Adventures with go.tools/ssa

A talk by Elliott Stoneham at the Go London User Group of 21st November 2013

The countdown
timer is running

Questions at the end please

To deliver over 30 slides in under 20 minutes | need to speak fast...

British Rail

PHOTO CARD

THE

PROGRAMMING
LANGUAGE

The |aSt tlme | was pal d Brian W.Kernighan e Dennis M.Ritchie

to be a programmer

After 20+ years away,
Go has tempted me back

“Go is like a better C,
from the guys that didn’t bring you C++”

— |kai Lan

DOCTOR WHO 1 1-1 = ramoss visuar L5
= ATT SAVAGE, '

p———a

Go is like the TARDIS

A small idiosyncratic exterior,
conceals large-scale quality engineering.

A\

Everything that follows Is a

PROTOTYPE

"-:u;-:-‘

=
1

Consulting the Oracle
go.tools/cmd/oracle

The oracle answers
questions about Go code

“Questions such as:

What is the type of this expression? What are its methods?
What’s the value of this constant expression?

Where is the definition of this identifier?

What are the exported members of this imported package?
What are the free variables of the selected block of code?
What interfaces does this type satisfy?

Which concrete types implement this interface?”

“And [looking across the whole application]:

* What are the possible concrete types of this interface value?

* What are the possible callees of this dynamic call?

 What are the possible callers of this function?

* What objects might this pointer point to?

* Where will a value sent on this channel be received?

* Which statements could update this field/local/global/map/array/etc?

* Which functions might be called indirectly from this one?”

“using the oracle is as simple as selecting a region of
source code, pressing a button, and receiving a precise
answer”

.00 fUsers/elliott/go/src/myc X

o C [localhost:6061/source?file=%2FUsers%2Felliott%2Fgo%2Fsrc%2Fmygo%2Fpogo%2... Q 5.7 o

E] Source file /Users/elliott/go/src/mygo/pogoftest/interp/glug.go

Select or click within the source code to consult the oracle.

1 package main // example inspired by gobyexample.com/recursion
. import |

5)

_ "mygo/pogo/pg" // required by the unreleased Go->Haxe cross-compiler

7 func fact(n int) int {
: if n == 0 {
) return 1

11 r :=n = fact(n-1)
12 return r

15 func main() {

1€) println("ten factorial is ", fact(18))

» main.fact is called from these 2 sites:
> static function call from main.fact
B static function call from main.main

github.com/fzipp/pythia

“Pythia is a web front-end for the Go source code oracle,
which is a source code comprehension tool for Go programs.”

http://github.com/fzipp/pythia

go.tools/ssa was created for
go.tools/cmd/oracle

As a prerequisite to pointer analysis, the program must
first be converted from typed syntax trees into a simpler,
more explicit intermediate representation (IR), as used by
a compiler. We use a high-level static single-assignment
(SSA) form IR in which the elements of all Go programs
can be expressed using only about 30 basic instructions.

(Oracle design document, Alan Donovan, Google)

Value? Instruction?
*Alloc
*B1inOp
*Builtin
*Call
*ChangeInterface
*ChangeType
*Convert
*DebugRef
*Defer
*Extract
*Field
*FieldAddr
*Go
*Tt

The 36 SSA ‘rew

*Lookup

- *MakeChan

Instructions e

*MakeInterface
*MakeMap
*MakeSlice
*MapUpdate
*Next
*Panic
*Phi
*Range
*Return
*RunDefers
*Select v
*Send
*Slice v
*Store
*TypeAssert
*UnOp

SXS NSNS NS

SSSSKS S S XN

AN

T X
SR R R R Rt SR SR R R S R S SR R N

S N

Static Single Assignment

“In compiler design, static single assignment form (often
abbreviated as SSA form or simply SSA) is a property of

an intermediate representation (IR), which says that
. Existing variables in

the original IR are split into versions, new variables
typically indicated by the original name with a subscript
In textbooks, so that every definition gets its own
version.”

(Wikipedia)

func fact(n int) int {
ifn==0{
return 1 Jo -> SSd

) example

return n * fact(n-1)

}

Name: main.fact

Package: main

Location: glug.go:9:6
func fact(n int) 1int:

.0.entry: P:0 5:2
t0 — h = 0:1nt bool
1f t@ goto 1l.1if.then else 2.1if.done

.1.1f.then: P:1 5:0
return 1l:int

.2.1f.done: Pel 5:0
tl = n - 1:1int int
tZ2 — fact(tl) int
3. 1 & 47 int

return t3

go.tools/cmd/ssadump

$ ssadump -help
Usage of ssadump:
-build="": Options controlling the SSA builder.
The value 1s a sequence of zero or more of these letters:

C perform sanity [C]hecking of the SSA form.

D include [D]ebug info for every function.

P log [P]ackage inventory.

F log [F]unction SSA code.

S log [S]ource locations as SSA builder progresses.

G use binary object files from gc to provide imports (no code).

L build distinct packages seria[lL]ly instead of in parallel.

N build [N]aive SSA form: don't replace local loads/stores with registers.
-cpuprofile="": write cpu profile to file
-interp="": Options controlling the SSA test interpreter.

The value 1s a sequence of zero or more more of these letters:
R disable [R]ecover() from panic; show interpreter crash instead.
T [T]race execution of the program. Best for single-threaded programs!

-run=false: Invokes the SSA interpreter on the program.

Go SSA viewer

https://github.com/tmc/ssaview (https://github.com/tmc/ssaview)

Shows the SSA (Static Single Assignment)
(http://en.wikipedia.org/wiki/Static_single_assignment_form) representation of
input code.

Uses the wonderful go.tools/ssa
(http://godoc.org/code.google.com/p/go.tools/ssa) package.

status: done
Input
package main // example inspired by gobyexample.
import _ "runtime" // required by go.tools/ssa/interp
func fact(n int) int {
if n==0 {
return 1

package main:
func fact func(n int) int
func 1init funcQ
var init$guard bool
func main funcO

ks
return n * fact(n-1) # Name: main.init
} # Package: main
func main() { pE]ntln("ten factorial is ",fact(10)) } # Synthetic: package initializer
func init(Q):
.0.entry:
t@ = *init$guard
if t@ goto 2.init.done else 1.init.start
.l.init.start:

O NO Ul D WN PP

1
2
3
4
5
6
7
8
9

http://golang-ssaview.herokua

To see this application running live

http://golang-ssaview.herokuapp.com/

package main
import (
"code.google.com/p/go.tools/importer"

"code.google.com/p/go.tools/ssa" G

"code.google.com/p/go.tools/ssa/interp" o n e r re e r
" _Fmt m"

"go/build"

"go/parser"”

3 o
35 lines
package main // example inspired by gobyexample.com/recursion

import _ "runtime" // required by go.tools/ssa/interp
func fact(n 1nt}afgt &
1 hi=0 4

return 1

t};eturn n * fact(n-1) $ go r'un -i'nterlp 2 go
+ . :
func main() { println("ten factorial is ", FTactt i@ = ten 'FaCtor'-La-I_ -l_ S 36288@@

func main() {
imp := importer.New(&importer.Config{Build: &build.Default}) // Imports will be loaded as if by 'go build'.

file, err := parser.ParseFile(imp.Fset, "main.go", code, @) // Parse the input file.
if err =il g
fmt.Print(err) // parse error
return
}
mainInfo := imp.CreatePackage("main", file) // Create single-file main package and import its dependencies.
var mode ssa.BuilderMode
prog := ssa.NewProgram(imp.Fset, mode) // Create SSA-form program representation.
i1f err := prog.CreatePackages(imp); err != nil {
fmt.Print(err) // type error in some package
return
}

mainPkg := prog.Package(mainInfo.Pkg)
packages := prog.AllPackages() // Build SSA code for bodies of functions in all packages
for p := range packages {

P “It Is not, and will never

rv := interp.Interpret(mainPkg, @, "", nil)

o r:‘:/m’:Pgifntf("Interpreter error: %d\n", rv) // show any error be, a- prOd UCtion-q uality

}

} Go interpreter.”

github.com/rocky/ssa-interp
“gub and tortoise - A Go SSA Debugger and Interpreter”

Highlights the problems of working with go.tools/ssa:
 Frequent changes to the API, but stabilising now

 Requires working at tip.golang.org

 Few peer projects to learn from

...but excellent code quality and documentation!

http://github.com/rocky/ssa-interp
http://tip.golang.org

Two Go compiler projects
based on go.tools/ssa

LLVM web applications in Go

ligo

github.com/axw/ligo

“llgo is a compiler for Go,
written in Go, and using the
LLVM compiler infrastructure.”

The image on the right shows
an ligo prototype running in
the Chrome/Chromium
browser using PNaCl

'Y Hello world.

C' | [localhost:8000/index_pnacl_Release.html

Hello World.

Status: SUCCESS

http://github.com/axw/llgo

Andrew Wilkins, author of
ligo, has wrltten

* “I’m committed to doing [the
rewrite to use go.tools/ssal.”

“l ... was was Invited to
lunch/discuss ligo with some
members of the core Go
team. It was fairly informal,
with no specific outcomes.
It's highly likely that the ligo
runtime will be replaced with
libgo, sooner rather than
later.”

“l really wish | had more time
to play with [PNaCl].”

PNaCl Demos

Bullet Physics

An example of the Bullet Physics
SDK ported to Native Client, using
WebGL for rendering.

> Lua Editor

® Bullet Physics

e Raycasted Earth

Example courtesy John McCutchan. Read his
description of the demo or browse the source.

Game of Life : L X
Simulation time: 3550us.

—A. Voronoi Simulation

Controls

€ smoothLife « Click and drag an object to move it
+ Click and drag elsewhere to rotate the

{-_K Rotating Cube camera |
+ Use the mousewheel to zoom in/out

Add Objects

developers.qgoodgle.com/native-client/

PNaCl is a software framework that allows developers to compile native C and C++ code
so that it can be embedded in a web page and run in a Chrome browser on any platform.

http://developers.google.com/native-client/

Back-end translator
(lle)
("TRANSLATOR")

Front-end compiler

(Ivm-gce, clang, etc)
e Native object code
Portable Executable
(single bitcode file)
LLVM bitcode I
I System linker and intrinsics libraries

Bitcode optimizer (opt) and
linker (link)

Developer Server Client

Figure 1. Compilation from source to object code occurs in two steps, unlike a
traditional compiler. The intermediate product, an LLVM bitcode file, is distributed.
The "traditional” NaCl compilation workflow is also shown.

How source code is compiled to run on PNaCl

(From a document written by Googler Alan Donovan, who also wrote go.tools/ssa)

github.com/google/pepper.js

pepper.js Examples
Need help?

“pepper.js is a JavaScript Toolchai

Emscripten Status: loaded

library that enables the
compilation of native Pepper Example

Earth

applications into JavaScript

Bullet

using Emscripten. This allows

Pi Generator

the simultaneous deployment of Beds

File 10

native code on the web both as s

Pointer Lock

a Portable Native Client (PNaCl) Kk

executable and as JavaScript.

Native Pepper applications can B —

now be run in Chrome, Firefox, Nuber of rescs 0.616.26.44.6.6.64126 160 206 3
Ltz 2qpllenal, St s e e ™

5y surface, shallow water, clouds). Enhancements by Robert Simmon {ocean

more_ color, compositing, 3D globes, animation). Data and technical support: MODIS
Land Group; MODIS Science Data, Support Team; MODIS Atmosphere Group;
MODIS Ocean Group Additional data: USGS EROS Data Center (topography);
USGS Terrestrial Remote Sensing Flagstaff Field Center (Antarctica); Defense
Meteorological Satellite Program (city lights).

Earth

http://github.com/google/pepper.js

g\'.
i ey |

g
(ﬁ.-\ { g ;:c-

= ten

g ' A

github.com/kripken/emscripten/wiki

Emscripten is an open source LLVM to JavaScript compiler.
It lets you take code written in C or C++ and run it on the web.

http://github.com/kripken/emscripten/wiki

Introducing my un-named, un-published and un-finished
Go cross-compiler project using go.tools/ssa

haxe.org

“Haxe can be compiled to all popular programming platforms
with its fast compiler — JavaScript, Flash, NekoVM, PHP, C++,
C# and Java — which means your apps will support all popular
mobile devices, such as iOS, Android, BlackBerry and more.”

http://haxe.org

public function run():Pogo_main_fact { g o -— > Ssa — > haxe

while(true){
switch(_Next) {
case @: // entry
this.setlLatest(9,0);

this.SubFnoQ; func faCt(n |nt) INnt {

case 1: // if.then

this.setlLatest(9,1); .
ipes= 1 If n — O {

this._incomplete=false;

Scheduler.pop(this._goroutine);

return this; // return 1:int *ssa.Returh @ glug ao s retu rn 1
case 2: // if.done

this.setlLatest(11,2);

this SUbERIC) }
_SF1=Pogo_main_fact.call(this._goroutine | | i

_Next = -1; *

return n * fact(n-1)
-1

’Eﬂ?g.setLatest(B, =~ }

2= SFlres()

// _t2 = fact(tl) *ssa.Call @ glug go: 8= is

this.SubFn2();

_res= _t3; # Name: main.fact
this._incomplete=false; ‘ :
Scheduler.pop(this._goroutine); # PaCkage' ekt

return this; // return t3 *ssa.Return @ glug.go:14:2 # Location: glug.go:9:6
default: throw "Next?";}}} -Func -Fac-t(n -Ln-t) -Lnt:
private inline function SubFn@():Void { .

var _t0:Bool; -Q-entr')/-

_t0=(p_n==0); // _t0 = n == @:int *ssa.BinOp @ glug.go:10:7 t0) = h == 0:1nt

Next= 2 A it 1l 1 f th Ise a1, rssa If g gosle: 7 - . .
g/ixznatguwn@ ; // 1f t0@ goto 1.if.then else 2.1if.done *ssa near glug.go:10 if 0 goto 1.if.then else 2.if.done

private inline function SubFnl():Void { .1.1f.then:
tl=Cp.n-1): // £ = n - 1iint *ssa Branlp @ giug o 13 17 o
S e return 1l:1nt

private inline function SubFn2():Void { .2.1f.done:
A3=(Cp_.n* t2); // t5=n % tZ *ssg Binlp @ ghug go 152 tl = A - 1:1int
}// end SubFn2
t2 — dact(tl)
S =1 " £2

return t3

Cross-Compilation

Go native (go run glug.go):
ten factorial is 3628800

using go.tools/ssa/interp (go run interp.go):
ten factorial i1s 3628800

cross-compile Go->Haxe->Node/JS (node<pogo.js):
Pogo.hx:2716: ten factorial is ,3628800

cross-compile Go->Haxe->C++ (./cpp/Pogo):
Pogo.hx:2716: ten factorial is ,3628800

cross-compile Go->Haxe->Java (java -jar java/java.jar):
Pogo.hx:2716: ten factorial is ,3628800

cross-compile Go->Haxe->C# (mono ./cs/bin/cs.exe):
Pogo.hx:2716: ten factorial is ,3628800

cross-compile Go->Haxe->PHP (php php/index.php):
Pogo.hx:2716: ten factorial is ,3628800

cross-compile Go->Haxe->Flash (using flash player to test swf file):

® O O [Users/elliott/go/src/

Pogo.hx:6957: ten factorial is ,3628800

YIMNNNY

openfl.org

A Haxe based “cross-platform framework that targets Windows, Mac, Linux,
I0S, Android, BlackBerry, Flash and HTML5” based on the Flash API

http://openfl.org

5554:ElliottTestSmall

S— ‘
-
s

Example: Go -> Haxe + OpenFL -> Android

adapted from: github.com/kidOm4n/gorays “Ray tracing”

http://github.com/kid0m4n/gorays

key project issues

 Speed vs Go Is not too bad for simple mathematics
(e.g. Java 125%; C++ 151%; C# 252%; JS/Node
270%), but some other operations are currently an
order of magnitude slower

* Go library code size on the client side (e.g. unicode is
huge and used widely by other libraries)

 Understanding how best to open-source the project

| hope to launch the project at a future
Go London User Group meeting

Any Questions?

e Slides available at
speakerdeck.com/elliott5

* Iinterp.go available at
gist.github.com/elliott5

* library code available at
code.google.com/p/go.tools

http://speakerdeck.com/elliott5
https://gist.github.com/elliott5/7578605
http://code.google.com/p/go.tools

Image Sources

http://commons.wikimedia.org/

http://www.wikipedia.org/

http://www.bbc.co.uk/

Project related images from relevant project sites

My picture by www.facebook.com/mstarsphotography

Other images self-created

http://commons.wikimedia.org/
http://www.wikipedia.org/
http://www.bbc.co.uk/
http://www.facebook.com/mstarsphotography

