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Good ideas do not die?
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Perceptrons
Minsky & Papert Never made
1968 sense to me!

Extinctions do not happen without real reasons.
Time to re-read “Perceptrons”.




A Random Walk...

1. What’s in the book?
2. Computer Science versus Cybernetics
3. Building on the Work of Others



[. What's in the book?
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Supervised learning of using the perceptron algorithm.



Order-k Perceptron

No more than k
Boolean inputs

\h

Linear threshold
R function

Metaphor for parallel computation

- Targets what can be computed by Rosenblatt’s perceptron.

- Also describes what can be computed by a convnet with a final pooling layer.

- Similar techniques could characterize what can be computed with map/reduce




Boolean predicates and Perceptrons

Take simple Boolean predicates
and establish their order requirements.

* Focus on group invariant predicates:
— Parity has “infinite” order.

* Geometrical predicates: This is
— Connectedness has infinite order. ab‘c’.o{um/y
brilliant!

— Euler number has low order.
— Etc. with caveats



Strong opinions

13.5 Why Prove Theorems?
Why did you prove all these complicated theorems? Couldn’t you

just take a perceptron and see if it can recognize ¥ CONNECTED

No.



Strong opinions

0.3 Cybernetics and Romanticism

The machines we will study are abstract versions of a class of

devices known under various names; we have agreed to use the

name “perceptron’ in recognition of the pioneer work of Frank
o . mala decicians— determine whether or

Our discussion will include some rather sharp criticisms of earlier work
in this area. Perceptrons have been widely publicized as “'pattern recog-
nition” or “learning” machines and as such have been discussed in a
large number of books, journal articles, and voluminous “‘reports.” Most
of this writing (some exceptions are mentioned in our bibliography) s
without scientific value and we will not usually refer by name to the

warke we criticize. The sciences of computation and cybernetics began,
- - callnma Thev



Connectedness

Is a shape made of a single connected component?

No small-order perceptron can say.



Connectedness

But a simple algorithm 57

provably can compute RN
17
“connectedness”

T %
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Theorem 9.2: For any e there is a 2-symbol Turing machine that
can verify the connectedness of a figure X" on any rectangular
array R, using less than (2 + ¢) log, |R| squares of tape.




Is connectedness important?

13.3 Analyzing Real-World Scenes

One can understand why you, as mathematicians, would be inter-
ested in such clear and simple predicates as Ypppy and
Yeonneeren. But what if one wants to build machines to recog-
nize chairs and tables or people? Do your abstract predicates have
any relevance to such problems, and does the theory of the simple
perceptron have any relevance to the more complex machines one
would use in practice?

This is a little like asking whether the theory of linear circuits
has relevance to the design of television sets. Absolutely, some
concept of connectedness is required for analyzing a scene with
many objects in it. For the whole is just the sum of its parts and



Scene analysis

13.4 Guzman'’s Approach to Scene-Analysis
In scenes like this,




Scene analysis

and the effects of some vertices are modified by their associations
with others. This variety of resources enables the program to
solve scenes like

(7)

e A smart program may provably solve such “dreamed” scenes.
e But why should scenes like this be relevant to real scenes.
* Are they letting us down?



Is connectedness easy for us?



What is easy for us?

This shape
represents a
mouse

This shape
represents a
piece of cheese



Are there provable algorithms for

“Mouseness?” “Cheesiness?”

e “Connectedness” has a clear and compact
mathematical specification.

 “Mouseness” and “cheesiness” do not.




Why prove theorems?

"
13.5 Why Prove Theorems: g i S
' ms [ you

o complicated theorems? Couldnl

Why did you prove all these comp ;

just take a perceptron and see if it can recognize V¥ CONNECTED *

No.

Are we dealing with
an abstract science (like maths) or
an empirical science (like physics)?

In the case of an empirical science,
e we cannot only prove theorems, and
* we cannot only run experiments either.

Their answer
is technically



1. Computer Science
versus Cybernetics




The perceptron is not
an algorithm that runs on a computer
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The perceptron is a machine




The perceptron is the computer
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= Tasks that vintage computers could not match.
= Alternative computer architecture? Analog computer?



How to build computing machines?

Biological computer Mathematical computer
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=  Which model to emulate : brain or mathematical logic ?
= Mathematical logic has won. Why?



Computing with symbols

General computing machines
" Turing machine
= yvon Neumann machine
Engineering

" Programming
= reducing a complex task into Tl " 0 1 € Tt Jee) rentid + BAtid

< res. Lo, 15T

a collection of simple tasks. 1 T Ny
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CS as an Abstract Science

What constitutes a result?
v An algorithm that

v provably fulfills a mathematical specification
v' with bounds on its resource demands.

No need for a real computer.
No need for data either.



CS as an Abstract Science

3121216131911141518]118171912]5
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Example:

v" Quicksort /
v’ sorts an array of n elements .
v in O(nlogn) time and O(n) memory

2111112 914151318161817191315

21212 51415131816181713 919

31413 51816181715

Such elementary results are fantastically useful.

Programming = Reducing a complex problem to a
collection of simpler problems amenable to known
algorithms.

Analogy with proving mathematical theorems



Building on the work of others

How to build computers?
Mathematical logic has won.

Why?

* Big things demand lots of people.
* Getting lots of people to work together is hard.

 Mathematical logic offers a lot of support for good
computer science engineering practices.

Evidence: a significant fraction of the CS literature aims at
helping collaboration (code reuse, software components,...)



Same place (MIT)
About the same time (1964-68)

The book acknowledges productive input from R. M. Fano.
Watch the full video on YouTube!



Learning as a software components

“ML system X recognizes faces with 95% accuracy”

* This statement only applies to
a precise distribution of testing examples.

e Using X with different faces may not work as well.
Example: Using X with children faces may not work at all
because the children face are precisely the 5% that did
not work well.

* This is painful for programmers.
Using X in an innovative way may not work at all.
One needs to rebuild X for the new use.
It may or may not work.

* Things get worse if the component keeps learning...
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Algorithmic ML Theorems

A beautiful theorem
v UCB solves the ens Rewards
v' multi-armed bandit problem '

v with a sub-linear regret bound

Although the proof contains useful insights,
such a theorem is useless in practice.

We do not know how to reduce complex ML
problems to a collection of simple ML problems.



Feedback loops
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Studying feedback loops

Another MIT book.

e Norbert Wiener
Cybernetics, 1948.

* Information (signal) feedback loops are everywhere.
They are central to adaptation and learning.

* They should be the object of a new scientific discipline,
cybernetics.

* Although things did not happen exactly in this way,
the previous slide makes a case for this point of view.



Two caricatures of ML

Machine Learning Learning Machines
Learning is a topic for Learning is more fundamental
algorithm research. than algorithms.

* Study learning algorithms and | |« QObserve how the system
describe their properties transforms input signals and

* Data or computers are not leverages training signals.
absolutely needed to reach * Find ways to make it better.

the “perfect” learnin :
P 8 * Features are transformations

algorithm. N of the input signal. One should
* Problem specific feature learn them as well.

engineering is something

engineers do. * Modeling experimental

observations is required.




Two caricatures of ML

* Problem specific feature
engineering is something
engineers do.

Learning Machines
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Learning as an Empirical Science

Progress during the last few decades has been
driven by a single experimental paradigm.

(1) Set aside test examples l

(2) Estimate f using only the training set.
Using the test set is forbidden.

!

L P (3) Measure final performance
using the testing set.

Ideally this happens only once!




Learning as an Empirical Science

Limitations of our single experimental paradigm

Diminishing returns

work on another

At some point
we should simply
problem...

Test error

3.01% 8.001%

""""""""""""""""""""" Bayes error

Training set size



Learning as an Empirical Science
Accuracy vs. coverage

way enough data to train
/ not enough data to train ]

Diminishing returns \
for average accuracy
improvements.

2X

No diminishing returns
on number of queries

for which we can learn
correct answers. /




Learning as an Empirical Science

Concepts # Statistics
Example: detection the action “phoning”

(Oquab et al., CVPR 2014)



Learning as an Empirical Science

Limitations of our single experimental paradigm
* Training/testing alone won’t be enough.

* This will merely be the end of an anomaly.
Designing subtle and informative experiments
plays a critical role in physics, in biology, in all
experimental sciences.

* The interpretation of experiments depends
on how we “think” about the phenomena.



Challenges

We cannot safely encapsulate learning
into traditional software components.

Experimentation becomes trickier when
learning systems become more capable.

How to “think” about learning systems?
How to “build on the work of others”?



[II. Building on
the work of others




The Work of Others

How to package the work of others?
e Digital computers : “software”

* Learning computers :
— Trained module as a software component?
¥ Trained components do not offer solid “contract”.
— Training software?

v Ifyou can get the training data and replicate the rig.
Recent example : AlexNet.

— Task specific trained features
v~ Nearly as good.



Example: face recognition

Interesting task: “Recognizing the faces of 10° persons.”
* How many labeled images per person can we obtain?

Auxiliary task: “Do these faces belong to the same person?”
 Two faces in the same picture usually are different persons.
* Two faces in successive frames are often the same person.

=, .
D+ y/n > P >. » john
-

(Matt Miller, NEC, 2006)



Example: NLP tagging

Five Time-Delay

Binary encoded .
- Words embedded Multilayer networks :
sentence words. in 50-100 dim space yer networks
_ N BB 4  Part Of Speech Tagging
‘ ( treebank, split 02-21/23)
[
| | B | > Named Entity Recognition
N ( treebank, Stanford NER )
4§
Al N
- ~N 1 a.  Chunking
| ( treebank )
TR © L
_ ] A Semantic Role Labeling
n i A2 (propbank)
Positional 4 Language Model
_ information relative to il i
the chosen predicate for (wikipedia, 620M oxamples)

semantic tagging

(Collobert, Weston, et al., 2008-2011)



FRANCE

Example: NLP tagging

JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA  DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND  GRACE CAPCOM YELLOWISH RIPPED AMPERES



Example: object recognition

Dogs in ImageNet
(~10° dogs)

Dogs in Pascal VOC
(only ~10% imgages)




Example: object recognition

Training images

Source task

Convolutional layers

Fully-connected layers

Source task labels

. African elephant
A

| . Wall clock

FC8 >

Green snake

Yorkshire terrier

1: Feature
learning C1-C2-C3-C4-C5 > Fce [ Fc7
4096 or
6144-dim
J vector
\/
2 : Feature Transfer
transfer parameters
3: Clas§|f|er C1-C2-C3-C4-C5 F>| Fco Bl FC7
learning 4096 or
6144-dim

Training images Sliding patches

9216-dim 4096 or

vector

6144-dim
vector

Target task

vector

. Chair

D Background
——» FCa —» FCbh —> -

or

Person
g TV/monitor

New adaptation L

layers trained
on target task

Target task labels

(Oquab, B., Sivic, Laptev, CVPR 2014)



Example: object recognition

Held record performance on:

- Pascal VOC 2007 Classification
- Pascal VOC 2012 Classification
- Pascal VOC Action Detection

Comparable works
- Caltech 256 Transfer (Zeiler & Fergus)
- Pascal VOC Detection (Girshick, Donahue, Darrell, Malik)

Feature transfer is becoming the standard in computer vision.



Transfer Learning and Reasoning

oo
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Experiment 3
Throw rock




Transfer Learning and Reasoning

* Laws of (classical) physics

— Very sophisticated reasoning model:
First order logic + counterfactuals (Lewis73) + ?

e Feature transfer

— Minimal reasoning model:
rewiring neural net layers (possibly recursively.)

| prefer to start with the simple one...



Circuit algebra

Rewiring as Algebraic Operation

— Rewiring simultaneous operates in two spaces.:
o Composition of statistical models.
o Composition of model realizations.

— Transporting the functions and their parametrization
— Inherited structure in the parameter spaces
— Inherited structure in the ‘“space” of questions of interest

Algebraic structure is an expression of the semantics
— Circuit algebra <= Semantic Equation Models (Pearl, 2000).
— Causal semantics rather than probabilistic semantics.



Enriching the semantics

Algebraic structure is an expression of the semantics
— Enriching the algebraic structure <= Enriching the semantics.
5 _ a4 _ _
Making the structure recursive
°

/ f A — A time-honored way to generate
rich algebraic structures.

-



Recursive Auto-Associative Memory

Elements

— A representation space R.

— Association module A: R X R — R.
— Dissociation module: D: R — R X R.

sat W > >

the W » »the? onw » A »D >
A »D A D

cat W » »cat? the w >A o D g

mat W >L >

— Desired invariance: D(A(z,y)) = (x,y).

(Pollack, 1988) (Hinton, 1990)



Infinite depth structures

Algebraic structure matters more than representation space R.
— RAAMSs can represent infinite depth predicates.
— Same as cons, car, cdr.

sat > >
the W » > the? on W A »D >
. B A D
cat W » »cat? the | Wi»- ,:[ D >
mat W >‘_ -
Approximate invariance
— Consider a numerical representation space, i.e. R = R100,

— Numerical accuracy will eventually degrade reconstruction.
— If the embeddings in the representation space make sense
the dissociation module then reconstruct approximate sentences.



Universal Parser?

Elements
— Saliency module S : R — R
— Short term memory.

N

A 4

I saliency
e STM : score

— Parsing text and images e.g. (Socher, 2010).
— Parsing anything in fact.
— Related to “chunking” (Miller, 1956).



Universal Parser x

v~ Supervised training of a parser works (Socher, 2010)

$¢ Weakly supervised training
- without giving labels that describe the structure,

- but giving labels for a task that we think needs the structure,

does not elicit a meaningful structure!

(Scheible & Schuetze, 2013) : randomly cutting structure did not hurt sentiment analysis
(Etter 2008) : forcing left-to-right groupings did not hurt language models
Left-to-right groupings = recurrent network.

The recurrent network has enough state for implementing the parser.

All hail recurrent networks....



The knowledge of others

Joe knows something (in brain space)
He wants to share it with Jack.

——

To deal with noise, one uses
discrete redundant code.
(language space)

The message elicits adequate representations
in Jack’s brain (thanks to common knowledge)



Plato’s cave — in the brain

Thoughts happen in brain space.
We cannot observe them directly.
We cannot share them directly.

What we observe and share - i___/;?;?f
is the shadow of thought: = h_“%

language.




Plato’s cave — in the brain

Shadows are good enough Shadows are not good enough to
to support human-like reasoning support human-like reasoning
Forget brain space Fortunately language is designed to elicit

good brain space representations.
» Select task(s) at language level.
e Jointly train

— Mapping between language
space and “thought vectors”

Define adequate language — Operations on “thought vectors

* They should implement the task(s)
and also respect formal algebraic
invariants valid in language space.

Define inference principles
Collect fact and rules.






Rereading “Perceptrons”

Lessons

. . . . "'eyyﬂl”r
Learning is an experimental science. 'S Wrong,
Experimentation today is S|mpI|st|C
Learning needs a mathematical

backbone that allows us to build on the “\‘_\s‘—\g\\\\
work of people who preceded us. (ed®

Algorithmic theory does not cut it.

+ Bonus: Plato’s cave in the brain.



