
IMPROVING RPC CALLS IN
ERLANG AND ELIXIR
Erlang Factory SF 2016

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

WHO AMI I?

Panagiotis “PJ” Papadomitsos

Distributed Systems Architect

Splunk Inc.

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

AGENDA
• The Problem

• Experimenting

• The Fix

• Features

• Architecture

• Performance

• Shortcomings

• Coding in Elixir for fun and fun

• Features

• The Good

• The Bad

• Performance Considerations

• The Future

• Demo

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

THE PROBLEM
• Erlang cluster with >100 nodes

• Each node uses rpc:call to ship analytics data to
other nodes

• RPC payload between 10KB to 2MB

• Extremely high traffic, 24/7, 150.000 calls/sec/node

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

THE PROBLEM (CONT’D)
• Nodes would crash after a while due to mailbox

issues

• Scaling up didn’t solve the problem enough to
make sense financially

• We needed to start tracing/introspecting the
system

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

WHAT WE FOUND

• The rpc library uses a single rex gen_server to
receive messages from any node

• A single mailbox per node is responsible for
receiving messages from every node in the cluster

• Those were the mailboxes we were looking for

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

REX ARCHITECTURE

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

EXPERIMENT #1

• Switch from rpc:call to rpc:cast

• Does not return error if the node on the other
side has gone down

• Still limited by the single mailbox rex server

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

EXPERIMENT #2
• Switched to a hybrid solution with erlang:spawn to remote

nodes

• Not limited to a single mailbox

• But had to implement naive connection state logic

• {monitor,<4685.187.0>,busy_dist_port,#Port<4685.41652>}
(thanks Wombat!)

• Mnesia was crashing more often than the Chinese stock market

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

SPAWN/4 ARCHITECTURE

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

THE FIX: GEN_RPC

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

Features
• Uses separate TCP connections/mailboxes for each

node for data transfer

• Does not block the VM’s distributed port with large
payloads

• No distributed Erlang dependency

• Offers connection state feedback

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

ARCHITECTURE

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

INTERNALS

• Named processes help track usage and mailbox issues

• Unidirectional connections support high performance
communication

• Using TCP server for messaging instead of Distributed
Erlang allows communication over insecure channels

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

INTERNALS

• Protected calls (a la RPC) shield socket owners
from misbehaving workers

• Responses compatible with RPC

• Uses inet_async for acceptor handoff

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

PERFORMANCE

• Simple RPC scaled up to ~50K calls/sec/node
before running into mailbox issues

• Remote spawn scaled to ~100K calls/sec/node
before Mnesia started acting out

• gen_rpc currently handles > 150K calls/sec/node

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

SHORTCOMINGS
• Single client and acceptor mailbox per node pair

• Does not work with anonymous functions across
nodes (VM limitation)

• Not as fast aware of TCP failures as Distributed
Erlang

• That’s it!

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

LEARNING ELIXIR FOR FUN
AND FUN

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

GEN_RPC IN ELIXIR: EXRPC

• Elixir is fun!

• Wrote gen_rpc in Elixir to get acquainted with the
language

• Engineering Erlang code =/= Engineering Elixir
code

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

FEATURES

(Used to be) exactly the same as gen_rpc!

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

THE GOOD
• Elixir allows more concise code (:a in [:a, :b, :c])

• No boilerplate code for GenServer and friends

• Modern build and testing tools

• Interoperability with existing Erlang projects

• Documentation is a first class citizen

• All Erlang VM features (i.e slave nodes) are supported

• Transparently use ExRPC and gen_rpc between Erlang and Elixir nodes

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

THE BAD
• With great power sometimes comes not so great

performance

• Elixir BEAMs need to run in the OTP release they’ve
been compiled in

• Testing framework not as powerful as CT yet

• Running Dialyzer needs a Mix plugin (i.e dialyxir)

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

PERFORMANCE
CONSIDERATIONS

Magic always comes with a price:
Erl:
1> timer:tc(fun() -> [ok || _ <- lists:seq(1, 5000000)] end).
{1399324, …}

IEx:
iex(1)> :timer.tc(fn() -> for _ <- :lists.seq(1, 5000000), do: :ok end)
{4765819, …}

But:
iex(1)> :timer.tc(fn() -> :lists.seq(1, 5000000) |> Enum.map(fn(_) -> :ok end) end)
{2034507, …}

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

(INCREDIBLY OVERENGINEERED)

DEMO

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

THE FUTURE
• SSL support (including CN verification)

• Client connection separation by node and arbitrary
ID (thanks Erlang mailing list!)

• Blacklisting/whitelisting modules available for RPC

• Configurable server port allocation for strict firewalls

Erlang Factory SF 2016
Improving RPC calls in Erlang and Elixir

https://hex.pm/packages/gen_rpc
https://github.com/priestjim/gen_rpc
https://github.com/priestjim/exrpc

https://github.com/priestjim
https://linkedin.com/in/priestjim

@priestjim

Thank you!

