

Kafkerl

Metadata
3 Topic-partition pairs

2 Brokers

www.erlang-solutions.com

Then, we create an ETS table per topic-partition pair on the Kafka server

ETS

ETS

ETS

www.erlang-solutions.com

And one broker connection per Kafka broker

Broker connection

Broker connection

ETS

ETS

ETS

www.erlang-solutions.com

A message arrives from an erlang process!

Broker connection

Broker connection

ETS

ETS

ETS

!

www.erlang-solutions.com

The message is routed to the right ETS

Broker connection

Broker connection

ETS

ETS

ETS

www.erlang-solutions.com

The message is routed to the right ETS

Broker connection

Broker connection

ETS

ETS

ETS

www.erlang-solutions.com

Another message arrives!

Broker connection

Broker connection

ETS

ETS

ETS

!

www.erlang-solutions.com

And again, the message is sent to the right ETS

Broker connection

Broker connection

ETS

ETS

ETS

www.erlang-solutions.com

Remember that the message was written by the process that created it

Broker connection

Broker connection

ETS

ETS

ETS

www.erlang-solutions.com

If multiple messages arrive

Broker connection

Broker connection

ETS

ETS

ETS

!
!

!
!

!
!

!

www.erlang-solutions.com

They are concurrently written to the ETS tables

Broker connection

Broker connection

ETS

ETS

ETS

www.erlang-solutions.com

And the whole operation puts no pressure in the system, just the tables

Broker connection

Broker connection

ETS

ETS

ETS

www.erlang-solutions.com

Now, a broker decides to publish the messages

Broker connection

Broker connection

ETS

ETS

ETS

!

www.erlang-solutions.com

The brokers are not tied to the ETS tables

Broker connection

Broker connection

ETS

ETS

ETS

www.erlang-solutions.com

This broker reads all messages from 2 different tables

Broker connection

Broker connection

ETS

ETS

ETS

!

!

!

www.erlang-solutions.com

The broker builds and sends the binary, but the system works as before

Broker connection

Broker connection

ETS

ETS

ETS

www.erlang-solutions.com

Broker connection

Broker connection

ETS

ETS

ETS

Now, we receive a message about a leadership change

!

!

!

www.erlang-solutions.com

ETS

ETS

ETS

We remove both brokers

www.erlang-solutions.com

ETS

ETS

ETS

And seamlessly rebuild the brokers according to the new leadership

Broker connection

Broker connection

Broker connection

!

!

www.erlang-solutions.com

IN SUMMARY

All messages are stored in ETS tables, so we can take
advantage of this built-in BIF to allow simultaneous
writes/reads.

Messages are not serialized so big bursts of messages
will not affect performance.

No error in logic can crash any single process holding
the unsent messages.

www.erlang-solutions.com

No downtime

No missing messages

No special cases

No errors

AND A BETTER SUMMARY

www.erlang-solutions.com

Good design

www.erlang-solutions.com

We chose a service already (like Kafka), why would you
reinvent the wheel when designing the API?

Be consistent when naming methods.

Prefer simple datatypes and avoid complex
structures.

REINVENTING THE WHEEL

www.erlang-solutions.com

-export([produce/3, produce/4, produce/5,
 consume/2, stop_consuming/2,
 request_metadata/0]).

If you make the interface similar to the service,
anyone can pick it up!

If there’s one thing you can count on is that all your
users should be familiar with it.

For Example:

MAKING IT EASIER

www.erlang-solutions.com

Let the API accept very strict datatypes (ie not being
liberal in what you accept)

Any programming errors will be caught quickly and it
also serves as documentation.

No surprises, no edge cases.

For Example:

GOOD API DESIGN

-spec produce(topic(), partition(), payload()) -> ok.
-spec consume(topic(), partition()) -> ok | error().
-spec request_metadata() -> ok.

www.erlang-solutions.com

Easy to understand API

Put everything into a single module.

Hide the complexity from the developer.

SIMPLIFYING

www.erlang-solutions.com

Testing the
untesteable

www.erlang-solutions.com

dialyzer

Should always be the first step.

Prevents basic errors.

Changes in plans (and we had many) can leave traces,
dialyzer tracks them down.

www.erlang-solutions.com

Even without integration tests, we should make sure
different parts of the system work properly

Things that can be tested this way:

- Protocol
- ETS tables
- The basic functionality

UNIT TESTING

www.erlang-solutions.com

Great way to test libraries since we have strict
contracts that we need to make sure we are obeying?

PropEr

www.erlang-solutions.com

www.erlang-solutions.com

Blackbox testing is not enough.

Use the staging environment as early as possible.

Errors will be found while debugging other parts of the
system.

IT’S ALIVE!

www.erlang-solutions.com

So, how did it go?

www.erlang-solutions.com

8 Months passed...

www.erlang-solutions.com

www.erlang-solutions.com

There was a downtime...

www.erlang-solutions.com

Whatever, just find the logs on disk!

www.erlang-solutions.com

www.erlang-solutions.com

We had no permission to write!

www.erlang-solutions.com

But it did last 8
months!

www.erlang-solutions.com

THANK YOU!

Any questions?
hernan@inakanetworks.com
www.erlang-solutions.com www.inaka.net
@inaka

mailto:name@erlang-solutions.com
http://www.erlang-solutions.com
http://www.erlang-solutions.com

