
Adventures with go.tools/ssa
A talk by Elliott Stoneham at the Go London User Group of 21st November 2013

Questions at the end please
To deliver over 30 slides in under 20 minutes I need to speak fast…

The last time I was paid
to be a programmer

“Go is like a better C,
from the guys that didn’t bring you C++”

— Ikai Lan

After 20+ years away,
Go has tempted me back

Go is like the TARDIS
 A small idiosyncratic exterior,

conceals large-scale quality engineering.

Everything that follows is a

PROTOTYPE

Consulting the Oracle
go.tools/cmd/oracle

The oracle answers
questions about Go code

“Questions such as:

• What is the type of this expression? What are its methods?

• What’s the value of this constant expression?

• Where is the definition of this identifier?

• What are the exported members of this imported package?

• What are the free variables of the selected block of code?

• What interfaces does this type satisfy?

• Which concrete types implement this interface?”

“And [looking across the whole application]:

• What are the possible concrete types of this interface value?

• What are the possible callees of this dynamic call?

• What are the possible callers of this function?

• What objects might this pointer point to?

• Where will a value sent on this channel be received?

• Which statements could update this field/local/global/map/array/etc?

• Which functions might be called indirectly from this one?”

 “using the oracle is as simple as selecting a region of
source code, pressing a button, and receiving a precise

answer”
(but I’ve not been able to get EMACS working)

github.com/fzipp/pythia
“Pythia is a web front-end for the Go source code oracle,

which is a source code comprehension tool for Go programs.”

http://github.com/fzipp/pythia

go.tools/ssa was created for
go.tools/cmd/oracle

As a prerequisite to pointer analysis, the program must
first be converted from typed syntax trees into a simpler,
more explicit intermediate representation (IR), as used by
a compiler. We use a high-level static single-assignment
(SSA) form IR in which the elements of all Go programs
can be expressed using only about 30 basic instructions.

(Oracle design document, Alan Donovan, Google)

The 36 SSA
Instructions

 Value? Instruction? 	
*Alloc ✔ ✔	
*BinOp ✔ ✔	
*Builtin ✔ ✔	
*Call ✔ ✔	
*ChangeInterface ✔ ✔	
*ChangeType ✔ ✔	
*Convert ✔ ✔	
*DebugRef ✔	
*Defer ✔	
*Extract ✔ ✔	
*Field ✔ ✔	
*FieldAddr ✔ ✔	
*Go ✔	
*If ✔	
*Index ✔ ✔	
*IndexAddr ✔ ✔	
*Jump ✔	
*Lookup ✔ ✔	
*MakeChan ✔ ✔	
*MakeClosure ✔ ✔	
*MakeInterface ✔ ✔	
*MakeMap ✔ ✔	
*MakeSlice ✔ ✔	
*MapUpdate ✔	
*Next ✔ ✔	
*Panic ✔	
*Phi ✔ ✔	
*Range ✔ ✔	
*Return ✔	
*RunDefers ✔	
*Select ✔ ✔	
*Send ✔	
*Slice ✔ ✔	
*Store ✔	
*TypeAssert ✔ ✔	
*UnOp ✔ ✔	

Static Single Assignment

“In compiler design, static single assignment form (often
abbreviated as SSA form or simply SSA) is a property of
an intermediate representation (IR), which says that each
variable is assigned exactly once. Existing variables in
the original IR are split into versions, new variables
typically indicated by the original name with a subscript
in textbooks, so that every definition gets its own
version.”

(Wikipedia)

 go -> ssa
example

# Name: main.fact	
# Package: main	
# Location: glug.go:9:6	
func fact(n int) int:	
.0.entry: P:0 S:2	
	 t0 = n == 0:int bool	
	 if t0 goto 1.if.then else 2.if.done	
.1.if.then: P:1 S:0	
	 return 1:int	
.2.if.done: P:1 S:0	
	 t1 = n - 1:int int	
	 t2 = fact(t1) int	
	 t3 = n * t2 int	
	 return t3	
!

!

func fact(n int) int {
 if n == 0 {
 return 1
 }
 return n * fact(n-1)
}

go.tools/cmd/ssadump
$ ssadump -help	
Usage of ssadump:	
 -build="": Options controlling the SSA builder.	
The value is a sequence of zero or more of these letters:	
C	 perform sanity [C]hecking of the SSA form.	
D	 include [D]ebug info for every function.	
P	 log [P]ackage inventory.	
F	 log [F]unction SSA code.	
S	 log [S]ource locations as SSA builder progresses.	
G	 use binary object files from gc to provide imports (no code).	
L	 build distinct packages seria[L]ly instead of in parallel.	
N	 build [N]aive SSA form: don't replace local loads/stores with registers.	
!
 -cpuprofile="": write cpu profile to file	
 -interp="": Options controlling the SSA test interpreter.	
The value is a sequence of zero or more more of these letters:	
R	 disable [R]ecover() from panic; show interpreter crash instead.	
T	 [T]race execution of the program. Best for single-threaded programs!	
!
 -run=false: Invokes the SSA interpreter on the program.

http://golang-ssaview.herokuapp.com/
To see this application running live

Go SSA viewer
https://github.com/tmc/ssaview (https://github.com/tmc/ssaview)

Shows the SSA (Static Single Assignment)
(http://en.wikipedia.org/wiki/Static_single_assignment_form) representation of
input code.
Uses the wonderful go.tools/ssa
(http://godoc.org/code.google.com/p/go.tools/ssa) package.

status: done
Input Result

package main // example inspired by gobyexample.com/recursion
import _ "runtime" // required by go.tools/ssa/interp
func fact(n int) int {
 if n == 0 {
 return 1
 }
 return n * fact(n-1)
}
func main() { println("ten factorial is ",fact(10)) }

package main:
 func fact func(n int) int
 func init func()
 var init$guard bool
 func main func()

Name: main.init
Package: main
Synthetic: package initializer
func init():
.0.entry:
 t0 = *init$guard
 if t0 goto 2.init.done else 1.init.start
.1.init.start:

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9
10
11
12
13
14

http://golang-ssaview.herokuapp.com/

 Go Interpreter
(35 lines)

package main	
import (
	 "code.google.com/p/go.tools/importer"	
	 "code.google.com/p/go.tools/ssa"	
	 "code.google.com/p/go.tools/ssa/interp"	
	 "fmt"	
	 "go/build"	
	 "go/parser"	
)	
const code = `	
package main 	 	 	 // example inspired by gobyexample.com/recursion	
import 	_ "runtime" // required by go.tools/ssa/interp	
func fact(n int) int {	
	 if n == 0 {	
	 	 return 1	
	 }	
	 return n * fact(n-1)	
}	
func main() { println("ten factorial is ",fact(10)) }	
`	
func main() {	
	 imp := importer.New(&importer.Config{Build: &build.Default}) // Imports will be loaded as if by 'go build'.	
	 file, err := parser.ParseFile(imp.Fset, "main.go", code, 0) // Parse the input file.	
	 if err != nil {	
	 	 fmt.Print(err) // parse error	
	 	 return	
	 }	
	 mainInfo := imp.CreatePackage("main", file) // Create single-file main package and import its dependencies.	
	 var mode ssa.BuilderMode	
	 prog := ssa.NewProgram(imp.Fset, mode) // Create SSA-form program representation.	
	 if err := prog.CreatePackages(imp); err != nil {	
	 	 fmt.Print(err) // type error in some package	
	 	 return	
	 }	
	 mainPkg := prog.Package(mainInfo.Pkg)	
	 packages := prog.AllPackages() // Build SSA code for bodies of functions in all packages	
	 for p := range packages {	
	 	 packages[p].Build()	
	 }	
	 rv := interp.Interpret(mainPkg, 0, "", nil)	
	 if rv != 0 {	
	 	 fmt.Printf("Interpreter error: %d\n", rv) // show any error	
	 }	
}	

$ go run interp.go	
ten factorial is 3628800

 “It is not, and will never
be, a production-quality

Go interpreter.”

github.com/rocky/ssa-interp
“gub and tortoise - A Go SSA Debugger and Interpreter”

(not currently compiling)

Highlights the problems of working with go.tools/ssa:

• Frequent changes to the API, but stabilising now

• Requires working at tip.golang.org

• Few peer projects to learn from

…but excellent code quality and documentation!

http://github.com/rocky/ssa-interp
http://tip.golang.org

Two Go compiler projects
based on go.tools/ssa

LLVM web applications in Go

llgo
!

github.com/axw/llgo

“llgo is a compiler for Go,
written in Go, and using the

LLVM compiler infrastructure.”
!

The image on the right shows
an llgo prototype running in

the Chrome/Chromium
browser using PNaCl

http://github.com/axw/llgo

Andrew Wilkins, author of
llgo, has written:

• “I’m committed to doing [the
rewrite to use go.tools/ssa].”

• “I … was was invited to
lunch/discuss llgo with some
members of the core Go
team. It was fairly informal,
with no specific outcomes.
It's highly likely that the llgo
runtime will be replaced with
libgo, sooner rather than
later.”

• “I really wish I had more time
to play with [PNaCl].”

developers.google.com/native-client/
PNaCl is a software framework that allows developers to compile native C and C++ code
so that it can be embedded in a web page and run in a Chrome browser on any platform.

http://developers.google.com/native-client/

How source code is compiled to run on PNaCl
(From a document written by Googler Alan Donovan, who also wrote go.tools/ssa)

github.com/google/pepper.js

“pepper.js is a JavaScript
library that enables the
compilation of native Pepper
applications into JavaScript
using Emscripten. This allows
the simultaneous deployment of
native code on the web both as
a Portable Native Client (PNaCl)
executable and as JavaScript.
Native Pepper applications can
now be run in Chrome, Firefox,
Internet Explorer, Safari, and
more.”

http://github.com/google/pepper.js

github.com/kripken/emscripten/wiki
Emscripten is an open source LLVM to JavaScript compiler.

It lets you take code written in C or C++ and run it on the web.

http://github.com/kripken/emscripten/wiki

⽆无名
Introducing my un-named, un-published and un-finished

Go cross-compiler project using go.tools/ssa

haxe.org
“Haxe can be compiled to all popular programming platforms
with its fast compiler – JavaScript, Flash, NekoVM, PHP, C++,
C# and Java – which means your apps will support all popular
mobile devices, such as iOS, Android, BlackBerry and more.”

http://haxe.org

go -> ssa -> haxe

# Name: main.fact	
# Package: main	
# Location: glug.go:9:6	
func fact(n int) int:	
.0.entry: P:0 S:2	
	 t0 = n == 0:int bool	
	 if t0 goto 1.if.then else 2.if.done	
.1.if.then: P:1 S:0	
	 return 1:int	
.2.if.done: P:1 S:0	
	 t1 = n - 1:int int	
	 t2 = fact(t1) int	
	 t3 = n * t2 int	
	 return t3	
!

!

func fact(n int) int {
 if n == 0 {
 return 1
 }
 return n * fact(n-1)
}

!
public function run():Pogo_main_fact {	
while(true){	
switch(_Next) {	
case 0: // entry	
this.setLatest(9,0);	
this.SubFn0();	
case 1: // if.then	
this.setLatest(9,1);	
_res= 1;	
this._incomplete=false;	
Scheduler.pop(this._goroutine);	
return this; // return 1:int *ssa.Return @ glug.go:11:3	
case 2: // if.done	
this.setLatest(11,2);	
this.SubFn1();	
_SF1=Pogo_main_fact.call(this._goroutine,[],_t1);	
_Next = -1;	
return this;	
case -1:	
this.setLatest(13,-1);	
_t2=_SF1.res();	
 // _t2 = fact(t1) *ssa.Call @ glug.go:13:15	
this.SubFn2();	
_res= _t3;	
this._incomplete=false;	
Scheduler.pop(this._goroutine);	
return this; // return t3 *ssa.Return @ glug.go:14:2	
default: throw "Next?";}}}	
private inline function SubFn0():Void {	
var _t0:Bool;	
_t0=(p_n==0); // _t0 = n == 0:int *ssa.BinOp @ glug.go:10:7	
_Next=_t0 ? 1 : 2; // if t0 goto 1.if.then else 2.if.done *ssa.If near glug.go:10:7	
}// end SubFn0	
private inline function SubFn1():Void {	
_t1=(p_n-1); // _t1 = n - 1:int *ssa.BinOp @ glug.go:13:17	
}// end SubFn1	
private inline function SubFn2():Void {	
_t3=(p_n*_t2); // _t3 = n * t2 *ssa.BinOp @ glug.go:13:9	
}// end SubFn2	!

Cross-Compilation
Go native (go run glug.go):	
ten factorial is 3628800	
!
using go.tools/ssa/interp (go run interp.go):	
ten factorial is 3628800	
!
cross-compile Go->Haxe->Node/JS (node<pogo.js):	
Pogo.hx:2716: ten factorial is ,3628800	
!
cross-compile Go->Haxe->C++ (./cpp/Pogo):	
Pogo.hx:2716: ten factorial is ,3628800	
!
cross-compile Go->Haxe->Java (java -jar java/java.jar):	
Pogo.hx:2716: ten factorial is ,3628800	
!
cross-compile Go->Haxe->C# (mono ./cs/bin/cs.exe):	
Pogo.hx:2716: ten factorial is ,3628800	
!
cross-compile Go->Haxe->PHP (php php/index.php):	
Pogo.hx:2716: ten factorial is ,3628800	
!
cross-compile Go->Haxe->Flash (using flash player to test swf file):

openfl.org
A Haxe based “cross-platform framework that targets Windows, Mac, Linux,

iOS, Android, BlackBerry, Flash and HTML5” based on the Flash API

http://openfl.org

Example: Go -> Haxe + OpenFL -> Android
adapted from: github.com/kid0m4n/gorays “Ray tracing”

http://github.com/kid0m4n/gorays

key project issues

• Speed vs Go is not too bad for simple mathematics
(e.g. Java 125%; C++ 151%; C# 252%; JS/Node
270%), but some other operations are currently an
order of magnitude slower

• Go library code size on the client side (e.g. unicode is
huge and used widely by other libraries)

• Understanding how best to open-source the project

I hope to launch the project at a future
Go London User Group meeting

• Slides available at
speakerdeck.com/elliott5

• interp.go available at
gist.github.com/elliott5

• library code available at
code.google.com/p/go.tools

Any Questions?

http://speakerdeck.com/elliott5
https://gist.github.com/elliott5/7578605
http://code.google.com/p/go.tools

Image Sources

• http://commons.wikimedia.org/

• http://www.wikipedia.org/

• http://www.bbc.co.uk/

• Project related images from relevant project sites

• My picture by www.facebook.com/mstarsphotography

• Other images self-created

http://commons.wikimedia.org/
http://www.wikipedia.org/
http://www.bbc.co.uk/
http://www.facebook.com/mstarsphotography

