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THE PROBLEM
• Erlang cluster with >100 nodes

• Each node uses rpc:call to ship analytics data to 
other nodes

• RPC payload between 10KB to 2MB

• Extremely high traffic, 24/7, 150.000 calls/sec/node
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THE PROBLEM (CONT’D)
• Nodes would crash after a while due to mailbox 

issues

• Scaling up didn’t solve the problem enough to 
make sense financially

• We needed to start tracing/introspecting the 
system
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WHAT WE FOUND

• The rpc library uses a single rex gen_server to 
receive messages from any node

• A single mailbox per node is responsible for 
receiving messages from every node in the cluster

• Those were the mailboxes we were looking for
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REX ARCHITECTURE
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EXPERIMENT #1

• Switch from rpc:call to rpc:cast

• Does not return error if the node on the other 
side has gone down

• Still limited by the single mailbox rex server
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EXPERIMENT #2
• Switched to a hybrid solution with erlang:spawn to remote 

nodes

• Not limited to a single mailbox

• But had to implement naive connection state logic

• {monitor,<4685.187.0>,busy_dist_port,#Port<4685.41652>} 
(thanks Wombat!)

• Mnesia was crashing more often than the Chinese stock market
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SPAWN/4 ARCHITECTURE
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THE FIX: GEN_RPC
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Features
• Uses separate TCP connections/mailboxes for each 

node for data transfer

• Does not block the VM’s distributed port with large 
payloads

• No distributed Erlang dependency

• Offers connection state feedback
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ARCHITECTURE
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INTERNALS

• Named processes help track usage and mailbox issues

• Unidirectional connections support high performance 
communication

• Using TCP server for messaging instead of Distributed 
Erlang allows communication over insecure channels
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INTERNALS

• Protected calls (a la RPC) shield socket owners 
from misbehaving workers

• Responses compatible with RPC

• Uses inet_async for acceptor handoff
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PERFORMANCE

• Simple RPC scaled up to ~50K calls/sec/node 
before running into mailbox issues

• Remote spawn scaled to ~100K calls/sec/node 
before Mnesia started acting out

• gen_rpc currently handles > 150K calls/sec/node
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SHORTCOMINGS
• Single client and acceptor mailbox per node pair

• Does not work with anonymous functions across 
nodes (VM limitation)

• Not as fast aware of  TCP failures as Distributed 
Erlang

• That’s it!
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LEARNING ELIXIR FOR FUN 
AND FUN
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GEN_RPC IN ELIXIR: EXRPC

• Elixir is fun!

• Wrote gen_rpc in Elixir to get acquainted with the 
language

• Engineering Erlang code =/= Engineering Elixir 
code
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FEATURES

(Used to be) exactly the same as gen_rpc!
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THE GOOD
• Elixir allows more concise code (:a in [:a, :b, :c])

• No boilerplate code for GenServer and friends

• Modern build and testing tools

• Interoperability with existing Erlang projects

• Documentation is a first class citizen

• All Erlang VM features (i.e slave nodes) are supported

• Transparently use ExRPC and gen_rpc between Erlang and Elixir nodes
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THE BAD
• With great power sometimes comes not so great 

performance

• Elixir BEAMs need to run in the OTP release they’ve 
been compiled in

• Testing framework not as powerful as CT yet

• Running Dialyzer needs a Mix plugin (i.e dialyxir)
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PERFORMANCE 
CONSIDERATIONS

Magic always comes with a price:
Erl: 
1> timer:tc(fun() -> [ok || _ <- lists:seq(1, 5000000)] end).
{1399324, …}

IEx: 
iex(1)> :timer.tc(fn() -> for _ <- :lists.seq(1, 5000000), do: :ok end)
{4765819, …}

But: 
iex(1)> :timer.tc(fn() -> :lists.seq(1, 5000000) |> Enum.map(fn(_) -> :ok end) end)
{2034507, …}
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(INCREDIBLY OVERENGINEERED)

DEMO
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THE FUTURE
• SSL support (including CN verification)

• Client connection separation by node and arbitrary 
ID (thanks Erlang mailing list!) 

• Blacklisting/whitelisting modules available for RPC

• Configurable server port allocation for strict firewalls
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https://hex.pm/packages/gen_rpc
https://github.com/priestjim/gen_rpc
https://github.com/priestjim/exrpc

https://github.com/priestjim
https://linkedin.com/in/priestjim

@priestjim

Thank you!


