
Online Help Startpage

Welcome to the FreeCAD on-line help

This document has been automatically created from the contents of the official FreeCAD wiki documentation,
which can be read online at http://apps.sourceforge.net/mediawiki/free-cad/index.php?title=Main_Page .
Since the wiki is actively maintained and continuously developed by the FreeCAD community of developers
and users, you may find that the online version contains more or newer information than this document. But
neverthless, we hope you will find here all information you need. In case you have questions you can't find
answers for in this document, have a look on the FreeCAD forum, where you can maybe find your question
answered, or someone able to help you.

How to use

This document is divided into several sections: introduction, usage, scripting and development, the last three
address specifically the three broad categories of users of FreeCAD: end-users, who simply want to use the
program, power-users, who are interested by the scripting capabilities of FreeCAD and would like to
customize some of its aspects, and developers, who consider FreeCAD as a base for developing their own
applications. If you are comletely new to FreeCAD, we suggest you to start simply from the introduction.

Contribute

As you may have experienced sometimes, programmers are really bad help writers! For them it is all
completely clear because they made it that way. Therefore it's vital that experienced users help us to write and
revise the documentation. Yes, we mean you! How, you ask? Just go to the Wiki at
http://apps.sourceforge.net/mediawiki/free-cad/index.php in the User section. You will need a sourceforge
account to log in, then you can start editing!

< previous: Online Help Toc
next: About FreeCAD >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Online_Help_Startpage"

Online_Help_Startpage

Online Help Startpage 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Crystal_Clear_app_tutorials.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Main_Page
https://apps.sourceforge.net/phpbb/free-cad/index.php
http://apps.sourceforge.net/mediawiki/free-cad/index.php
http://sourceforge.net/
http://sourceforge.net/

Online Help Toc
Here is the table of Content for the On-line Help system in FreeCAD. The articles referenced here are
automatically included in the FreeCAD.chm file by the wiki2chm.py tool. You find that tool under
src/Tools/wiki2chm.py. A printable version of this manual is also available.

Welcome•
Introduction

About FreeCAD♦
Features♦
Licence♦
Installing on Windows♦
Installing on Linux/Unix♦
Installing on Mac♦

•

Working with FreeCAD
Getting started♦
Navigating in the 3D space♦
The FreeCAD Document♦
Setting user preferences♦
Customizing the interface♦
Object properties♦
Working with workbenches♦
The Mesh workbench♦
The Part workbench♦
The Drawing workbench♦
The Raytracing workbench♦
The Image workbench♦
The 2D drafting workbench♦
List of all FreeCAD commands♦

•

Scripting and Macros
Working with macros♦
Introduction to python♦
FreeCAD Scripting Basics♦
Mesh Scripting♦
Part Scripting♦
The Coin Scenegraph♦
Working with Pivy♦
Embedding FreeCAD♦
Scripting Examples

Code snippets◊
Line drawing function◊
Dialog creation◊

♦

•

Developing applications for FreeCAD
Compiling FreeCAD

Finding assistance◊
Compiling on Windows◊
Compiling on Unix◊
Compiling on Mac◊
Third Party Libraries◊
Third Party Tools◊

♦
•

Online_Help_Toc

Online Help Toc 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Manual

Start up and Configuration◊
Build Support Tools

The FreeCAD build tool◊
Adding an application module◊
Debugging FreeCAD◊
Testing FreeCAD◊

♦

Modifying FreeCAD
Branding◊
Translating FreeCAD◊
Installing extra python modules◊

♦

Source documentation♦
Credits

Contributors♦
•

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Online_Help_Toc"

Online_Help_Toc

Online Help Toc 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Source_documentation

About FreeCAD

the FreeCAD interface
FreeCAD is a general purpose 3D CAD modeler. The development is completely Open Source (GPL &
LGPL License). FreeCAD is aimed directly at mechanical engineering and product design but also fits in a
wider range of uses around engineering, such as architecture or other engineering specialties.

FreeCAD features tools similar to Catia, SolidWorks or Solid Edge, and therefore also falls into the category
of MCAD, PLM, CAx and CAE. It will be a feature based parametric modeler with a modular software
architecture which makes it easy to provide additional functionality without modifying the core system.

As with many modern 3D CAD modelers it will have a 2D component in order to extract design detail from
the 3D model to create 2D production drawings, but direct 2D drawing (like AutoCAD LT) is not the focus,
neither are animation or organic shapes (like Maya, 3ds Max or Cinema 4D), although, thanks to its wide
adaptability, FreeCAD might become useful in a much broader area than its current focus.

Another major concern of FreeCAD is to make heavy use of all the great open-source libraries that exist out
there in the field of Scientific Computing. Among them are OpenCascade, a powerful CAD kernel, Coin3D,
an incarnation of OpenInventor, Qt, the world-famous UI framework, and Python, one of the best scripting
languages available. FreeCAD itself can also be used as a library by other programs.

FreeCAD is also fully multi-platform, and currently runs flawlessly on Windows and Linux/Unix and Mac
OSX systems, with the exact same look and functionality on all platforms.

Got curious? Take a look at the Feature list or the Getting started articles, or head directly to the User hub!

< previous: Online Help Startpage
next: Installing >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=About_FreeCAD"

About_FreeCAD

About FreeCAD 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Freecad09.jpg
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Freecad09.jpg
http://en.wikipedia.org/wiki/CAD
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Product_design
http://en.wikipedia.org/wiki/Catia
http://en.wikipedia.org/wiki/Solidworks
http://en.wikipedia.org/wiki/Solid_Edge
http://en.wikipedia.org/wiki/CAD
http://en.wikipedia.org/wiki/Product_Lifecycle_Management
http://en.wikipedia.org/wiki/CAx
http://en.wikipedia.org/wiki/Computer-aided_engineering
http://en.wikipedia.org/wiki/Parametric_feature_based_modeler
http://en.wikipedia.org/wiki/CAD
http://en.wikipedia.org/wiki/AutoCAD#AutoCAD_LT
http://en.wikipedia.org/wiki/Maya_(software)
http://en.wikipedia.org/wiki/3ds_Max
http://en.wikipedia.org/wiki/CINEMA_4D
http://en.wikipedia.org/wiki/Scientific_Computation
http://OpenCascade.org
http://Coin3D.org
http://en.wikipedia.org/wiki/Open_Inventor
http://www.qtsoftware.com/
http://www.python.org
http://en.wikipedia.org/wiki/Cross-platform
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=User_hub

Feature list
This is an extensive, hence not complete, list of features FreeCAD implements. If you want to look into the
future see the Development roadmap for a quick overview the Screenshots are a nice place to go.

Contents

1 General features
1.1 Base
application

♦

1.2 Document
structure

♦

1.3 User
Interface

♦

•

2 Application specific
features

2.1 Meshes♦
2.2 2D
Drafting

♦

2.3 CAD♦
2.4 Raytracing♦
2.5 Drawing♦
2.6 CAM♦

•

General features

Base application

FreeCAD is multi-platform. It runs and behaves exactly the same way on Windows Linux and Mac
OSX platforms.

•

FreeCAD is a full GUI application. FreeCAD has a complete Graphical User Interface based on the
famous Qt framework, with a 3D viewer based on Open Inventor, allowing fast rendering of 3D
scenes and a very accessible scene graph representation.

•

FreeCAD also runs as a command line application, with low memory footprint. In command line
mode, FreeCAD runs without its interface, but with all its geometry tools. It can be, for example, used

•

Feature_list

Feature list 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Freecad09-thumbnail.jpg
http://www.qtsoftware.com/
http://en.wikipedia.org/wiki/Open_Inventor

as server to produce content for other applications.

FreeCAD can be imported as a Python module, inside other applications that can run python
scripts, or in a python console. Like in console mode, the interface part of FreeCAD is unavailable,
but all geometry tools are accessible.

•

Plugin/Module framework for late loading of features/data-types. FreeCAD is divided into a core
application and modules, that are loaded only when needed. Almost all the tools and geometry types
are stored in modules. Modules behave like plugins, and can be added or removed to an existing
installation of FreeCAD.

•

Built-in scripting framework: FreeCAD features a built-in Python interpreter, and an API that
covers almost any part of the application, the interface, the geometry and the representation of this
geometry in the 3D viewer. The interpreter can run single commands up to complex scripts, in fact
entire modules can even be programmed completely in Python.

•

a modular MSI installer allows flexible installations on Windows systems. Packages for Ubuntu
systems are also maintained.

•

Document structure

Undo/Redo framework: Everything is undo/redoable, with access to the undo stack, so multiple
steps can be undone at a time.

•

Transaction management: The undo/redo stack stores document transactions and not single actions,
allowing each tool to define exactly what must be undone or redone.

•

Parametric associative document objects: All objects in a FreeCAD document can be defined by
parameters. Those parameters can be modified on the fly, and recomputed anytime. The relationship
between objects is also stored, so modifying one object also modifies its dependent objects.

•

Compound (ZIP based) document save format: FreeCAD documents saved with .fcstd extension
can contain many different types of information, such as geometry, scripts or thumbnail icons.

•

Feature_list

Base application 2

http://www.python.org/
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Freecad-vista01.jpg

User Interface

Fully customizable/scriptable Graphical User Interface. The Qt-based interface of FreeCAD is
entirely accessible via the python interpreter. Aside from the simple functions that FreeCAD itself
provides to workbenches, the whole Qt framework is accessible too, allowing any operation on the
GUI, such as creating, adding, docking, modifying or removing widgets and toolbars.

•

Workbench concept: In the FreeCAD interface, tools are grouped by workbenches. This allows to
display only the tools used to accomplish a certain task, keeping the workspace uncluttered and
responsive, and the application fast to load.

•

Built-in Python console with syntax highlighting, autocomplete and class browser: Python
commands can be issued directly in FreeCAD and immediately return results, permitting scriptwriters
to test functionality on the fly, explore the contents of the modules and easily learn about FreeCAD
internals.

•

User interaction mirroring on the console: Everything the user does in the FreeCAD interface
executes python code, which can be printed on the console and recorded in macros.

•

Full macro recording & editing: The python commands issued when the user manipulates the
interface can then be recorded, edited if needed, and saved to be reproduced later.

•

Thumbnailer (Linux systems only at the moment): The FreeCAD document icons show the contents
of the file in most file manager applications such as gnome's nautilus.

•

Application specific features

The functionality of FreeCAD is separated in modules, each one dealing with special data types and
applications:

Meshes

The Mesh Module deals with 3D meshes. It is intented primarily for import, healing and conversion
of third-party generated mesh geometry into FreeCAD, and export of FreeCAD geometry into mesh

•

Feature_list

 User Interface 3

http://www.qtsoftware.com
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Screenshot_mesh.jpg

formats. But FreeCAD itself also features much more advanced geometry types than meshes.

Primitive creation (box, sphere, cylinder, etc), offset (trivial or after Jung/Shin/Choi) or boolean
operations (add, cut, intersect)

•

Import of the following formats: ASCII or binary STL (Stereo lithography format) (*.stl, *.ast), the
OBJ format (*.obj), limited NASTRAN support (*.nas), Open Inventor meshes (*.iv), and FreeCAD
native mesh kernel (*.bms)

•

Export of the following formats: ASCII or binary STL (Stereo lithography format) (*.stl, *.ast), the
OBJ format (*.obj), limited NASTRAN support (*.nas, *.brl), VRML meshes (*.wrl), FreeCAD
native mesh kernel (*.bms), mesh as Python module (*.py)

•

Testing and repairing tools for meshes: solid test, non-two-manifolds test, self-intersection test, hole
filling and uniform orientation.

•

Extensive Python scripting API.•

2D Drafting

Graphical creation of simple planar geometry like lines, wires, rectangles, arcs or circles in any
plane of the 3D space

•

Annotations like texts or dimensions•

Graphical modification operations like translation, rotation, scaling, mirroring, offset or shape
conversion, in any plane of the 3D space

•

Import and Export of the following formats: Autodesk's Drawing Exchange Format (*.dxf), Open
Cad Format (*.oca, *.gcad) e SVG (*.svg)

•

CAD

The Part Module deals with everything around CAD modeling and the CAD data structures. The
CAD functionality is under heavy development (see the PartDesign_project and Assembly_project in

•

Feature_list

Meshes 4

http://en.wikipedia.org/wiki/STL_%28file_format%29
http://en.wikipedia.org/wiki/Obj
http://en.wikipedia.org/wiki/NASTRAN
http://en.wikipedia.org/wiki/Open_Inventor
http://en.wikipedia.org/wiki/STL_%28file_format%29
http://en.wikipedia.org/wiki/Obj
http://en.wikipedia.org/wiki/NASTRAN
http://en.wikipedia.org/wiki/VRML
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_BooleanOperations.png

the Development_roadmap). The Part Module works with high-level Open CASCADE geometry.

Parametric primitive shapes like box, sphere, cylinder, cone or torus.•

Topological components like vertices, edges, wires and planes (via python scripting).•

Modeling with straight or revolution extrusions, sections and fillets.•

Boolean operations like union, difference and intersection.•

Extensive Python scripting API.•

Import and Export of the following formats: STEP parts and assemblies (*.stp,*.step), IGES models
(*.igs, *.iges) and BRep (*.brp), the native format of our Open CASCADE CAD kernel.

•

Raytracing

The Raytracing Module permits the export of FreeCAD geometry to external renderers for
generation of high-quality images. Currently, the only supported render engine is POV-Ray. The
module currently permits the creation of a render sheet, and adding geometry to that render sheet for
export to a POV-Ray file.

•

Drawing

The Drawing Module allows to export projected views of your 3D geometry to a 2D SVG document.
It allows the creation of a 2D sheet with an existing svg template, and the insertion of projected views
of your geometry in that sheet. Then the sheet can be saved as a SVG file.

•

CAM

The Cam Module is dedicated to mechanical machining like milling. This module is at the very
beginning and at the moment mostly dedicated to Incremental Sheet Forming. Although there are
some algorithms for toolpath planing they are not usable for the end-user at the moment.

•

< previous: About FreeCAD
next: Install on Windows >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Feature_list"

Feature_list

CAD 5

http://en.wikipedia.org/wiki/Open_CASCADE
http://en.wikipedia.org/wiki/Constructive_solid_geometry
http://en.wikipedia.org/wiki/Standard_for_the_Exchange_of_Product_model_data
http://en.wikipedia.org/wiki/IGES
http://en.wikipedia.org/wiki/Open_CASCADE
http://en.wikipedia.org/wiki/POV-Ray
http://en.wikipedia.org/wiki/Incremental_sheet_forming

Licence

Contents

1 Statement of the
maintainer

•

2 Used Licences•
3 Impact of the
licences

3.1 Private
users

♦

3.2
Professional
users

♦

3.3 Open
Source
developers

♦

3.4
Professional
developers

♦

•

Statement of the maintainer

I know that the discussion on the "right" licence for open source occupied a significant portion of internet
bandwidth and so is here the reason why, in my opinion, FreeCAD should have this one.

I chose the LGPL and the GPL for the project and I know the pro and cons about the LGPL and will give you
some reasons for that decision.

FreeCAD is a mixture of a library and an application, so the GPL would be a little bit strong for that. It would
prevent writing commercial modules for FreeCAD because it would prevent linking with the FreeCAD base
libs. You may ask why commercial modules at all? Therefore Linux is good example. Would Linux be so
successful when the GNU C Library would be GPL and therefore prevent linking against non-GPL
applications? And although I love the freedom of Linux, I also want to be able to use the very good NVIDIA
3D graphic driver. I understand and accept the reason NVIDIA does not wish to give away driver code. We all
work for companies and need payment or at least food. So for me, a coexistence of open source and closed
source software is not a bad thing, when it obeys the rules of the LGPL. I would like to see someone writing a
Catia import/export processor for FreeCAD and distribute it for free or for some money. I don't like to force
him to give away more than he wants to. That wouldn't be good neither for him nor for FreeCAD.

Nevertheless this decision is made only for the core system of FreeCAD. Every writer of an application
module may make his own decision.

Used Licences

Here the three licences under which FreeCAD is published:

General Public Licence (GPL2+)

Licence

Licence 1

http://en.wikipedia.org/wiki/LGPL
http://en.wikipedia.org/wiki/GPL
http://en.wikipedia.org/wiki/GPL

For the Python scripts to build the binaries as stated in the .py files in src/Tools
Lesser General Public Licence (LGPL2+)

For the core libs as stated in the .h and .cpp files in src/App src/Gui src/Base and most modules in
src/Mod and for the executable as stated in the .h and .cpp files in src/main

Open Publication Licence
For the documentation on http://free-cad.sourceforge.net/ as not marked differently by the author

We try to use only LGPL type licences for the core system linked libraries (see Third Party Libraries) with
one exception:

the Coin3D licence (www.coin3d.org).•

See FreeCAD's debian copyright file for more details about the licenses used in FreeCAD

Impact of the licences

Private users

Private users can use FreeCAD free of charge and can do basically whatever they want to do with it....

Professional users

Can use FreeCAD for all kind of professional work without fee, they can customize the application as they
wish. They can write or have written open or closed source extensions to FreeCAD. They are always master
of their data and yet not forced to update FreeCAD or change the usage of FreeCAD.

Open Source developers

Can use FreeCAD as the groundwork for own extension modules for special purposes. They can choose either
the GPL or the LGPL to allow the use of their work in proprietary software or not.

Professional developers

Professional developers can use FreeCAD as the groundwork for their own extension modules for special
purposes and are not forced to make their modules open source. They can use all modules which use the
LGPL. They are allowed to distribute FreeCAD along with their proprietary software. They will get the
support of the author(s) as long as it is not a one way street. If you want to sell your module you need a
Coin3D licence, otherwise you are forced by this library to make it open source.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Licence"

Licence

Used Licences 2

http://en.wikipedia.org/wiki/LGPL
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Module&action=edit&redlink=1
http://en.wikipedia.org/wiki/Open_Publication_License
http://free-cad.sourceforge.net/
http://www.coin3d.org/licensing/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/debian/copyright?view=markup

Install on Windows
The easiest way to install FreeCAD on Windows is by using the installer. This page describes the usage and
the features of the Microsoft Installer for more installation options.

Contents

1 Simple Installation•
2 Command Line Installation

2.1 Non-interactive Installation♦
2.2 Limited user interface♦
2.3 Target directory♦
2.4 Installation for All Users♦
2.5 Feature Selection♦

•

3 Uninstallation•
4 Administrative installation•
5 Advertisement•
6 Automatic Installation on a Group of
Machines

•

7 Installation on Linux using Crossover
Office

•

Simple Installation

FreeCAD installer is delivered in .msi (Windows Installer) format.

You can download the latest .msi file from the official FreeCAD Download page. After downloading the file,
just double-click on it to start the installation process.

Command Line Installation

With the msiexec.exe command line utility, additional features are available, like non-interactive installation
and administrative installation.

Non-interactive Installation

With the command line

 msiexec /i FreeCAD<version>.msi

installation can be initiated programmatically. Additional parameters can be passed at the end of this
command line, like

 msiexec /i FreeCAD-2.5.msi TARGETDIR=r:\FreeCAD25

Install_on_Windows

Install on Windows 1

http://sourceforge.net/project/showfiles.php?group_id=49159&package_id=206659

Limited user interface

The amount of user interface that installer displays can be controlled with /q options, in particular:

/qn - No interface•
/qb - Basic interface - just a small progress dialog•
/qb! - Like /qb, but hide the Cancel button•
/qr - Reduced interface - display all dialogs that don't require user interaction (skip all modal dialogs)•
/qn+ - Like /qn, but display "Completed" dialog at the end•
/qb+ - Like /qb, but display "Completed" dialog at the end•

Target directory

The property TARGETDIR determines the root directory of the FreeCAD installation. For example, a
different installation drive can be specified with

TARGETDIR=R:\FreeCAD25

The default TARGETDIR is [WindowsVolume\Programm Files\]FreeCAD<version>.

Installation for All Users

Adding

 ALLUSERS=1

causes an installation for all users. By default, the non-interactive installation install the package just for the
current user, and the interactive installation offers a dialog which defaults to "all users" if the user is
sufficiently privileged.

Feature Selection

A number of properties allow selection of features to be installed, reinstalled, or removed. The set of features
for the FreeCAD installer is

DefaultFeature - install the software proper, plus the core libraries•
Documentation - install documentation•
Source code - install the sources•
... ToDo•

In addition, ALL specifies all features. All features depend on DefaultFeature, so installing any feature
automatically installs the default feature as well. The following properties control features to be installed or
removed

ADDLOCAL - list of feature to be installed on the local machine•
REMOVE - list of features to be removed•
ADDDEFAULT - list of features added in their default configuration (which is local for all FreeCAD
features)

•

Install_on_Windows

 Limited user interface 2

REINSTALL - list of features to be reinstalled/repaired•
ADVERTISE - list of feature for which to perform an advertise installation•

There are a few additional properties available; see the MSDN documentation for details.

With these options, adding

 ADDLOCAL=Extensions

installs the interpreter itself and registers the extensions, but does not install anything else.

Uninstallation

With

 msiexec /x FreeCAD<version>.msi

FreeCAD can be uninstalled. It is not necessary to have the MSI file available for uninstallation; alternatively,
the package or product code can also be specified. You can find the product code by looking at the properties
of the Uninstall shortcut that FreeCAD installs in the start menu.

Administrative installation

With

 msiexec /a FreeCAD<version>.msi

an "administrative" (network) installation can be initiated. The files get unpacked into the target directory
(which should be a network directory), but no other modification is made to the local system. In addition,
another (smaller) msi file is generated in the target directory, which clients can then use to perform a local
installation (future versions may also offer to keep some features on the network drive altogether).

Currently, there is no user interface for administrative installations, so the target directory must be passed on
the command line.

There is no specific uninstall procedure for an administrative install - just delete the target directory if no
client uses it anymore.

Advertisement

With

 msiexec /jm FreeCAD<version>.msi

it would be possible, in principle, to "advertise" FreeCAD to a machine (with /ju to a user). This would cause
the icons to appear in the start menu, and the extensions to become registered, without the software actually
being installed. The first usage of a feature would cause that feature to be installed.

Install_on_Windows

Feature Selection 3

The FreeCAD installer currently supports just advertisement of start menu entries, but no advertisement of
shortcuts.

Automatic Installation on a Group of Machines

With Windows Group Policy, it is possible to automatically install FreeCAD an a group of machines. To do
so, perform the following steps:

Log on to the domain controller1.
Copy the MSI file into a folder that is shared with access granted to all target machines.2.
Open the MMC snapin "Active Directory users and computers"3.
Navigate to the group of computers that need FreeCAD4.
Open Properties5.
Open Group Policies6.
Add a new policy, and edit it7.
In Computer Configuration/Software Installation, choose New/Package8.
Select the MSI file through the network path9.
Optionally, select that you want the FreeCAD to be deinstalled if the computer leaves the scope of the
policy.

10.

Group policy propagation typically takes some time - to reliably deploy the package, all machines should be
rebooted.

Installation on Linux using Crossover Office

You can install the windows version of FreeCAD on a Linux system using CXOffice 5.0.1. Run msiexec from
the CXOffice command line, assuming that the install package is placed in the "software" directory which is
mapped to the drive letter "Y:":

msiexec /i Y:\\software\\FreeCAD<version>.msi

FreeCAD is running, but it has been reported that the OpenGL display does not work, like with other
programms running under Wine i.e. Google SketchUp.

< previous: Feature list
next: Install on Unix >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Install_on_Windows"

Install_on_Windows

Advertisement 4

http://en.wikipedia.org/wiki/Wine_(software)
http://en.wikipedia.org/wiki/SketchUp

Install on Unix
At the moment, the FreeCAD team only provides installers for 32bit Debian and Ubuntu systems, but some
members of the FreeCAD users community also provide custom installers for other Linux flavors. Please have
a look at the Download page to see what is currently availible.

Installing on Debian/Ubuntu systems

Once you downloaded the .deb corresponding to your system version, if you have the Gdebi package installed
(usually it is), you just need to navigate to where you downloaded the file, and double-click on it. The
necessary dependencies will be taken care of automatically by your system package manager. Alternatively
you can also install it from the terminal, navigating to where you downloaded the file, and type:

sudo dpkg -i Name_of_your_FreeCAD_package.deb

changing Name_of_your_FreeCAD_package.deb by the name of the file you downloaded.

After you installed FreeCAD, a startup icon will be added in the "Graphic" section of your Start Menu.

Installing on other Linux/Unix systems

Unfortnately, at the moment, no precompiled package is availible for other Linux/Unix systems,so you will
need to compile FreeCAD yourself.

< previous: Install on Windows
next: Install on Mac >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Install_on_Unix"

Install_on_Unix

Install on Unix 1

http://en.wikipedia.org/wiki/Gdebi

Install on Mac
FreeCAD can be installed on Mac OS X in one step using the Installer. This page describes the usage and
features of the FreeCAD installer. It also includes uninstallation instructions.

Simple Installation

The FreeCAD installer is provided as a Installer package (.mpkg) enclosed in a disk image file.

You can download the latest installer from the Download page. After downloading the file, just mount the
disk image, then run the Install FreeCAD package.

The installer will present you with a Customize Installation screen that lists the packages that will be
installed. If you know that you already have any of these packages, you can deselect them using the
checkboxes. If you're not sure, just leave all items checked.

Install_on_Mac

Install on Mac 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Mac_installer_1.png

Uninstallation

There currently isn't an uninstaller for FreeCAD. To completely remove FreeCAD and all installed
components, drag the following files and folders to the Trash:

In /Applications:
FreeCAD♦

•

in /Library/Frameworks/
SoQt.framework♦
Inventor.framework♦

•

Then, from the terminal, run:

sudo /Developer/Tools/uninstall-qt.py
sudo rm -R /usr/local/lib/OCC
sudo rm -R /usr/local/include/OCC

That's it. Eventually, FreeCAD will be available as a self-contained application bundle so all this hassle will
go away.

Install_on_Mac

Simple Installation 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Mac_installer_2.png

< previous: Install on Unix
next: Getting started >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Install_on_Mac"

Install_on_Mac

Uninstallation 3

Getting started

Contents

1 Foreword•
2 Installing•
3 Exploring FreeCAD

3.1 Navigating in
the 3D space

♦
•

4 2D Drafting
4.1 Work
Settings

♦

4.2 Drawing
objects

♦

4.3 Modifying
objects

♦

•

5 Creating 3D Parts
5.1 Primitives♦
5.2 Modifying
objects

♦

•

6 Exporting to 2D
Drawings

•

7 Exporting to external
renderers

•

8 Scripting•

Foreword

FreeCAD is a CAD/CAE parametric modeling application. It is still in early stage of development, so don't
expect to be able to use it to produce work already. But, if you are curious about what FreeCAD looks like
and what features are being developed, you are welcome to download it and give it a try. At the moment,
much functionality is already present, but not much user interface has been created for it. This means that if
you know a bit of python, you will already be able to produce and modify complex geometry relatively easily.
If not, you will probably find that FreeCAD still has few to offer to you. But, be patient, this is expected to
change soon.

And if after testing you have feedback, ideas or opinions, please share it with us on the FreeCAD discussion
forum!

Installing

First of all (if not done already) download and install FreeCAD. See the Download page for information about
current versions and updates. There are install packages ready for Windows (.msi), Ubuntu & Debian (.deb)
openSUSE (.rpm) and Mac OSX.

Getting_started

Getting started 1

http://apps.sourceforge.net/phpbb/free-cad/index.php
http://apps.sourceforge.net/phpbb/free-cad/index.php

Exploring FreeCAD

The FreeCAD interface when you start it for the first time. See more screenshots here.
FreeCAD is a general all-purpose 3D modeling application, focused on mechanical engineering and related
areas, such as other engineering specialties or architecture. It is conceived as a platform for developing any
kind of 3D application, but also for doing very specific tasks. For that purpose, its interface is divided into a
serie of Workbenches. Workbenches allow to change the interface contents to display all and only the tools
necessary for a specific task, or group of tasks.

The FreeCAD interface can therefore be described as a very simple container, with a menu bar, a 3D view
area, and a couple of side panels for displaying the scene contents or object properties. All the contents of
these panels can be changes depending on the workbench.

When you start FreeCAD for the first time, you will be presented a "general" workbench, that we call
"complete workbench". This workbench simply gathers the most mature tools from other workbenches. Since
FreeCAD is pretty young and not yet used for very specialized work, this workbench is very handy for
discovering FreeCAD more easily. Basically, all the tools that are good enough for producing geometry are
here.

Getting_started

 Exploring FreeCAD 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Freecad09-empty.jpg

Navigating in the 3D space

FreeCAD has two different navigation modes availables, that can be set in the preferences settings dialog. In
the default mode, zooming is made with the Mouse wheel, panning with the Middle mouse button, and
rotating with the Left mouse button and Middle mouse button simultaneously. Selecting an object is made
simply by clicking on it with the Left mouse button, with CTRL pressed if you want to select several objects.

You also have several view presets (top view, front view, etc) available in the View menu and on the View
toolbar, and by numeric shortcuts (1, 2, etc...)

2D Drafting

Work Settings

These tools configure your working environment.

 Working plane: Sets your working plane for the next operations
•

Drawing objects

These are tools for creating objects.

 2-point Line: Draws a line segment from 2 points
•

 Multiple-point Line (Polyline): Draws a line made of multiple line segments
•

 Circle: Draws a circle from center and radius
•

 Arc: Draws an arc segment from center, radius, start angle and end angle
•

 Rectangle: Draws a rectangle from 2 opposite points
•

 Text: Draws a multi-line text annotation
•

 Dimension: Draws a dimension annotation
•

Modifying objects

These are tools for modifying existing objects. They work on selected objects, but if no object is selected, you
will be invited to select one.

 Move: Moves object(s) from one location to another
•

 Rotate: Rotates object(s) from a start angle to an end angle
•

 Offset: Moves segments of an object about a certain distance
•

Getting_started

 Navigating in the 3D space 3

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Workingplane.svg
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Line.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Polyline.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Circle.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Arc.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Rectangle.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Text.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Dimension.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Move.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Rotate.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Offset.png

 Upgrade: Joins objects into a higher-level object
•

 Downgrade: Explodes objects into lower-level objects
•

 Trim/Extend (Trimex): Trims or extends an object•

 Apply style: Applies current color and linewidth to objects
•

 Scale: Scales selected object(s) around a base point
•

Creating 3D Parts

Primitives

These are tools for creating primitive objects.

 Box: Draws a box by specifying its dimensions
•

 Cone: Draws a cone by specifying its dimensions
•

 Cylinder: Draws a cylinder by specifying its dimensions
•

 Sphere: Draws a sphere by specifying its dimensions
•

 Torus: Draws a torus (ring) by specifying its dimensions
•

Modifying objects

These are tools for modifying existing objects. They will allow you to choose which object to modify.

 Booleans: Performs boolean operations on objects
•

 Fuse: Fuses (unions) two objects
•

 Common: Extracts the common (intersection) part of two objects
•

 Cut: Cuts (subtracts) one object from another
•

 Extrude: Extrudes planar faces of an object
•

 Fillet: Fillets (rounds) edges of an object
•

 Revolve: Creates an object by revolving another object around an axis
•

 Section: Creates a section by intersecting an object with a section plane
•

Getting_started

Modifying objects 4

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Upgrade.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Downgrade.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Trimex.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Apply.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Scale.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Box.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Cone.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Cylinder.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Sphere.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Torus.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Booleans.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Fuse.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Common.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Cut.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Extrude.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Fillet.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Revolve.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Section.png

Exporting to 2D Drawings

These are tools for creating, configuring and exporting 2D drawing sheets

 New drawing sheet: Creates a new drawing sheet from an existing SVG file
•

 New A3 landscape drawing: Creates a new drawing sheet from FreeCAD's default A3 template
•

 Insert a view: Inserts a view of the selected object in the active drawing sheet
•

 Save sheet: Saves the current sheet as a SVG file
•

Exporting to external renderers

These are tools for exporting your 3D work to external renderers

 Create a Povray project: Creates a new POV-Ray project
•

 Insert view info: Inserts the view info (camera position, etc) to the current POV-Ray project
•

 Insert part info:Inserts the selected object to the current POV-Ray project
•

Scripting

And finally, one of the most powerful features of FreeCAD is the scripting environment. From the integrated
python console (or from any other external python script), you can gain access to almost any part of
FreeCAD, create or modify geometry, modify the representation of those objects in the 3D scene or access
and modify the FreeCAD interface. Python scripting can also be used in macros, which provide an easy
method to create custom commands.

< previous: Install on Mac
next: Mouse Model >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Getting_started"

Getting_started

 Exporting to 2D Drawings 5

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Drawing_New.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Drawing_New&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Drawing_Landscape_A3.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Drawing_Landscape_A3&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Drawing_View.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Drawing_View&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Drawing_Save.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Drawing_Save&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Raytracing_Export.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Raytracing_Export&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Raytracing_Camera.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Raytracing_Camera&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Raytracing_Part.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Raytracing_Part&action=edit&redlink=1

Mouse Model
The mouse model of FreeCAD is very flexible and intuitive and with a few hints you can use it after only a
minute of practice.

Selecting objects

Objects can be selected by a click with the left mouse button either by clicking on the object in the 3D-view or
by selecting it in the tree view. There is also a Preselection mechanism that highlights objects and displays
information about them before selection just by hovering the mouse over it. If you don't like that behaviour or
you have a slow machine, you can switch preselection off in the preferences.

Handling Objects

The object handling is common to all workbenches. The following mouse gestures can be used to control the
object position and view.

Select
Press the left mouse button over an object you want to select.

Zoom
Use the + or - keys or the mouse wheel to zoom in and out.

Pan
Click the middle mouse button and move the object around.

Rotate
Click first with the middle mouse button, hold it and the click the left mouse button on any visible
part of an object and drag it in the desired direction. This works like spinning a ball that rotates
around its center. If you release the buttons before you stop your motion, the object continues
spinning, if this is enabled.

Setting Center of Rotation
A double click with the middle mouse button on any part of an object sets the new center of rotation
and zooms in on this point.

Manipulating Objects

FreeCAD offers manipulators that can be used to modify an object or its visual appearance. A simple example
is the clipping plane wich can be activated with the Viewâ��Clipping Plane menu. After activation the
clipping plane object appears and shows seven obvious manipulators as little boxes: One on each end of its
three coordinate axes and one on the center of the plane normal axis. There are four more that are not as
obvious: The plane it self and the thin part of the three axis objects.

Scaling

Mouse_Model

Mouse Model 1

To scale the object click with the left mouse button on the box manipulators at the end of the axes and
pull them back and forth. Depending on the object the manipulators work independently or
synchronously.

Out of plane shifting
To shift the object along its normal vector, pull the long box on the center of an axis with the left
mouse button. For the clipping plane there is only one manipulator along the normal vector.

In plane shifting
To move the center of the clipping plane, click on the plane object and pull it to the desired location.

Rotation
Clicking on the thin part of the axes puts the manipulator in rotation mode.

< previous: Getting started
next: Document structure >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Mouse_Model"

Mouse_Model

Manipulating Objects 2

Document structure

A FreeCAD document contains all the objects of your scene. It can contain groups, and objects made with any
workbench. You can therefore switch between workbenches, and still work on the same document. The
document is what gets saved to disk when you save your work. You can also open several documents at the
same time in FreeCAD, and open several views of the same document.

Inside the document, the objects can be moved into and groups, and have a unique name. Managing groups,
objects and object names is done mainly from the Tree view. It can also be done, of course, like everything in
FreeCAD, from the python interpretor. In the Tree view, you can create groups, move objects to groups,
delete objects or groups, by right-clicking in the tree view or on an object, rename objects by double-clicking
on their names, or possibly other operations, depending on the current workbench.

The objects inside a FreeCAD document can be of different types. Each workbench can create its own types
of objects, for example the Mesh Workbench creates mesh objects, the Part Workbench create Part objects,
the Draft Workbench also creates Part objects, etc.

If there is at least one document open in FreeCAD, there is always one and only one active document. That's
the document that appears in the current 3D view, the document you are currently working on.

Application and User Interface

Like almost everything else in FreeCAD, the user interface part (Gui) is separated from the base application
part (App). This is also valid for documents. The documents are also made of two parts: the Application
document, which contains our objects, and the View document, which contains the representation on screen of
our objects.

Think of it as two spaces, where the objects are defined. Their constructive parameters (is it a cube? a cone?
which size?) are stored in the Application document, while their graphical representation (is it drawn with
black lines? with blue faces?) are stored in the View document. Why is that? Because FreeCAD can also be
used WITHOUT graphical interface, for example inside other programs, and we must still be able to
manipulate our objects, even if nothing is drawn on the screen.

Another thing that is contained inside the View document are 3D views. One document can have several
views opened, so you can inspect your document from several points of view at the same time. Maybe you

Document_structure

Document structure 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Screenshot_treeview.jpg

would want to see a top view and a front view of your work at the same time? Then, you will have two views
of the same document, both stored in the View document. Create new views or close views can be done from
the View menu or by right-clicking on a view tab.

Scripting

Documents can be easily created, accessed and modified from the python interpreter. For example:

FreeCAD.ActiveDocument

Will return the current (active) document

FreeCAD.ActiveDocument.Blob

Would access an object called "Blob" inside your document

FreeCADGui.ActiveDocument

Will return the view document associated to the current document

FreeCADGui.ActiveDocument.Blob

Would access the graphical representation (view) part of our Blob object

FreeCADGui.ActiveDocument.ActiveView

Will return the current view

< previous: Mouse Model
next: Preferences Editor >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Document_structure"

Document_structure

Application and User Interface 2

Preferences Editor
The preferences system of FreeCAD is located in the Edit menu -> Preferences.

FreeCAD functionality is divided into different modules, each module being responsible for the working of a
specific workbench. FreeCAD also uses a concept called late loading, which means that components are
loaded only when they are needed. You may have noticed that when you select a workbench on the FreeCAD
toolbar, that workbench and all its components get loaded at that moment. This includes its preferences
settings.

The general preferences settings

When you start FreeCAD with no workbench loaded, you will then have a minimal preferences window. As
you load additional modules, new sections will appear in the preferences window, allowing you to configure
the details of each workbench.

Without any module loaded, you will have access to two configuration sections, responsibles for the general
application settings and for the display settings.

Preferences_Editor

Preferences Editor 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Screenshot_preferences01.jpg

The display settings

FreeCAD is always in constant evolution, so the contents of those screens might differ from the above
screenshots. The settings are usually self-explanatory, so you shouldn't meet any difficulty configuring
FreeCAD to your needs.

< previous: Document structure
next: Interface Customization >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Preferences_Editor"

Preferences_Editor

Preferences Editor 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Screenshot_preferences02.jpg

Interface Customization
Since FreeCAD interface is based on the modern Qt toolkit, it has a state-of-the-art organization. Widgets,
menus, toolbars and other tools can be modified, moved, shared between workbenches, keyboard shortcuts
can be set, modified, and macros can be recorded and played. The customization window is accessed from the
Tools -> Customize menu:

The Commands tab lets you browse all available FreeCAD commands, organized by their category.

In Keyboard, you can see the keyboard shortcuts associated with every FreeCAD command, and if you want,
modify or assign new shortcut to any command. This is where to come if you use a particular workbench
often, and would like to speed up its use by using the keyboard.

The Toolbars and Toolbox bars tabs let you modify existing toolbars, or create your own custom toolbars.

The Macros tab lets you manage your saved Macros.

< previous: Preferences Editor
next: Property >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Interface_Customization"

Interface_Customization

Interface Customization 1

http://en.wikipedia.org/wiki/Qt_(toolkit)
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Screenshot-customize.jpg

Property
A property is a piece of information like a number or a text string that is attached to a FreeCAD document or
an object in a document. Properties can be viewed and - if allowed - modified with the property editor.

Properties play a very important part in FreeCAD, since it is from the beginning made to work with
parametric objects, which are objects defined only by their properties.

Custom scripted objects in FreeCAD can have properties of the following types:

Boolean
Float
FloatList
FloatConstraint
Angle
Distance
Integer
IntegerConstraint
Percent
Enumeration
IntegerList
String
StringList
Link
LinkList
Matrix
Vector
VectorList
Placement
PlacementLink
Color
ColorList
Material
Path
File
FileIncluded
PartShape
FilletContour
Circle

< previous: Interface Customization
next: Workbenches >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Property"

Property

Property 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Property_editor&action=edit&redlink=1

Workbenches
FreeCAD, like many modern design applications such as Revit, is based on the concept of Workbench. A
workbench can be considered as a set of tools specially grouped for a certain task. In a traditional furniture
workshop, you would have a work table for the person who works with wood, another one for the one who
works with metal pieces, and maybe a third one for the guy who mounts all the pieces together.

In FreeCAD, the same concept applies. Tools are grouped into workbenches according to the tasks they are
related to.

Currently we have the following workbenches available:

Built-in workbenches

The Mesh Workbench for working with triangulated meshes.•
The Part Workbench for working with CAD parts.•
The Image Workbench for working with bitmap images.•
The Raytracing Workbench for working with ray-tracing (rendering).•
The Draft Workbench for doing basic 2D CAD drafting.•
The Drawing workbench for displaying your 3D work on a 2D sheet.•
Several testing workbenches. You'll find in the workbenches list several workbenches for testing
different areas and functionalities since FreeCAD is still in an early phase of development.

•

New workbenches are in development, stay tuned!

When you switch from one workbench to another, the tools available on the interface change. Toolbars,
command bars and eventually other parts of the interface switch to the new workbench, but the contents of
your scene doesn't change. You could, for example, start drawing 2D shapes with the Draft Workbench, then
work further on them with the Part Workbench.

< previous: Property
next: Mesh Module >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Workbenches"

Workbenches

Workbenches 1

http://en.wikipedia.org/wiki/Revit
http://en.wikipedia.org/wiki/Workbench

Mesh Workbench
(Redirected from Mesh Module)

Introduction

The Mesh Workbench handles triangle meshes. Meshes are a special type of 3D objects, composed of
triangles conected by their edges and their corners (also called vertices).

An example of a mesh object

Many 3D applications use meshes as their primary type of 3D object, like sketchup, blender, maya or 3d
studio max. Since meshes are very simple objects, containing only vertices (points), edges and (triangular)
faces, they are very easy to create, modify, subdivide, stretch, and can easily be passed from one application
to another without any loss. Besides, since they contain very simple data, 3D applications can usually manage
very large quantities of them without any problem. For those reasons, meshes are often the 3D object type of
choice of applications dealing with movies, animation, and image creation.

In the field of engineering, however, meshes present one big limitation: They are very dumb objects, only
composed of points,lines and faces. They are only made of surfaces, and have no mass information, so they
don't behave as solids. In a mesh there is no automatic way to know if a point is inside or outside the object.
This means that all solid-based operations, such as addition or subtraction, are always a bit difficult to perform
on meshes, and return errors often.

In FreeCAD, since it is an engineering application, we would obviously prefer to work with more intelligent
types of 3D objects, that can carry more informations, such as mass, solid behaviour, or even custom
parameters. The mesh module was first created to serve as a testbed, but be able to read, manipulate and

Mesh_Module

Mesh Workbench 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Mesh_Module&redirect=no
http://en.wikipedia.org/wiki/Triangle_mesh
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Mesh_example.jpg
http://en.wikipedia.org/wiki/Sketchup
http://en.wikipedia.org/wiki/Blender_(software)
http://en.wikipedia.org/wiki/Maya_(software)
http://en.wikipedia.org/wiki/3d_max
http://en.wikipedia.org/wiki/3d_max

convert meshes is also highly important for FreeCAD. Very often, in your workflow, you will receive 3D data
in mesh format. You will need to handle that data, analyse it to detect errors or other problems that prevent
converting them to more intelligent objects, and finally, convert them to more intelligent objects, handled by
the Part Module.

Using the mesh module

The mesh module has currently a very simple interface, all its functions are grouped in the Mesh menu entry.
The most important operations you can currently do with meshes are:

Import meshes in several file formats•
Export meshes in several file formats•
Convert Part objects into meshes•
Analyse curvature, faces, and check if a mesh can be safely converted into a solid•
Flip mesh normals•
Close holes in meshes•
Remove faces of meshes•
Union, subtract and intersect meshes•
Create mesh primitives, like cubes, spheres, cones or cylinders•
Cut meshes along a line•

These are only some of the basic operations currently present in the Mesh module interface. But the FreeCAD
meshes can also be handled in many more ways by scripting.

< previous: Workbenches
next: Part Module >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Mesh_Workbench"

Mesh_Module

Introduction 2

http://en.wikipedia.org/wiki/Surface_normal

Part Module

Contents

1 Introduction•
2 Using the Part
module

2.1
Primitives

♦

2.2
Modifying
objects

♦

2.3
Boolean
Operations

♦

•

3 In depth•
4 Scripting

4.1
Examples

♦
•

Introduction

the CAD capabilities of FreeCAD are based on the OpenCasCade kernel. The Part module allows FreeCAD to
access and use the OpenCasCade objects and functions. OpenCascade is a professional-level CAD kernel, that
features advanced 3D geometry manipulation and objects. The Part objects, unlike Mesh Module objects, are
much more complex, and therefore permit much more advanced operations, like coheent booleans operations,
modifications history and parametric behaviour.

Part_Module

Part Module 1

http://en.wikipedia.org/wiki/Open_CASCADE

Example of Part shapes in FreeCAD

Using the Part module

The Part module tools are all located in the Part menu that appears when you load the Part module.

Primitives

These are tools for creating primitive objects.

 Box: Draws a box by specifying its dimensions
•

 Cone: Draws a cone by specifying its dimensions
•

 Cylinder: Draws a cylinder by specifying its dimensions
•

 Sphere: Draws a sphere by specifying its dimensions
•

 Torus: Draws a torus (ring) by specifying its dimensions
•

Modifying objects

These are tools for modifying existing objects. They will allow you to choose which object to modify.

Part_Module

Introduction 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_example.jpg
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Box.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Cone.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Cylinder.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Sphere.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Torus.png

 Booleans: Performs boolean operations on objects
•

 Fuse: Fuses (unions) two objects
•

 Common: Extracts the common (intersection) part of two objects
•

 Cut: Cuts (subtracts) one object from another
•

 Extrude: Extrudes planar faces of an object
•

 Fillet: Fillets (rounds) edges of an object
•

 Revolve: Creates an object by revolving another object around an axis
•

 Section: Creates a section by intersecting an object with a section plane
•

Boolean Operations

An example of union (Fuse), intersection (Common) and difference (Cut)

In depth

In OpenCasCade terminology, we distinguish between geometric primitives and (topological) shapes. A
geometric primitive can be a point, a line, a circle, a plane, etc. or even some more complex types like a
B-Spline curve or surface. A shape can be a vertex, an edge, a wire, a face, a solid or a compound of other
shapes. The geometric primitive are not made to be directly displayed on the 3D scene, but rather to be used
as building geometry for shapes. For example, an edge can be constructed from a line or from a portion of a
circle.

Part_Module

Modifying objects 3

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Booleans.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Fuse.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Common.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Cut.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Extrude.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Fillet.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Revolve.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Section.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_BooleanOperations.png

We could say, to resume, that geometry primitive are "shapeless" building blocks, and shapes are the real
spatial geometry built on it.

To get a complete list of all of them refer to the OCC documentation and search for Geom_Geometry and
TopoDS_Shape. There you can also read more about the differences between geometric objects and shapes.
Please note that unfortunately the OCC documentation is not available online (you must download an archive)
and is mostly aimed at programmers, not at end-users. But hopefully you'll find enough information to get
started here.

The geometric types actually can be divided into two major groups: curves and surfaces. Out of the curves
(line, circle, ...) you can directly build an edge, out of the surfaces (plane, cylinder, ...) a face can be built. For
example, the geometric primitive line is unlimited, i.e. it is defined by a base vector and a direction vector
while its shape representation must be something limited by a start and end point. And a box -- a solid -- can
be created by six limited planes.

From an edge or face you can also go back to its geometric primitive counter part.

Thus, out of shapes you can build very complex parts or, the other way round, extract all sub-shape a more
complex shape is made of.

Scripting

The main data structure used in the Part module is the BRep data type from OpenCascade. About all contents
and object types of the Part module are now available to python scripting. This includes geometric primitives,
such as Line and Circle (or Arc), and the whole range of TopoShapes, like Vertexes, Edges, Wires, Faces,
Solids and Compounds. For each of those objects, several creations methods exist, and for some of them,
especially the TopoShapes, advanced operations like booleans union/difference/intersection are also available.
Explore the contents of the Part module, as described in the FreeCAD Scripting Basics page, to know more.

Examples

To create a line element switch to the Python console and type in:

import Part,PartGui
doc=App.newDocument()
l=Part.Line()
l.StartPoint=(0.0,0.0,0.0)
l.EndPoint=(1.0,1.0,1.0)
doc.addObject("Part::Feature","Line").Shape=l.toShape()
doc.recompute()

Let's go through the above python example step by step:

import Part,PartGui
doc=App.newDocument()

loads the Part module and creates a new document

l=Part.Line()
l.StartPoint=(0.0,0.0,0.0)

Part_Module

In depth 4

http://www.opencascade.org/org/doc/
http://en.wikipedia.org/wiki/Boundary_representation

l.EndPoint=(1.0,1.0,1.0)

Line is actually a line segment, hence the start and endpoint.

doc.addObject("Part::Feature","Line").Shape=l.toShape()

This adds a Part object type to the document and assigns the shape representation of the line segment to the
'Shape' property of the added object. It is important to understand here that we used a geometric primitive (the
Part.line) to create a TopoShape out of it (the toShape() method). Only Shapes can be added to the document.
In FreeCAD, geometry primitives are used as "building structures" for Shapes.

doc.recompute()

Updates the document. This also prepare the visual representation of the new part object.

Note that a Line can be created by specifiying its start and endpoint directly in the constructor, for ex.
Part.Line(point1,point2) or we can create a default line and set its properties afterwards, like we did here.

A circle can be created in a similar way:

import Part
doc = App.activeDocument()
c = Part.Circle()
c.Radius=10.0
f = doc.addObject("Part::Feature", "Circle")
f.Shape = c.toShape()
doc.recompute()

Note again, we used the circle (geometry primitive) to construct a shape out of it. We can of course still access
our construction geometry afterwards, by doing:

s = f.Shape
e = s.Edges[0]
c = e.Curve

Here we take the shape of our object f, then we take its list of edges, in this case there will be only one
because we made the whole shape out of a single circle, so we take only the first item of the Edges list, and
we takes its curve. Every Edge has a Curve, which is the geometry primitive it is based on.

Head to the Topological data scripting page if you would like to know more.

< previous: Mesh Module
next: Drawing Module >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Part_Module"

Part_Module

Examples 5

Drawing Module
The Drawing module allows you to put your 3D work on paper. That is, to put views of your models in a 2D
window and to insert that window in a drawing, for example a sheet with a border, a title and your logo and
finally print that sheet. The Drawing module is currently under construction and more or less a technology
preview!

Contents

1 GUI Tools•
2 Scripting

2.1 Simple
example

♦

2.2 The
parametric way

♦

2.3 Accessing the
bits and pieces

♦

•

GUI Tools

These are tools for creating, configuring and exporting 2D drawing sheets

 New drawing sheet: Creates a new drawing sheet from an existing SVG file
•

 New A3 landscape drawing: Creates a new drawing sheet from FreeCAD's default A3 template
•

 Insert a view: Inserts a view of the selected object in the active drawing sheet
•

 Save sheet: Saves the current sheet as a SVG file
•

Drawing_Module

Drawing Module 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Drawing_New.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Drawing_New&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Drawing_Landscape_A3.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Drawing_Landscape_A3&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Drawing_View.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Drawing_View&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Drawing_Save.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Drawing_Save&action=edit&redlink=1

In the picture you see the main concepts of the Drawing module. The document contains a shape object
(Schenkel) which we want to extract to a drawing. Therefore a "Page" is created. A page gets instantiated
through a template, in this case the "A3_Landscape" template. The template is an SVG document which can
hold your usual page frame, your logo or comply to your presentation standards.

In this page we can insert one or more views. Each view has a position on the page (Properties X,Y), a scale
factor (Property scale) and additional properties. Every time the page or the view or the referenced object
changes the page gets regenerated and the page display updated.

Scripting

At the moment the end user(GUI) workflow are very limited, so the scripting API is more interesting. Here
follows examples on how to use the scripting API of the drawing module.

Simple example

First of all you need the Part and the Drawing module:

import FreeCAD, Part, Drawing

Create a small sample part

Part.show(Part.makeBox(100,100,100).cut(Part.makeCylinder(80,100)).cut(Part.makeBox(90,40,100)).cut(Part.makeBox(20,85,100)))

Drawing_Module

GUI Tools 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Drawing_extraction.png

Direct projection. The G0 means hard edge, the G1 is tangent continuous.

Shape = App.ActiveDocument.Shape.Shape
[visibleG0,visibleG1,hiddenG0,hiddenG1] = Drawing.project(Shape)
print "visible edges:", len(visibleG0.Edges)
print "hidden edges:", len(hiddenG0.Edges)

Everything was projected on the Z-plane:

print "Bnd Box shape: X=",Shape.BoundBox.XLength," Y=",Shape.BoundBox.YLength," Z=",Shape.BoundBox.ZLength
print "Bnd Box project: X=",visibleG0.BoundBox.XLength," Y=",visibleG0.BoundBox.YLength," Z=",visibleG0.BoundBox.ZLength

Different projection vector

[visibleG0,visibleG1,hiddenG0,hiddenG1] = Drawing.project(Shape,Base.Vector(1,1,1))

Project to SVG

resultSVG = Drawing.projectToSVG(Shape,App.Vector(1,1,1))
print resultSVG

The parametric way

Create the body

Create three boxes and a cylinder
App.ActiveDocument.addObject("Part::Box","Box")
App.ActiveDocument.Box.Length=100.00
App.ActiveDocument.Box.Width=100.00
App.ActiveDocument.Box.Height=100.00

App.ActiveDocument.addObject("Part::Box","Box1")
App.ActiveDocument.Box1.Length=90.00
App.ActiveDocument.Box1.Width=40.00
App.ActiveDocument.Box1.Height=100.00

App.ActiveDocument.addObject("Part::Box","Box2")
App.ActiveDocument.Box2.Length=20.00
App.ActiveDocument.Box2.Width=85.00
App.ActiveDocument.Box2.Height=100.00

App.ActiveDocument.addObject("Part::Cylinder","Cylinder")
App.ActiveDocument.Cylinder.Radius=80.00
App.ActiveDocument.Cylinder.Height=100.00
App.ActiveDocument.Cylinder.Angle=360.00
Fuse two boxes and the cylinder
App.activeDocument().addObject("Part::Fuse","Fusion")
App.activeDocument().Fusion.Base = App.activeDocument().Cylinder
App.activeDocument().Fusion.Tool = App.activeDocument().Box1

App.activeDocument().addObject("Part::Fuse","Fusion1")
App.activeDocument().Fusion1.Base = App.activeDocument().Box2
App.activeDocument().Fusion1.Tool = App.activeDocument().Fusion
Cut the fused shapes from the first box

Drawing_Module

Simple example 3

App.activeDocument().addObject("Part::Cut","Shape")
App.activeDocument().Shape.Base = App.activeDocument().Box
App.activeDocument().Shape.Tool = App.activeDocument().Fusion1
Hide all the intermediate shapes
Gui.activeDocument().Box.Visibility=False
Gui.activeDocument().Box1.Visibility=False
Gui.activeDocument().Box2.Visibility=False
Gui.activeDocument().Cylinder.Visibility=False
Gui.activeDocument().Fusion.Visibility=False
Gui.activeDocument().Fusion1.Visibility=False

Insert a Page object and assign a template

App.activeDocument().addObject('Drawing::FeaturePage','Page')
App.activeDocument().Page.Template = App.getResourceDir()+'Mod/Drawing/Templates/A3_Landscape.svg'

Create a view on the "Shape" object, define the position and scale and assign it to a Page

App.activeDocument().addObject('Drawing::FeatureViewPart','View')
App.activeDocument().View.Source = App.activeDocument().Shape
App.activeDocument().View.Direction = (0.0,0.0,1.0)
App.activeDocument().View.X = 10.0
App.activeDocument().View.Y = 10.0
App.activeDocument().Page.addObject(App.activeDocument().View)

Create a second view on the same object but this time the view will be rotated by 90 degrees.

App.activeDocument().addObject('Drawing::FeatureViewPart','ViewRot')
App.activeDocument().ViewRot.Source = App.activeDocument().Shape
App.activeDocument().ViewRot.Direction = (0.0,0.0,1.0)
App.activeDocument().ViewRot.X = 290.0
App.activeDocument().ViewRot.Y = 30.0
App.activeDocument().ViewRot.Scale = 1.0
App.activeDocument().ViewRot.Rotation = 90.0
App.activeDocument().Page.addObject(App.activeDocument().ViewRot)

Create a third view on the same object but with an isometric view direction. The hidden lines are activated
too.

App.activeDocument().addObject('Drawing::FeatureViewPart','ViewIso')
App.activeDocument().ViewIso.Source = App.activeDocument().Shape
App.activeDocument().ViewIso.Direction = (1.0,1.0,1.0)
App.activeDocument().ViewIso.X = 335.0
App.activeDocument().ViewIso.Y = 140.0
App.activeDocument().ViewIso.ShowHiddenLines = True
App.activeDocument().Page.addObject(App.activeDocument().ViewIso)

Change something and update. The update process changes the view and the page.

App.activeDocument().View.X = 30.0
App.activeDocument().View.Y = 30.0
App.activeDocument().View.Scale = 1.5
App.activeDocument().recompute()

Drawing_Module

The parametric way 4

Accessing the bits and pieces

Get the SVG fragment of a single view

ViewSVG = App.activeDocument().View.ViewResult
print ViewSVG

Get the whole result page (it's a file in the document's temporary directory, only read permission)

print "Resulting SVG document: ",App.activeDocument().Page.PageResult
file = open(App.activeDocument().Page.PageResult,"r")
print "Result page is ",len(file.readlines())," lines long"

Important: free the file!

del file

Insert a view with your own content:

App.activeDocument().addObject('Drawing::FeatureView','ViewSelf')
App.activeDocument().ViewSelf.ViewResult = """<g id="ViewSelf"
 stroke="rgb(0, 0, 0)"
 stroke-width="0.35"
 stroke-linecap="butt"
 stroke-linejoin="miter"
 transform="translate(30,30)"
 fill="#00cc00"
 >

 <ellipse cx="40" cy="40" rx="30" ry="15"/>
 </g>
"""
App.activeDocument().Page.addObject(App.activeDocument().ViewSelf)
App.activeDocument().recompute()

del Shape,ViewSVG, resultSVG

That leads to the following result:

Drawing_Module

 Accessing the bits and pieces 5

< previous: Part Module
next: Raytracing Module >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Drawing_Module"

Drawing_Module

 Accessing the bits and pieces 6

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:DrawingScriptResult.jpg

Raytracing Module
This module is aimed at sending the contents of your scene to an external renderer, for generating
photorealistic images of your work. The Raytracing module is still in very early stage of completion, so you
have not many options available at the moment. Currently, only a basic set of tools to export Part objects as
POV-ray files is implemented. Those files can then be loaded into POV-ray and rendered.

Contents

1 GUI
Tools

•

2 Export
a View

•

3
Scripting

•

4 Links•

GUI Tools

These are tools for exporting your 3D work to external renderers

 Create a Povray project: Creates a new POV-Ray project
•

 Insert view info: Inserts the view info (camera position, etc) to the current POV-Ray project
•

 Insert part info:Inserts the selected object to the current POV-Ray project
•

Export a View

The easiest way is to export the current 3D view and all of its content to a Povray file. First, you must load or
create your CAD data and position the 3D View orientation as you wish. Then choose "Export View..." from
the raytracing menu.

Raytracing_Module

Raytracing Module 1

http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/POV-Ray
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Raytracing_Export.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Raytracing_Export&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Raytracing_Camera.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Raytracing_Camera&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Raytracing_Part.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Raytracing_Part&action=edit&redlink=1
http://www.povray.org/

You get ask for a location to save the resulting *.pov file. After that you can open it in Povray and render:

Raytracing_Module

Export a View 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:FreeCAD_Raytracing.jpg
http://www.povray.org/

As usual in a rendererer you can make big and nice pictures:

Raytracing_Module

Export a View 3

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Povray.jpg

Scripting

Here is how to use these features from python:

import Raytracing,RaytracingGui
OutFile = open('C:/Documents and Settings/jriegel/Desktop/test.pov','w')
OutFile.write(open(App.getResourceDir()+'Mod/Raytracing/Templates/ProjectStd.pov').read())
OutFile.write(RaytracingGui.povViewCamera())
OutFile.write(Raytracing.getPartAsPovray('Box',App.activeDocument().Box.Shape,0.800000,0.800000,0.800000))
OutFile.close()
del OutFile

Raytracing_Module

 Scripting 4

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Scharniergreifer_render.jpg

Links

About POV-Ray:

http://www.spiritone.com/~english/cyclopedia/•
http://www.povray.org/•
http://en.wikipedia.org/wiki/POV-Ray•

About other open-source renderers (for future implementation):

http://www.yafaray.org/•
http://www.luxrender.net/•

< previous: Drawing Module
next: Draft Module >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Raytracing_Module"

Raytracing_Module

 Links 5

http://www.spiritone.com/~english/cyclopedia/
http://www.povray.org/
http://en.wikipedia.org/wiki/POV-Ray
http://www.yafaray.org/
http://www.luxrender.net/

Image Module
The image module manages different types of bitmap images, and lets you open them in FreeCAD. Currently,
the modules lets you open .bmp, .jpg, .png and .xpm file formats in a separate viewer window. There is also a
tool that allows you to capture an image from a webcam.

< previous: Draft Module
next: Macros >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Image_Module"

Image_Module

Image Module 1

http://en.wikipedia.org/wiki/Raster_graphics

Draft Module
(Redirected from 2d Drafting Module)
The draft Module is a work-in-progress and quite experimental module made to add basic 2d drawing
functionality to FreeCAD. It is written entirely in python, and is also intended to showcase how far you can
extend FreeCAD entirely in python, without even touching the source code.

Currently it is not really usable for production work, but already contains a couple of working basic functions.
Feel free to test, and give us a feedback on the discussion page.

Contents

1 General use
1.1
Tutorial

♦

1.2
Quickstart

♦

•

2 Tools
2.1
Importing
&
exporting

♦

2.2 Work
Settings

♦

2.3
Drawing
objects

♦

2.4
Modifying
objects

♦

2.5
Common
behaviours

♦

•

General use

The draft workbench is available in your workbenches list. When you activate it, two toolbars will appear; a
classical toolbar containing the standard draft commands listed below and a special command bar that has
no tool icon on it, but that is used by the different functions to display their controls. On that command bar,

2d_Drafting_Module

Draft Module 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=2d_Drafting_Module&redirect=no
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draftscreenshot.jpg

you can also change general things like current line color and width. As a sidenote, the command bar (and,
IMHO, the whole QT interface) looks much better if you choose the "cleanlooks" style in FreeCAD general
preferences...

Tutorial

For an in-depth explanation, read the Draft tutorial (work in progress), or read the quickstart section below to
get you quickly on rails.

Quickstart

Not all Draft commands work well in 3D at the moment. So, the best thing to do is to put yourself in
orthographic 2D view before starting to draw. To do that, open or create a new document, then press the O
key (or menu view -> orthographic view) to switch to orthographic mode. Then press the 2 key (or menu view
-> standard views -> top) to put you in top view. Now, you are ready to draw. You can also configure freecad
(menu edit -> preferences) to always start in orthographic mode.

All draft commands follow more or less the same rules: Drawing tools will ask you to pick points on the
screen or enter numeric coordinates, while modification tools will ask you to choose an object to work on
first, in case no object is selected. In almost all commands, pressing the CTRL key will allow you to snap to
existing points, SHIFT will constrain your movement horizontally, verically or in relation to an existing
segment, and in some tools ALT will give you extra options such as creating a new object instead of
transforming an existing one. The ESC key will always cancel the active command.

Some commands work in non-horizontal planes too, just make sure the Z coordinate is unlocked when
drawing, and place yourself in the appropriate view. Below you will find a more complete description of all
available tools.

Tools

Importing & exporting

These are functions for opening, importing or exporting other file formats. Opening will open a new document
with the contents of the file, while importing will append the file content to the current document. Exporting
will save the selected objects to a file. If nothing is selected, then all objects will be exported. Be aware that
since the purpose of the Draft module is to work with 2d objects, those importers focus only on 2d objects,
and, although DXF and OCA formats do support objects definitions in 3D space (objects are not necessarily
flat), they won't import volumetric objects like meshes, 3D faces, etc, but rather lines, circles, texts or flat
shapes. Currently supported file formats are:

Autodesk .DXF: Imports and exports DXF files created with other CAD applications•
SVG (as geometry): Imports and exports SVG files created with vector drawing applications•
Open Cad format .OCA: Imports and exports OCA/GCAD files, a potentially new open CAD file
format

•

2d_Drafting_Module

General use 2

http://groups.google.com/group/open_cad_format
http://groups.google.com/group/open_cad_format

Work Settings

These tools configure your working environment.

 Working plane: Sets your working plane for the next operations
•

Drawing objects

These are tools for creating objects.

 2-point Line: Draws a line segment from 2 points
•

 Multiple-point Line (Polyline): Draws a line made of multiple line segments
•

 Circle: Draws a circle from center and radius
•

 Arc: Draws an arc segment from center, radius, start angle and end angle
•

 Rectangle: Draws a rectangle from 2 opposite points
•

 Text: Draws a multi-line text annotation
•

 Dimension: Draws a dimension annotation
•

Modifying objects

These are tools for modifying existing objects. They work on selected objects, but if no object is selected, you
will be invited to select one.

 Move: Moves object(s) from one location to another
•

 Rotate: Rotates object(s) from a start angle to an end angle
•

 Offset: Moves segments of an object about a certain distance
•

 Upgrade: Joins objects into a higher-level object
•

 Downgrade: Explodes objects into lower-level objects
•

 Trim/Extend (Trimex): Trims or extends an object•

 Apply style: Applies current color and linewidth to objects
•

 Scale: Scales selected object(s) around a base point
•

Common behaviours

Snapping: Allows to place new points on special places on existing objects•
Constraining: Allows to place new points horizontally or vertically in relation to previous points•
Working with manual coordinates: Allows to enter manual coordinates instead of clicking on screen•

2d_Drafting_Module

 Work Settings 3

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Workingplane.svg
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Line.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Polyline.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Circle.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Arc.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Rectangle.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Text.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Dimension.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Move.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Rotate.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Offset.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Upgrade.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Downgrade.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Trimex.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Apply.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Draft_Scale.png

Copying: All modification tools can either modify the selected objects or create a modified copy of
them. Pressing ALT while using the tool will make a copy

•

Construction Mode: Allows you to put geometry apart from the rest, for easy switch on/switch off•
All newly created objects adopt current Draft color and width•
The Draft module also has its preferences screen•

< previous: Raytracing Module
next: Image Module >
Index
Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Draft_Module"

2d_Drafting_Module

Common behaviours 4

Category:Command Reference
(Redirected from List of Commands)
This category contains the help pages of each of FreeCAD command.

Pages in category "Command Reference"

The following 119 pages are in this category, out of 119 total.

D

Draft Apply•
Draft Arc•
Draft Circle•
Draft DXF•
Draft Dimension•
Draft Downgrade•
Draft Line•
Draft Move•
Draft OCA•
Draft Offset•
Draft Polyline•
Draft Rectangle•
Draft Rotate•
Draft SVG•
Draft Scale•
Draft Text•
Draft Trimex•
Draft Upgrade•
Draft Workingplane•

G

GuiCommand model•

M

Mesh BoundingBox•
Mesh
BuildRegularSolid

•

Mesh CurvatureInfo•
Mesh Demolding•
Mesh Difference•
Mesh EvaluateFacet•
Mesh EvaluateSolid•
Mesh Evaluation•
Mesh ExMakeMesh•
Mesh ExMakeTool•

M cont.

Mesh HarmonizeNormals•
Mesh Import•
Mesh Intersection•
Mesh PolyCut•
Mesh PolySegm•
Mesh PolySplit•
Mesh
RemoveCompByHand

•

Mesh RemoveComponents•
Mesh ToolMesh•
Mesh Transform•
Mesh Union•
Mesh VertexCurvature•

P

Part Booleans•
Part Box•
Part Common•
Part Cone•
Part Cut•
Part Cylinder•
Part Extrude•
Part Fillet•
Part Fuse•
Part Revolve•
Part Section•
Part Sphere•
Part Torus•

S

Std About•
Std AboutQt•
Std CommandLine•
Std Copy•
Std Cut•

S cont.

Std FreezeViews•
Std Import•
Std MeasureDistance•
Std New•
Std OnlineHelp•
Std OnlineHelpPython•
Std OnlineHelpWebsite•
Std Open•
Std OrthographicCamera•
Std Paste•
Std PerspectiveCamera•
Std Print•
Std PrintPdf•
Std ProjectInfo•
Std PythonWebsite•
Std Quit•
Std RecentFiles•
Std Redo•
Std SaveAs•
Std SceneInspector•
Std SelectAll•
Std SetAppearance•
Std TipOfTheDay•
Std ToggleClipPlane•
Std ToggleVisibility•
Std TreeSelection•
Std ViewBoxZoom•
Std ViewCreate•
Std
ViewDockUndockFullscreen

•

Std ViewExamples•
Std ViewFitAll•
Std ViewFitSelection•
Std ViewIvIssueCamPos•
Std ViewIvStereo•
Std ViewScreenShot•
Std ViewXX•
Std ViewZoom•

List_of_Commands

Category:Command Reference 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=List_of_Commands&redirect=no

Mesh ExMakeUnion•
Mesh
FillInteractiveHole

•

Mesh FillupHoles•
Mesh FixDegenerations•
Mesh
FixDuplicateFaces

•

Mesh
FixDuplicatePoints

•

Mesh FixIndices•
Mesh FlipNormals•
Mesh FromGeometry•

Std Delete•
Std DlgCustomize•
Std DlgMacroExecute•
Std
DlgMacroExecuteDirect

•

Std DlgMacroRecord•
Std DlgMacroStop•
Std DlgParameter•
Std DlgPreferences•
Std Export•
Std FreeCADWebsite•

Std WhatsThis•
Std Workbench•

T

Template:GuiCommand•

Online version:
"http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Category:Command_Reference"

List_of_Commands

M 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Template:GuiCommand
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Category:Command_Reference

Macros
Macros are a convenient way to create complex actions in FreeCAD. You simply record actions as you do
them, then save that under a name, and replay them whenever you want. Since macros are in reality a list of
python commands, you can also edit them, and create very complex scripts.

How it works

If you enable console output (Menu Edit -> Preferences -> General -> Macros -> Show scripts commands in
python console), you will see that in FreeCAD, every action you do, such as pressing a button, outputs a
python command. Thos commands are what can be recorded in a macro. The main tool for making macros is

the macros toolbar: . On it you have 4 buttons: Record, stop recording, edit and play
the current macro.

It is very simple to use: Press the record button, you will be asked to give a name to your macro, then perform
some actions. When you are done, click the stop recording button, and your actions will be saved. You can
now access the macro dialog with the edit button:

There you can manage your macros, delete, edit or create new ones from scratch. If you edit a macro, it will
be opened in an editor window where you can make changes to its code.

Macros

Macros 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Macros_toolbar.jpg
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Macros.jpg

Example

Press the record button, give a name, let's say "cylinder 10x10", then, in the Part Workbench, create a cylinder
with radius = 10 and height = 10. Then, press the "stop recording" button. In the edit macros dialog, you can
see the python code that has been recorded, and, if you want, make alterations to it. To execute your macro,
simply press the execute button on the toolbar while your macro is in the editor. You macro is always saved to
disk, so any change you make, or any new macro you create, will always be available next time you start
FreeCAD.

Customizing

Of course it is not practical to load a macro in the editor in order to use it. FreeCAD provides much better
ways to use your macro, such as assigning a keyboard shortcut to it or putting an entry in the menu. Once your
macro is created, all this can be done via the Tools -> Customize menu:

This way you can make your macro become a real tool, just like any standard FreeCAD tool. This, added to
the power of python scripting within FreeCAD, makes it possible to easily add your own tools to the interface.
Read on to the Scripting page if you want to know more about python scripting...

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Macros"

Macros

 Example 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Macros_config.jpg

Introduction to python
This is a short tutorial made for who is totally new to python. Python is an open-source, multiplatform
programming language. Python has several features that make it very different than other common
programming languages, and very accessible to new users like yourself:

It has been designed specially to be easy to read by human beings, and so it is very easy to learn and
understand.

•

It is interpreted, that is, unlike compiled languages like C, your program doesn't need to be compiled
before it is executed. The code you write can be immediately executed, line by line if you want so.
This makes it extremely easy to learn and to find errors in your code, because you go slowly,
step-by-step.

•

It can be embedded in other programs to be used as scripting language. FreeCAD has an embedded
python interpreter, so you can write python code in FreeCAD, that will manipulate parts of FreeCAD,
for example to create geometry. This is extremely powerful, because instead of just clicking a button
labeled "create sphere", that a programmer has placed there for you, you have the freedom to create
easily your own tool to create exactly the geometry you want.

•

It is extensible, you can easily plug new modules in your python installation and extend its
functionality. For example, you have modules that allow python to read and write jpg images, to
communicate with twitter, to schedule tasks to be performed by your operating system, etc.

•

So, hands on! Be aware that what will come next is a very simple introduction, by no means a complete
tutorial. But my hope is that after that you'll get enough basics to explore deeper into the FreeCAD
mechanisms.

Contents

1 The interpreter•
2 Variables•
3 Numbers•
4 Lists•
5 Indentation•
6 Functions•
7 Modules•
8 Starting with
FreeCAD

•

The interpreter

Usually, when writing computer programs, you simply open a text editor or your special programming
environment which is in most case a text editor with several tools around it, write your program, then compile
it and execute it. Most of the time you made errors while writing, so your program won't work, and you will
get an error message telling you what went wrong. Then you go back to your text editor, correct the mistakes,
run again, and so on until your program works fine.

That whole process, in python, can be done transparently inside the python interpreter. The interpreter is a
python window with a command prompt, where you can simply type python code. If you install python on
your computer (download it from the python website if you are on Windows or Mac, install it from your
package repository if you are on linux), you will have a python interpreter in your start menu. But FreeCAD

Introduction_to_python

Introduction to python 1

http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Programming_language
http://www.python.org

also has a python interpreter in its bottom part:

The interpreter shows the python version, then a >>> symbol, which is the command prompt, that is, where
you enter python code. Writing code in the interpreter is simple: one line is one instruction. When you press
Enter, your line of code will be executed (after being instantly and invisibly compiled). For example, try
writing this:

print "hello"

print is a special python keyword that means, obviously, to print something on the screen. When you press
Enter, the operation is executed, and the message "hello" is printed. If you make an error, for example let's
write:

print hello

python will tell us that it doesn't know what hello is. The " characters specify that the content is a string,
which is simply, in programming jargon, a piece of text. without the ", the print command believed hello was
not a piece of text but a special python keyword. The important thing is, you immediately get notified that you
made an error. By pressing the up arrow (or, in the FreeCAD interpreter, CTRL+up arrow), you can go back
to the last command you wrote and correct it.

the python interpreter also has a built-in help system. Try typing:

help

or, for example, let's say we don't understand what went wrong with our print hello command above, we want
specific information about the "print" command:

help("print")

You'll get a long and complete description of everything the print command can do.

Now we dominate totally our interpreter, we can begin with serious stuff.

Introduction_to_python

The interpreter 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Screenshot_pythoninterpreter.jpg

Variables

Of course, printing "hello" is not very interesting. More interesting is printing stuff you don't know before, or
let python find for you. That's where the concept of variable comes in. A variable is simply a value that you
store under a name. For example, type this:

a = "hello"
print a

I guess you understood what happened, we "saved" the string "hello" under the name a. Now, a is not an
unknown name anymore! We can use it anywhere, for example in the print command. We can use any name
we want, just respecting simple rules, like not using spaces or punctuation. For example, we could very well
write:

hello = "my own version of hello"
print hello

See? now hello is not an undefined word anymore. What if, by terrible bad luck, we choosed a name that
already exists in python? Let's say we want to store our string under the name "print":

print = "hello"

Python is very intelligent and will tell us that this is not possible. It has some "reserved" keywords that cannot
be modified. But our own variables can be modified anytime, that's exactly why they are called variables, the
contents can vary. For example:

myVariable = "hello"
print myVariable
myVariable = "good bye"
print myVariable

We changed the value of myVariable. We can also copy variables:

var1 = "hello"
var2 = var1
print var2

Note that it is interesting to give good names to your variables, because when you'll write long programs, after
a while you won't remember what your variable named "a" is for. But if you named it for example
myWelcomeMessage, you'll remember easily what it is used for when you'll see it.

Numbers

Of course you must know that programming is useful to treat all kind of data, and especially numbers, not
only text strings. One thing is important, python must know what kind of data it is dealing with. We saw in
our print hello example, that the print command recognized our "hello" string. That is because by using the ",
we told specifically the print command that what it would come next is a text string.

we can always check what data type is the contents of a variable with the special python keyword type:

myVar = "hello"

Introduction_to_python

 Variables 3

type(myVar)

It will tell us the contents of myVar is 'str', or string in python jargon. We have also other basic types of data,
such as integer and float numbers:

firstNumber = 10
secondNumber = 20
print firstNumber + secondNumber
type(firstNumber)

This is already much more interesting, isn't it? Now we already have a powerful calculator! Look well at how
it worked, python knows that 10 and 20 are integer numbers. So they are stored as "int", and python can do
with them everything it can do with integers. Look at the results of this:

firstNumber = "10"
secondNumber = "20"
print firstNumber + secondNumber

See? We forced python to consider that our two variables are not numbers but mere pieces of text. Python can
add two pieces of text together, but it won't try to find out any sum. But we were talking about integer
numbers. There are also float numbers. The difference is that integer numbers don't have decimal part, while
foat numbers can have a decimal part:

var1 = 13
var2 = 15.65
print "var1 is of type ", type(var1)
print "var2 is of type ", type(var2)

Int and Floats can be mixed together without problem:

total = var1 + var2
print total
print type(total)

Of course the total has decimals, right? Then python automatically decided that the result is a float. In several
cases such as this one, python automatically decides what type to give to something. In other cases it doesn't.
For example:

varA = "hello 123"
varB = 456
print varA + varB

This will give us an error, varA is a string and varB is an int, and python doesn't know what to do. But we can
force python to convert between types:

varA = "hello"
varB = 123
print varA + str(varB)

Now both are strings, the operation works! Note that we "stringified" varB at the time of printing, but we
didn't change varB itself. If we wanted to turn varB permanently into a string, we would need to do this:

varB = str(varB)

We can also use int() and float() to convert to int and float if we want:

Introduction_to_python

Numbers 4

varA = "123"
print int(varA)
print float(varA)

Note on python commands

You must have noticed that in this section we used the print command in several ways. We printed variables,
sums, several things separated by commas, and even the result of other python command such as type().
Maybe you also saw that doing those two commands:

type(varA)
print type(varA)

have exactly the same result. That is because we are in the interpreter, and everything is automatically printed
on screen. When we'll write more complex programs that run outside the interpreter, they won't print
automatically everything on screen, so we'll need to use the print command. But from now on, let's stop using
it here, it'll go faster. so we can simply write:

myVar = "hello friends"
myVar

You must also have seen that most of the python commands (or keywords) we already know have parenthesis
used to tell them on what contents the command must work: type(), int(), str(), etc. Only exception is the print
command, which in fact is not an exception, it also works normally like this: print("hello"), but, since it is
used often, the python programmers made a simplified version.

Lists

Another interesting data type is lists. A list is simply a list of other data. The same way as we define a text
string by using " ", we define lists by using []:

myList = [1,2,3]
type(myList)
myOtherList = ["Bart", "Frank", "Bob"]
myMixedList = ["hello", 345, 34.567]

You see that it can contain any type of data. Lists are very useful because you can group variables together.
You can then do all kind of things within that groups, for example counting them:

len(myOtherList)

or retrieving one item of a list:

myName = myOtherList[0]
myFriendsName = myOtherList[1]

You see that while the len() command returns the total number of items in a list, their "position" in the list
begins with 0. The first item in a list is always at position 0, so in our myOtherList, "Bob" will be at position
2. We can do much more stuff with lists such as you can read here, such as sorting contents, removing or
adding elements.

A funny and interesting thing for you: a text string is, in reality, a list of characters! Try doing this:

Introduction_to_python

 Lists 5

http://diveintopython.org/native_data_types/lists.html

myvar = "hello"
len(myvar)
myvar[2]

Usually all you can do with lists can also be done with strings.

Outside strings, ints, floats and lists, there are more built-in data types, such as dictionnaries, or you can even
create your own data types with classes.

Indentation

One big cool use of lists is also browsing through them and do something with each item. For example look at
this:

alldaltons = ["Joe", "William", "Jack", "Averell"]
for dalton in alldaltons:
 print dalton + " Dalton"

We iterated (programming jargon again!) through our list with the "for ... in ..." command and did something
with each of the items. Note the special syntax: the for command terminates with : which indicates that what
will comes after will be a block of one of more commands. Immediately after you enter the command line
ending with :, the command prompt will change to ... which means python knows that a :-ended line has
happened and that what will come next will be part of it.

How will python know how many of the next lines will be to be executed inside the for...in operation? For
that, python uses indentation. That is, your next lines won't begin immediately. You will begin them with a
blank space, or several blank spaces, or a tab, or several tabs. Other programming languages use other
methods, like putting everythin inside parenthesis, etc. As long as you write your next lines with the same
indentation, they will be considered part of the for-in block. If you begin one line with 2 spaces and the next
one with 4, there will be an error. When you finished, just write another line without indentation, or simply
press Enter to come back from the for-in block

Indentation is cool because if you make big ones (for example use tabs instead of spaces because it's larger),
when you write a big program you'll have a clear view of what is executed inside what. We'll see that many
other commands than for-in can have indented blocks of code too.

For-in commands can be used for many things that must be done more than once. It can for example be
combined with the range() command:

serie = range(1,11)
total = 0
print "sum"
for number in serie:
 print number
 total = total + number
print "----"
print total

Or more complex things like this:

alldaltons = ["Joe", "William", "Jack", "Averell"]
for n in range(4):

Introduction_to_python

 Indentation 6

http://www.diveintopython.org/getting_to_know_python/dictionaries.html
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm

 print alldaltons[n], " is Dalton number ", n

You see that the range() command also has that strange particularity that it begins with 0 (if you don't specify
the starting number) and that its last number will be one less than the ending number you specify. That is, of
course, so it works well with other python commands. For example:

alldaltons = ["Joe", "William", "Jack", "Averell"]
total = len(alldaltons)
for n in range(total):
 print alldaltons[n]

Another interesting use of indented blocks is with the if command. If executes a code block only if a certain
condition is met, for example:

alldaltons = ["Joe", "William", "Jack", "Averell"]
if "Joe" in alldaltons:
 print "We found that Dalton!!!"

Of course this will always print the first sentence, but try replacing the second line by:

if "Lucky" in alldaltons:

Then nothing is printed. We can also specify an else: statement:

alldaltons = ["Joe", "William", "Jack", "Averell"]
if "Lucky" in alldaltons:
 print "We found that Dalton!!!"
else:
 print "Such Dalton doesn't exist!"

Functions

The standard python commands are not many. In current version of python there are about 30, and we already
know several of them. But imagine if we could invent our own commands? Well, we can, and it's extremely
easy. In fact, most the additional modules that you can plug into your python installation do just that, they add
commands that you can use. a custom command in python is called a function and is made like this:

def printsqm(myValue):
 print str(myValue)+" square meters"

printsqm(45)

Extremely simple: the def() command defines a new function. You give it a name, and inside the parenthesis
you define arguments that we'll use in our function. Arguments are data that will be passed to the function.
For example, look at the len() command. If you just write len() alone, python will tell you it needs an
argument. That is, you want len() of something, right? Then, for example, you'll write len(myList) and you'll
get the length of myList. Well, myList is an argument that you pass to the len() function. The len() function is
defined in such a way that it knows what to do with what is passed to it. Same as we did here.

The "myValue" name can be anything, and it will be used only inside the function. It is just a name you give
to the argument so you can do something with it, but it also serves so the function knows how many
arguments to expect. For example, if you do this:

Introduction_to_python

 Functions 7

http://docs.python.org/reference/lexical_analysis.html#identifiers

printsqm(45,34)

There will be an error. Our function was programmed to receive just one argument, but it received two, 45 and
34. We could instead do something like this:

def sum(val1,val2):
 total = val1 + val2
 return total

sum(45,34)
myTotal = sum(45,34)

We made a function that receives two arguments, sums them, and returns that value. Returning something is
very useful, because we can do something with the result, such as store it in the myTotal variable. Of course,
since we are in the interpreter and everything is printed, doing:

sum(45,34)

will print the result on the screen, but outside the interpreter, since there is no more print command inside the
function, nothing would appear on the screen. You would need to do:

print sum(45,34)

to have something printed. Read more about functions here.

Modules

Now that we have a good idea of how python works, we'll need one last thing: How to work with files and
modules.

Until now, we wrote python instructions line by line in the interpreter, right? What if we could write several
lines together, and have them executed all at once? It would certainly be handier for doing more complex
things. And we could save our work too. Well, that too, is extremely easy. Simply open a text editor (such as
the windows notepad), and write all your python lines, the same way as you write them in the interpreter, with
indentations, etc. Then, save that file somewhere, preferably with a .py extension. That's it, you have a
complete python program. Of course, there are much better editors than notepad, but it is just to show you that
a python program is nothing else than a text file.

To make python execute that program, there are hundreds of ways. In windows, simply right-click your file,
open it with python, and execute it. But you can also execute it from the python interpreter itself. For this, the
interpreter must know where your .py program is. In FreeCAD, the easiest way is to place your program in a
place that FreeCAD's python interpreter knows by default, such as FreeCAD's bin folder, or any of the Mod
folders. Suppose we write a file like this:

def sum(a,b):
 return a + b

print "test.py succesfully loaded"

and we save it as test.py in our FreeCAD/bin directory. Now, let's start FreeCAD, and in the interpreter
window, write:

Introduction_to_python

 Modules 8

http://www.penzilla.net/tutorials/python/functions/

import test

without the .py extension. This will simply execute the contents of the file, line by line, just as if we had
written it in the interpreter. The sum function will be created, and the message will be printed. There is one
big difference: the import command is made not only to execute programs written in files, like ours, but also
to load the functions inside, so they become available in the interpreter. Files containing functions, like ours,
are called modules.

Normally when we write a sum() function in the interpreter, we execute it simply like that:

sum(14,45)

Like we did earlier. When we import a module containing our sum() function, the syntax is a bit different. We
do:

test.sum(14,45)

That is, the module is imported as a "container", and all its functions are inside. This is extremely useful,
because we can import a lot of modules, and keep everything well organized. So, basically, everywhere you
see something.somethingElse, with a dot inbetween, that means somethingElse is inside something.

We can also throw out the test part, and import our sum() function directly into the main interpreter space, like
this:

from test import *
sum(12,54)

Basically all modules behave like that. You import a module, then you can use its functions like that:
module.function(argument). Almost all modules do that: they define functions, new data types and classes that
you can use in the interpreter or in your own python modules, because nothing prevents you to import
modules inside your module!

One last extremely useful thing. How do we know what modules we have, what functions are inside and how
to use them (that is, what kind of arguments they need)? We saw already that python has a help() function.
Doing:

help()
modules

Will give us a list of all available modules. We can now type q to get out of the interactive help, and import
any of them. We can even browse their content with the dir() command

import math
dir(math)

We'll see all the functions contained in the math module, as well as strange stuff named __doc__, __file__,
__name__. The __doc__ is extremely useful, it is a documentation text. Every function of (well-made)
modules has a __doc__ that explains how to use it. For example, we see that there is a sin function in side the
math module. Want to know how to use it?

print math.sin.__doc__

Introduction_to_python

 Modules 9

Starting with FreeCAD

Well, I think you must know have a good idea of how python works, and you can start exploring what
FreeCAD has to offer. FreeCAD's python functions are all well organized in different modules. Some of them
are already loaded (imported) when you start FreeCAD. So, just do

dir()

and read on to FreeCAD Scripting Basics...

Of course, we saw here only a very small part of the python world. There are many important concepts that
we didn't mention here. There are two very important python reference documents on the net:

the official Python reference•
the Dive into Python wikibook•

Be sure to bookmark them!

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Introduction_to_python"

Introduction_to_python

 Starting with FreeCAD 10

http://docs.python.org/reference/
http://www.diveintopython.org/toc/index.html

FreeCAD Scripting Basics

Contents

1 Introduction
1.1 The
interpreter

♦

1.2 Python
Help

♦

•

2 Built-in modules
2.1 The App
and Gui
objects

♦

2.2 The
Document
objects

♦

•

Introduction

FreeCAD is built from scratch to be totally controlled by python scripts. Almost all parts of FreeCAD such as
the interface, the scene contents, and even the representation of this content in the 3d views are accessible
from the built-in python interpreter or from your own scripts. As a result, FreeCAD is probably one of the
most deeply customizable engineering application available today.

In its current state however, FreeCAD has very few "native" commands to interact on your 3D objects, mainly
because it is still in early stage of development, but also because the philosophy behind it is more to provide a
platform for CAD development than a user-tailored application. But the ease of python scripting inside
FreeCAD will probably help much to see quickly new functionality being developed by "power users", or,
typically, users who know a bit of python programming, like, we hope, yourself.

If you are not familiar with python, we recommend you to search for tutorials on the internet, and have a
quick look at its structure. Python is a very easy language to learn, especially because it can be run inside an
interpreter, where from simple commands to complete programs can be executed on the fly, without the need
to compile anything. FreeCAD has a built-in python interpreter.

The interpreter

From the interpreter, you can access all your system-installed python modules, as well as the built-in
FreeCAD modules, and all additional FreeCAD modules you installed later. The screenshot below shows the
python interpreter:

FreeCAD_Scripting_Basics

FreeCAD Scripting Basics 1

From the interpreter, you can execute python code and browse through the available classes and function.
FreeCAD provides a very handy class browser for exploration of your new FreeCAD world: When you type
the name of a known class followed by a period (meaning you want to add something from that class), a class
browser window opens, where you can navigate between available subclasses and methods. When you select
something, an associated help text (if existing) is displayed:

So, start here by typing App. or Gui. and see what happens. Another more generic python way of exploring
contents of modules and classes is to use the print dir() command. For example, typing print dir() will list all
modules currently loaded in FreeCAD. print dir(App) will show you everything inside the App module, etc.

Another useful feature of the interpreter is the possibility to go back in command history and retrieve a line of
code you already typed earlier. To navigate in command history, just use CTRL+UP or CTRL+DOWN.

By right-clicking in the interpreter window, you also have several other options, such as copy the entire
history (useful to experiment something here, then make a full script of it), or insert filename with complete
path.

Python Help

In the FreeCAD Help menu, you'll find an entry labeled "Python help", which will open a browser window
containing a complete, realtime-generated documentation of all python modules available to the FreeCAD
interpreter, including python and FreeCAD built-in modules, system-installed modules, and FreeCAD
additional modules. The documentation available there depends on how much effort each module developer

FreeCAD_Scripting_Basics

The interpreter 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Screenshot_pythoninterpreter.jpg
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Screenshot_classbrowser.jpg

put in documenting his code, but usually python module have the reputation to be fairly well documented.
Your FreeCAD window must stay open for this documentation system to work.

Built-in modules

Since FreeCAD is designed to be run without Graphic User Interface, almost all its functionality is separated
in two groups: Core functionality, named App, and Gui functionality, named Gui. So, our two main FreeCAD
built-in modules are called App and Gui. These two modules can also be accessed from scripts outside of the
interpreter, by the respective names of FreeCAD and FreeCADGui.

In the App module, you'll find everything related to the application itself, like methods for opening or
closing files, and to the documents, like setting the active document or listing their contents.

•

In the Gui module, you'll find tools for accessing and managing Gui elements, like the workbenches
and their toolbars, and, more interesting, the graphical representation of all FreeCAD content.

•

Listing all the content of those modules is a bit counter-productive task, since they grow quite fast along
FreeCAD development. But the two browsing tools provided (the class browser and the python help) should
give you, at any moment, a complete and up-to-date documentation of these modules.

The App and Gui objects

As we said, in FreeCAD, everything is separated between core and representation. This includes the 3D
objects too. You can access defining properties of objects (called features in FreeCAD) via the App module,
and change the way they are represented on screen via the Gui module. For example, a cube has properties
that define it, like width, length, height, that are stored in an App object, and representation properties, such as
faces color, drawing mode, that are stored in a corresponding Gui object.

This way of doing allows a very wide range of uses, like having algorithms work only on the defining part of
features, without the need to care about any visual part, or even redirect the content of the document to
non-graphical application, such as lists, spreadsheets, or element analysis.

For every App object in your document, exists a corresponding Gui object. The document itself, actually, also
has App and a Gui objects. This, of course, is only valid when you run FreeCAD with its full interface. In the
command-line version, no GUI exists, so only App objects are availible. Note that the Gui part of objects is
generated again everytime an App object is marked as "to be recomputed" (for example when one of its
parameters changed), so changes you might have done directly to the Gui object might get lost.

to access the App part of something, you type:

myObject = App.ActiveDocument.getObject("ObjectName")

where "ObjectName is the name of your object. You can also type:

myObject = App.ActiveDocument.ObjectName

to access the Gui part of the same object, you type:

myViewObject = Gui.ActiveDocument.getObject("ObjectName")

FreeCAD_Scripting_Basics

Python Help 3

where "ObjectName is the name of your object. You can also type:

myViewObject = App.ActiveDocument.ObjectName.ViewObject

If we have no GUI (for example we are in command line mode), the last line will return None.

The Document objects

In FreeCAD all your work resides inside Documents. A document contains your geometry and can be saved to
a file. Several documents can be opened at the same time. The document, like the geometry contained inside,
has App and Gui objects. App object contains your actual geometry definitions, while the Gui object contains
the different views of your document. You can open several windows, each one viewing your work with a
different zoom factor or point of view. These views are all part of your document's Gui object.

To access the App part the currently open (active) document, you type:

myDocument = App.ActiveDocument

To create a new document, type:

myDocument = App.newDocument("Document Name")

To access the Gui part the currently open (active) document, you type:

myGuiDocument = Gui.ActiveDocument

To access the current view, you type:

myView = Gui.ActiveDocument.ActiveView

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=FreeCAD_Scripting_Basics"

FreeCAD_Scripting_Basics

The App and Gui objects 4

Mesh Scripting

Contents

1 Introduction•
2 Creation and
Loading

•

3 Modeling•
4 Examining and
Testing

•

5 Write your own
Algorithms

•

6 Exporting•
7 Gui related stuff•
8 Odds and Ends•

Introduction

First of all you have to import the Mesh module:

import Mesh

After that you have access to the Mesh module and the Mesh class which facilitate the functions of the
FreeCAD C++ Mesh-Kernel.

Creation and Loading

To create an empty mesh object just use the standard constructor:

mesh = Mesh.Mesh()

You can also create an object from a file

mesh = Mesh.Mesh('D:/temp/Something.stl')

What file formats you can use to build up a mesh is noted here.

Or create it out of a set of triangles described by their corner points:

planarMesh = [
triangle 1
[-0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],[-0.5000,0.5000,0.0000],
#triangle 2
[-0.5000,-0.5000,0.0000],[0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],
]
planarMeshObject = Mesh.Mesh(planarMesh)

The Mesh-Kernel takes care about creating a topological correct data structure by sorting coincident points
and edges together.

Mesh_Scripting

Mesh Scripting 1

Later on you will see how you can test and examine mesh data.

Modeling

To create regular geometries you can use the Python script BuildRegularGeoms.py.

import BuildRegularGeoms

This script provides methods to define simple rotation bodies like spheres, ellipsoids, cylinders, toroids and
cones. And it also has a method to create a simple cube. To create a toroid, for instance, can be done as
follows:

t = BuildRegularGeoms.Toroid(8.0, 2.0, 50) # list with several thousands triangles
m = Mesh.mesh(t)

The first two parameters define the radiuses of the toroid and the third parameter is a sub-sampling factor for
how many triangles are created. The higher this value the smoother and the lower the coarser the body is. The
Mesh class provides a set of boolean functions that can be used for modeling purposes. It provides union,
intersection and difference of two mesh objects.

m1, m2 # are the input mesh objects
m3 = Mesh.mesh(m1) # create a copy of m1
m3.unite(m2) # union of m1 and m2, the result is stored in m3
m4 = Mesh.mesh(m1)
m4.intersect(m2) # intersection of m1 and m2
m5 = Mesh.mesh(m1)
m5.difference(m2) # the difference of m1 and m2
m6 = Mesh.mesh(m2)
m6.difference(m1) # the difference of m2 and m1, usually the result is different to m5

Finally, a full example that computes the intersection between a sphere and a cylinder that intersects the
sphere.

import Mesh, BuildRegularGeoms
sphere = Mesh.mesh(BuildRegularGeoms.Sphere(5.0, 50))
cylinder = Mesh.mesh(BuildRegularGeoms.Cylinder(2.0, 10.0, True, 1.0, 50))
diff = sphere
diff.difference(cylinder)
d = FreeCAD.newDocument()
d.addObject("Mesh::Feature","Diff_Sphere_Cylinder").Mesh=diff
d.recompute()

Examining and Testing

Write your own Algorithms

Exporting

You can even write the mesh to a python module:

Mesh_Scripting

Creation and Loading 2

m.write("D:/Develop/Projekte/FreeCAD/FreeCAD_0.7/Mod/Mesh/SavedMesh.py")
import SavedMesh
m2 = Mesh.mesh(SavedMesh.faces)

Gui related stuff

Odds and Ends

An extensive, ought hard to use, source of Mesh related scripting are the unit test scripts of the Mesh-Module.
In this unit tests literally all methods are called and all properties/attributes are tweaked. So if you are bold
enough, take a look at the Unit Test module.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Mesh_Scripting"

Mesh_Scripting

Exporting 3

http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Mesh/App/MeshTestsApp.py?view=markup

Topological data scripting

Contents

1 Introduction
1.1 Class Diagram♦
1.2 Geometry♦
1.3 Topology♦

•

2 Creating basic types
2.1 Short description♦
2.2 Detailed explanations

2.2.1 How to create a
Vertex?

◊

2.2.2 How to create an
Edge?

◊

2.2.3 How to create a Wire?◊
2.2.4 How to create a Face?◊
2.2.5 How to create a circle?◊
2.2.6 How to create an Arc
along points?

◊

2.2.7 How to create a
polygon or line along
points?

◊

2.2.8 How to create a plane?◊
2.2.9 How to create an
ellipse?

◊

2.2.10 How to create a
Torus?

◊

2.2.11 How to make a box
or cuboid?

◊

2.2.12 How to make a
Sphere?

◊

2.2.13 How to make a
Cylinder?

◊

2.2.14 How to make a
Cone?

◊

♦

2.3 Boolean Operations
2.3.1 How to cut one shape
from other?

◊

2.3.2 How to get common
between two shapes?

◊

2.3.3 How to fuse two
shapes?

◊

2.3.4 How to section a solid
with given shape?

◊

♦

•

3 Exploring shapes
3.1 Exploring Edges♦

•

4 Using the selection•
5 Examples•

Topological_data_scripting

Topological data scripting 1

5.1 Creating simple topology
5.1.1 Creating Geometry◊
5.1.2 Arc◊
5.1.3 Line◊
5.1.4 Putting all together◊
5.1.5 Make a prism◊

♦

5.2 The OCC bottle
5.2.1 The complete script◊
5.2.2 Detailed explanation◊

♦

6 Load and Save•

Introduction

We will here explain you how to control the Part Module directly from the FreeCAD python interpreter, or
from any external script. Be sure to browse the Scripting section and the FreeCAD Scripting Basics pages if
you need more information about how python scripting works in FreeCAD.

First to use the Part module functionality you have to load the Part module into the interpreter: import
Part

Class Diagram

This is a UML overview about the most important classes of the Part module:

Topological_data_scripting

Contents 2

Geometry

The geomtric objects are the building block of all topological objects:

GEOM Base class of the geometric objects•
LINE A straight line in 3D, defined by starting point and and point•
CIRCLE Circle or circle segment defined by a center point and start and end point•
...... And soon some more ;-)•

Topology

The following topological data types are available:

COMPOUND A group of any type of topological object.•
COMPSOLID A composite solid is a set of solids connected by their faces. It expands the notions of
WIRE and SHELL to solids.

•

SOLID A part of space limited by shells. It is three dimensional.•
SHELL A set of faces connected by their edges. A shell can be open or closed.•
FACE In 2D it is part of a plane; in 3D it is part of a surface. Its geometry is constrained (trimmed)
by contours. It is two dimensional.

•

Topological_data_scripting

Class Diagram 3

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Part_Classes.jpg

WIRE A set of edges connected by their vertices. It can be an open or closed contour depending on
whether the edges are linked or not.

•

EDGE A topological element corresponding to a restrained curve. An edge is generally limited by
vertices. It has one dimension.

•

VERTEX A topological element corresponding to a point. It has zero dimension.•
SHAPE A generic term covering all of the above.•

Creating basic types

Short description

You can easily create basic topological objects with the "make...()" methods from the Part Module:

b = Part.makeBox(100,100,100)
Part.show(b)

A couple of other make...() methods available:

makeBox(l,w,h,[p,d]) -- Make a box located in p and pointing into the direction d with the dimensions
(l,w,h). By default p is Vector(0,0,0) and d is Vector(0,0,1)

•

makeCircle(radius,[p,d,angle1,angle2]) -- Make a circle with a given radius. By default
p=Vector(0,0,0), d=Vector(0,0,1), angle1=0 and angle2=360

•

makeCompound(list) -- Create a compound out of a list of shapes•
makeCone(radius1,radius2,height,[p,d,angle]) -- Make a cone with a given radii and height. By
default p=Vector(0,0,0), d=Vector(0,0,1) and angle=360

•

makeCylinder(radius,height,[p,d,angle]) -- Make a cylinder with a given radius and height. By default
p=Vector(0,0,0), d=Vector(0,0,1) and angle=360

•

makeLine((x1,y1,z1),(x2,y2,z2)) -- Make a line of two points•
makePlane(length,width,[p,d]) -- Make a plane with length and width. By default p=Vector(0,0,0) and
d=Vector(0,0,1)

•

makePolygon(list) -- Make a polygon of a list of points•
makeSphere(radius,[p,d,angle1,angle2,angle3]) -- Make a sphere with a given radius. By default
p=Vector(0,0,0), d=Vector(0,0,1), angle1=0, angle2=90 and angle3=360

•

makeTorus(radius1,radius2,[p,d,angle1,angle2,angle3]) -- Make a torus with a given radii. By default
p=Vector(0,0,0), d=Vector(0,0,1), angle1=0, angle2=360 and angle3=360

•

Detailed explanations

First import the following:

>>> import Part
>>> from FreeCAD import Base

Topological_data_scripting

Topology 4

How to create a Vertex?

>>> vertex = Part.Vertex((1,0,0))

vertex is a point created at x=1,y=0,z=0 given a vertex object, you can find its location like this:

>>> vertex.Point
Vector (1, 0, 0)

How to create an Edge?

An edge is nothing but a line with two vertexes:

>>> edge = Part.makeLine((0,0,0), (10,0,0))
>>> edge.Vertexes
[<Vertex object at 01877430>, <Vertex object at 014888E0>]

Note: You cannot create an edge by passing two vertexes. You can find the length and center of an edge like
this:

>>> edge.Length
10.0
>>> edge.CenterOfMass
Vector (5, 0, 0)

How to create a Wire?

A wire can be created from a list of edges or even a list of wires:

>>> edge1 = Part.makeLine((0,0,0), (10,0,0))
>>> edge2 = Part.makeLine((10,0,0), (10,10,0))
>>> wire1 = Part.Wire([edge1,edge2])
>>> edge3 = Part.makeLine((10,10,0), (0,10,0))
>>> edge4 = Part.makeLine((0,10,0), (0,0,0))
>>> wire2 = Part.Wire([edge3,edge4])
>>> wire3 = Part.Wire([wire1,wire2])
>>> wire3.Edges
[<Edge object at 016695F8>, <Edge object at 0197AED8>, <Edge object at 01828B20>,
 <Edge object at 0190A788>]
>>> Part.show(wire3)

Part.show(wire3) will display four lines as a square:

>>> wire3.Length
40.0
>>> wire3.CenterOfMass
Vector (5, 5, 0)
>>> wire3.isClosed()
True
>>> wire2.isClosed()

Topological_data_scripting

 How to create a Vertex? 5

False

How to create a Face?

Only faces created from closed wires will be valid. In this example, wire3 is a closed wire but wire2 is not a
closed wire (see above)

>>> face = Part.Face(wire3)
>>> face.Area
99.999999999999972
>>> face.CenterOfMass
Vector (5, 5, 0)
>>> face.Length
40.0
>>> face.isValid()
True
>>> sface = Part.Face(wire2)
>>> face.isValid()
False

Only faces will have an area, not wires nor edges.

How to create a circle?

circle = Part.makeCircle(radius,[center,dir_normal,angle1,angle2]) -- Make a circle with a given radius

By default, center=Vector(0,0,0), dir_normal=Vector(0,0,1), angle1=0 and angle2=360. A circle can be
created as simply as this:

>>> circle = Part.makeCircle(10)
>>> circle.Curve
Circle (Radius : 10, Position : (0, 0, 0), Direction : (0, 0, 1))

If you want to create it at certain position and with certain direction

>>> ccircle = Part.makeCircle(10, Base.Vector(10,0,0), Base.Vector(1,0,0))
>>> ccircle.Curve
Circle (Radius : 10, Position : (10, 0, 0), Direction : (1, 0, 0))

ccircle will be created at distance 10 from origin on x and will be facing towards x axis. Note: makeCircle
only accepts Base.Vector() for position and normal but not tuples. You can also create part of the circle by
giving start angle and end angle as:

>>> from math import pi
>>> arc1 = Part.makeCircle(10, Base.Vector(0,0,0), Base.Vector(0,0,1), 0, 180)
>>> arc2 = Part.makeCircle(10, Base.Vector(0,0,0), Base.Vector(0,0,1), 180, 360)

Both arc1 and arc2 jointly will make a circle. Angles should be provided in degrees, if you have radians
simply convert them using formula: degrees = radians * 180/PI or using python's math module (after doing

Topological_data_scripting

How to create a Wire? 6

import math, of course): degrees = math.degrees(radians)

How to create an Arc along points?

Unfortunately there is no makeArc function but we have Part.Arc function to create an arc along three points.
Basically it can be supposed as an arc joining start point and end point along the middle point. Part.Arc
creates an arc object on which .toShape() has to be called to get the edge object, which is generally produced
by makeLine or makeCircle

>>> arc = Part.Arc(Base.Vector(0,0,0),Base.Vector(0,5,0),Base.Vector(5,5,0))
>>> arc
<Arc object>
>>> arc_edge = arc.toShape()

Note: Arc only accepts Base.Vector() for points but not tuples. arc_edge is what we want which we can
display using Part.show(arc_edge). If you want a small portion of a circle as an arc, it's possible too:

>>> from math import pi
>>> circle = Part.Circle(Base.Vector(0,0,0),Base.Vector(0,0,1),10)
>>> arc = Part.Arc(c,0,pi)

How to create a polygon or line along points?

A line along multiple points is nothing but creating a wire with multiple edges. makePolygon function takes a
list of points and creates a wire along those points:

>>> lshape_wire = Part.makePolygon([Base.Vector(0,5,0),Base.Vector(0,0,0),Base.Vector(5,0,0)])

How to create a plane?

Plane is a flat surface, meaning a face in 2D makePlane(length,width,[start_pnt,dir_normal]) -- Make a plane
By default start_pnt=Vector(0,0,0) and dir_normal=Vector(0,0,1). dir_normal=Vector(0,0,1) will create the
plane facing z axis. dir_normal=Vector(1,0,0) will create the plane facing x axis:

>>> plane = Part.makePlane(2,2)
>>> plane
<Face object at 028AF990>
>>> plane = Part.makePlane(2,2, Base.Vector(3,0,0), Base.Vector(0,1,0))
>>> plane.BoundBox
BoundBox (3, 0, 0, 5, 0, 2)

BoundBox is a cuboid enclosing the plane with a diagonal starting at (3,0,0) and ending at (5,0,2). Here the
BoundBox thickness in y axis is zero. Note: makePlane only accepts Base.Vector() for start_pnt and
dir_normal but not tuples

Topological_data_scripting

How to create a circle? 7

How to create an ellipse?

To create an ellipse there are several ways:

Part.Ellipse()

Creates an ellipse with major radius 2 and minor radius 1 with the center in (0,0,0)

Part.Ellipse(Ellipse)

Create a copy of the given ellipse

Part.Ellipse(S1,S2,Center)

Creates an ellipse centered on the point Center, where the plane of the ellipse is defined by Center, S1 and S2,
its major axis is defined by Center and S1, its major radius is the distance between Center and S1, and its
minor radius is the distance between S2 and the major axis.

Part.Ellipse(Center,MajorRadius,MinorRadius) Creates an ellipse with major and minor radii MajorRadius
and MinorRadius, and located in the plane defined by Center and the normal (0,0,1)

>>> eli = Part.Ellipse(Base.Vector(10,0,0),Base.Vector(0,5,0),Base.Vector(0,0,0))
>>> Part.show(eli.toShape())

In the above code we have passed S1, S2 and center. Similarly to Arc, Ellipse also creates an ellipse object but
not edge, so we need to convert it into edge using toShape() to display

Note: Arc only accepts Base.Vector() for points but not tuples

>>> eli = Part.Ellipse(Base.Vector(0,0,0),10,5)
>>> Part.show(eli.toShape())

for the above Ellipse constructor we have passed center, MajorRadius and MinorRadius

How to create a Torus?

makeTorus(radius1,radius2,[pnt,dir,angle1,angle2,angle]) -- Make a torus with a given radii and angles. By
default pnt=Vector(0,0,0),dir=Vector(0,0,1),angle1=0,angle1=360 and angle=360

consider torus as small circle sweeping along a big circle:

radius1 is the radius of big cirlce, radius2 is the radius of small circle, pnt is the center of torus and dir is the
normal direction. angle1 and angle2 are angles in radians for the small circle, to create an arc the last
parameter angle is to make a section of the torus:

>>> torus = Part.makeTorus(10, 2)

The above code will create a torus with diameter 20(radius 10) and thickness 4(small cirlce radius 2)

Topological_data_scripting

 How to create an ellipse? 8

>>> tor=Part.makeTorus(10,5,Base.Vector(0,0,0),Base.Vector(0,0,1),0,180)

The above code will create a slice of the torus

>>> tor=Part.makeTorus(10,5,Base.Vector(0,0,0),Base.Vector(0,0,1),0,360,180)

The above code will create a semi torus, only the last parameter is changed i.e the angle and remaining angles
are defaults.

Giving the angle 180 will create the torus from 0 to 180 i.e half

How to make a box or cuboid?

makeBox(length,width,height,[pnt,dir]) -- Make a box located in pnt with the dimensions
(length,width,height)

By default pnt=Vector(0,0,0) and dir=Vector(0,0,1)

>>> box = Part.makeBox(10,10,10)
>>> len(box.Vertexes)
8

How to make a Sphere?

makeSphere(radius,[pnt, dir, angle1,angle2,angle3]) -- Make a sphere with a given radius. By default
pnt=Vector(0,0,0), dir=Vector(0,0,1), angle1=-90, angle2=90 and angle3=360. angle1 and angle2 are the
vertical minimum and maximum of the sphere, angle3 is the sphere diameter itself

>>> sphere = Part.makeSphere(10)
>>> hemisphere = Part.makeSphere(10,Base.Vector(0,0,0),Base.Vector(0,0,1),-90,90,180)

How to make a Cylinder?

makeCylinder(radius,height,[pnt,dir,angle]) -- Make a cylinder with a given radius and height

By default pnt=Vector(0,0,0),dir=Vector(0,0,1) and angle=360

>>> cylinder = Part.makeCylinder(5,20)
>>> partCylinder = Part.makeCylinder(5,20,Base.Vector(20,0,0),Base.Vector(0,0,1),180)

How to make a Cone?

makeCone(radius1,radius2,height,[pnt,dir,angle]) -- Make a cone with given radii and height

Topological_data_scripting

How to create a Torus? 9

By default pnt=Vector(0,0,0), dir=Vector(0,0,1) and angle=360

>>> cone = Part.makeCone(10,0,20)
>>> semicone = Part.makeCone(10,0,20,Base.Vector(20,0,0),Base.Vector(0,0,1),180)

Boolean Operations

How to cut one shape from other?

cut(...)

 Difference of this and a given topo shape.
>>> cylinder = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))

>>> sphere = Part.makeSphere(5,Base.Vector(5,0,0))
>>> diff = cylinder.cut(sphere)
>>> diff.Solids
[<Solid object at 018AB630>, <Solid object at 0D8CDE48>]
>>> diff.ShapeType
'Compound'

Playground:cut shapes.png Playground:cut.png

How to get common between two shapes?

common(...)

 Intersection of this and a given topo shape.
>>> cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))

>>> cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))
>>> common = cylinder1.common(cylinder2)

Playground:common cylinders.png Playground:common.png

How to fuse two shapes?

fuse(...)

 Union of this and a given topo shape.
>>> cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))

>>> cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))
>>> fuse = cylinder1.fuse(cylinder2)
>>> fuse.Solids
[<Solid object at 0DA5B8A0>]

Topological_data_scripting

How to make a Cone? 10

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Playground:cut_shapes.png&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Playground:cut.png&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Playground:common_cylinders.png&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Playground:common.png&action=edit&redlink=1

How to section a solid with given shape?

section(...)

 Section of this with a given topo shape.

will return a intersection curve, a compound with edges

>>> cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))
>>> cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))
>>> section = cylinder1.section(cylinder2)
>>> section.Wires
[]
>>> section.Edges
[<Edge object at 0D87CFE8>, <Edge object at 019564F8>, <Edge object at 0D998458>,
 <Edge object at 0D86DE18>, <Edge object at 0D9B8E80>, <Edge object at 012A3640>,
 <Edge object at 0D8F4BB0>]

Playground:section.png

Exploring shapes

You can easily explore the topological data structure:

import Part
b = Part.makeBox(100,100,100)
b.Wires
w = b.Wires[0]
w
w.Wires
w.Vertexes
Part.show(w)
w.Edges
e = w.Edges[0]
e.Vertexes
v = e.Vertexes[0]
v.Point

By typing the line above in the python interpreter, you will gain a good understanding of the structure of Part
objects. Here, our makeBox() command created a solid shape. This solid, like all Part solids, contains faces.
Faces always contain wires, which are lists of edges that border the face. Each face has exactly one closed
wire. In the wire, we can look at each edge separately, and inside each edge, we can see the vertexes. Straight
edges have only two vertexes, obviously. Part Vertexes are OCC shapes, but they have a Point attribute which
returns a nice FreeCAD Vector.

Exploring Edges

In case of an edge, which is an arbitrary curve, it's most likely you want to do a discretization. In FreeCAD
the edges are parametrized by their lengths. That means you can walk an edge/curve by its length:

import Part
anEdge = Part.makeBox(100,100,100).Edges[0] # make a box with 100mm edge length and get the first edge

Topological_data_scripting

 How to section a solid with given shape? 11

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Playground:section.png&action=edit&redlink=1

print anEdge.Length # get the length of the edge in mm (modeling unit)

Now you can access a lot of properties of the edge by using the length as a position. That means if the edge is
100mm long the start position is 0 and the end position 100.

anEdge.tangentAt(0.0) # tangent direction at the beginning
anEdge.valueAt(0.0) # Point at the beginning
anEdge.valueAt(100.0) # Point at the end of the edge
anEdge.derivative1At(50.0) # first derivative of the curve in the middle
anEdge.derivative2At(50.0) # second derivative of the curve in the middle
anEdge.derivative3At(50.0) # third derivative of the curve in the middle
anEdge.centerOfCurvatureAt(50) # center of the curvature for that position
anEdge.curvatureAt(50.0) # the curvature
anEdge.normalAt(50) # normal vector at that position (if defined)

Using the selection

Here we see now how we can use the selection the user did in the viewer. First of all we create a box and
shows it in the viewer

import Part
Part.show(Part.makeBox(100,100,100))
Gui.SendMsgToActiveView("ViewFit")

Select now some faces or edges. With this script you can iterate all selected objects and their sub elements:

for o in Gui.Selection.getSelectionEx():
 print o.ObjectName
 for s in o.SubElementNames:
 print "name: ",s
 for s in o.SubObjects:
 print "object: ",s

Select some edges and this script will calculate the length:

length = 0.0
for o in Gui.Selection.getSelectionEx():
 for s in o.SubObjects:
 length += s.Length

print "Length of the selected edges:" ,length

Examples

Creating simple topology

Topological_data_scripting

Exploring Edges 12

We will now create a topology by constructing it out of simpler geometry. As a case study we use a part as
seen in the picture which consists of four vertexes, two circles and two lines.

Creating Geometry

First we have to create the distinct geometric parts of this wire. And we have to take care that the vertexes of
the geometric parts are at the same position. Otherwise later on we might not be able to connect the geometric
parts to a topology!

So we create first the points:

from FreeCAD import Base
V1 = Base.Vector(0,10,0)
V2 = Base.Vector(30,10,0)
V3 = Base.Vector(30,-10,0)
V4 = Base.Vector(0,-10,0)

Arc

To create an arc of circle we make a helper point and create the arc of circle through three points:

VC1 = Base.Vector(-10,0,0)
C1 = Part.Arc(V1,VC1,V4)
and the second one
VC2 = Base.Vector(40,0,0)
C2 = Part.Arc(V2,VC2,V3)

Line

The line can be created very simple out of the points:

Topological_data_scripting

Creating simple topology 13

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Wire.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Circel.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Line.png

L1 = Part.Line(V1,V2)
and the second one
L2 = Part.Line(V4,V3)

Putting all together

The last step is to put the geometric base elements together and bake a topological shape:

S1 = Part.Shape([C1,C2,L1,L2])

Make a prism

Now extrude the wire in a direction and make an actual 3D shape:

W = Part.Wire(S1.Edges)
P = W.extrude(Base.Vector(0,0,10))

The OCC bottle

A typical example found on the OpenCasCade Getting Started Page is how to build a bottle. This is a good
exercise for FreeCAD too. In fact, you can follow our example below and the OCC page simultaneously, you
will understand well how OCC structures are implemented in FreeCAD.

The complete script below is also included in FreeCAD installation (inside the Mod/Part folder) and can be
called from the python interpreter by typing:

import Part
import MakeBottle
bottle = MakeBottle.makeBottle()
Part.show(bottle)

The complete script

Here is the complete MakeBottle script:

import Part, FreeCAD, math
from FreeCAD import Base

def makeBottle(myWidth=50.0, myHeight=70.0, myThickness=30.0):
 aPnt1=Base.Vector(-myWidth/2.,0,0)
 aPnt2=Base.Vector(-myWidth/2.,-myThickness/4.,0)
 aPnt3=Base.Vector(0,-myThickness/2.,0)
 aPnt4=Base.Vector(myWidth/2.,-myThickness/4.,0)
 aPnt5=Base.Vector(myWidth/2.,0,0)

 aArcOfCircle = Part.Arc(aPnt2,aPnt3,aPnt4)
 aSegment1=Part.Line(aPnt1,aPnt2)
 aSegment2=Part.Line(aPnt4,aPnt5)
 aEdge1=aSegment1.toShape()
 aEdge2=aArcOfCircle.toShape()
 aEdge3=aSegment2.toShape()

Topological_data_scripting

Line 14

http://www.opencascade.org/org/gettingstarted/appli/

 aWire=Part.Wire([aEdge1,aEdge2,aEdge3])

 aTrsf=Base.Matrix()
 aTrsf.rotateZ(math.pi) # rotate around the z-axis

 aMirroredWire=aWire.transform(aTrsf)
 myWireProfile=Part.Wire([aWire,aMirroredWire])
 myFaceProfile=Part.Face(myWireProfile)
 aPrismVec=Base.Vector(0,0,myHeight)
 myBody=myFaceProfile.extrude(aPrismVec)
 myBody=myBody.makeFillet(myThickness/12.0,myBody.Edges)
 neckLocation=Base.Vector(0,0,myHeight)
 neckNormal=Base.Vector(0,0,1)
 myNeckRadius = myThickness / 4.
 myNeckHeight = myHeight / 10
 myNeck = Part.makeCylinder(myNeckRadius,myNeckHeight,neckLocation,neckNormal)
 myBody = myBody.fuse(myNeck)

 faceToRemove = 0
 zMax = -1.0

 for xp in myBody.Faces:
 try:
 surf = xp.Surface
 if type(surf) == Part.Plane:
 z = surf.Position.z
 if z > zMax:
 zMax = z
 faceToRemove = xp
 except:
 continue

 myBody = myBody.makeThickness([faceToRemove],-myThickness/50 , 1.e-3)

 return myBody

Detailed explanation

import Part, FreeCAD, math
from FreeCAD import Base

We will need,of course, the Part module, but also the FreeCAD.Base module, which contains basic FreeCAD
structures like vectors and matrixes.

def makeBottle(myWidth=50.0, myHeight=70.0, myThickness=30.0):
 aPnt1=Base.Vector(-myWidth/2.,0,0)
 aPnt2=Base.Vector(-myWidth/2.,-myThickness/4.,0)
 aPnt3=Base.Vector(0,-myThickness/2.,0)
 aPnt4=Base.Vector(myWidth/2.,-myThickness/4.,0)
 aPnt5=Base.Vector(myWidth/2.,0,0)

Here we define our makeBottle function. This function can be called without arguments, like we did above, in
which case default values for width, height, and thickness will be used. Then, we define a couple of points
that will be used for building our base profile.

 aArcOfCircle = Part.Arc(aPnt2,aPnt3,aPnt4)
 aSegment1=Part.Line(aPnt1,aPnt2)
 aSegment2=Part.Line(aPnt4,aPnt5)

Topological_data_scripting

The complete script 15

Here we actually define the geometry: an arc, made of 3 points, and two line segments, made of 2 points.

 aEdge1=aSegment1.toShape()
 aEdge2=aArcOfCircle.toShape()
 aEdge3=aSegment2.toShape()
 aWire=Part.Wire([aEdge1,aEdge2,aEdge3])

Remember the difference between geometry and shapes? Here we build shapes out of our construction
geometry. 3 edges (edges can be straight or curved), then a wire made of those three edges.

 aTrsf=Base.Matrix()
 aTrsf.rotateZ(math.pi) # rotate around the z-axis
 aMirroredWire=aWire.transform(aTrsf)
 myWireProfile=Part.Wire([aWire,aMirroredWire])

Until now we built only a half profile. Easier than building the whole profile the same way, we can just mirror
what we did, and glue both halfs together. So we first create a matrix. A matrix is a very common way to
apply transformations to objects in the 3D world, since it can contain in one structure all basic transformations
that 3D objects can suffer (move, rotate and scale). Here, after we create the matrix, we mirror it, and we
create a copy of our wire with that transformation matrix applied to it. We now have two wires, and we can
make a third wire out of them, since wires are actually lists of edges.

 myFaceProfile=Part.Face(myWireProfile)
 aPrismVec=Base.Vector(0,0,myHeight)
 myBody=myFaceProfile.extrude(aPrismVec)
 myBody=myBody.makeFillet(myThickness/12.0,myBody.Edges)

Now that we have a closed wire, it can be turned into a face. Once we have a face, we can extrude it. Doing
so, we actually made a solid. Then we apply a nice little fillet to our object because we care about good
design, don't we?

 neckLocation=Base.Vector(0,0,myHeight)
 neckNormal=Base.Vector(0,0,1)
 myNeckRadius = myThickness / 4.
 myNeckHeight = myHeight / 10
 myNeck = Part.makeCylinder(myNeckRadius,myNeckHeight,neckLocation,neckNormal)

Then, the body of our bottle is made, we still need to create a neck. So we make a new solid, with a cylinder.

 myBody = myBody.fuse(myNeck)

The fuse operation, which in other apps is sometimes called union, is very powerful. It will take care of gluing
what needs to be glued and remove parts that need to be removed.

 return myBody

Then, we return our Part solid as the result of our function. That Part solid, like any other Part shape, can be
attributed to an object in a FreeCAD document, with:

myObject = FreeCAD.ActiveDocument.addObject("Part::Feature","myObject")
myObject.Shape = bottle

or, more simple:

Part.show(bottle)

Topological_data_scripting

Detailed explanation 16

Load and Save

There are several ways to save your work in the Part module. You can of course save your FreeCAD
document, but you can also save Part objects directly to common CAD formats, such as BREP, IGS, STEP
and STL.

Saving a shape to a file is easy. There are exportBrep(), exportIges(), exportStl() and exportStep() methods
availables for all shape objects. So, doing:

import Part
s = Part.makeBox(0,0,0,10,10,10)
s.exportStep("test.stp")

this will save our box into a STEP file. To load a BREP, IGES or STEP file, simply do the contrary:

import Part
s = Part.Shape()
s.read("test.stp")

Note that importing or opening BREP, IGES or STEP files can also be done directly from the File -> Open or
File -> Import menu. At the moment exporting is still not possible that way, but should be there soon.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Topological_data_scripting"

Topological_data_scripting

 Load and Save 17

Scenegraph
FreeCAD is basically a collage of different powerful libraries, the most important being openCascade, for
managing and constructing geometry, Coin3d to display that geometry, and Qt to put all this in a nice
Graphical User Interface.

The geometry that appears in the 3D views of FreeCAD are rendered by the Coin3D library. Coin3D is an
implementation of the OpenInventor standard. The openCascade software also provides the same
functionality, but it was decided, at the very beginnings of FreeCAD, not to use the built-in openCascade
viewer and rather switch to the more performant coin3D software.

OpenInventor is actually a 3D scene descrition language. The scene described in openInventor is then
rendered in OpenGL on your screen. Coin3D takes care of doing this, so the programmer doesn't need to deal
with complex openGL calls, he just has to provide it with valid OpenInventor code. The big advantage is that
openInventor is a very well-known and well documented standard.

One of the big jobs FreeCAD does for you is basically to translate openCascade geometry information into
openInventor language.

OpenInventor describes a 3D scene in the form of a scenegraph, like the one below:

 image from Inventor mentor

Scenegraph

Scenegraph 1

http://en.wikipedia.org/wiki/Open_CASCADE
http://en.wikipedia.org/wiki/Coin3D
http://en.wikipedia.org/wiki/Qt_(toolkit)
http://en.wikipedia.org/wiki/Open_Inventor
http://en.wikipedia.org/wiki/Open_Inventor
http://en.wikipedia.org/wiki/Scene_graph
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Scenegraph.gif
http://www-evasion.imag.fr/~Francois.Faure/doc/inventorMentor/sgi_html/index.html

An openInventor scenegraph describes everything that makes part of a 3D scene, such as geometry, colors,
materials, lights, etc, and organizes all that data in a convenient and clear structure. Everything can be
grouped into sub-structures, allowing you to organize your scene contents pretty much the way you like. Here
is an example of an openInventor file:

 #Inventor V2.0 ascii

 Separator {
 RotationXYZ {
 axis Z
 angle 0
 }
 Transform {
 translation 0 0 0.5
 }
 Separator {
 Material {
 diffuseColor 0.05 0.05 0.05
 }
 Transform {
 rotation 1 0 0 1.5708
 scaleFactor 0.2 0.5 0.2
 }
 Cylinder {
 }
 }
 }

As you can see, the structure is very simple. You use separators to organize your data into blocks, a bit like
you would organize your files into folders. Each statement affects what comes next, for example the first two
items of our root separator are a rotation and a translation, both will affect the next item, which is a separator.
In that separator, a material is defined, and another transformation. Our cylinder will therefore be affected by
both transformations, the one who was applied directly to it and the one that was applied to its parent
separator.

We also have many other types of elements to organize our scene, such as groups, switches or annotations.
We can define very complex materials for our objects, with color, textures, shading modes and transparency.
We can also define lights, cameras, and even movement. It is even possible to embed pieces of scripting in
openInventor files, to define more complex behaviours.

If you are interested in learning more about openInventor, head directly to its most famous reference, the
Inventor mentor.

In FreeCAD, normally, we don't need to interact directly with the openInventor scenegraph. Every object in a
FreeCAD document, being a mesh, a part shape or anything else, gets automatically converted to
openInventor code and inserted in the main scenegraph that you see in a 3D view. That scenegraph gets
updated continuously when you do modifications, add or remove objects to the document. In fact, every
object (in App space) has a view provider (a corresponding object in Gui space), responsible for issuing
openInventor code.

But there are many advantages to be able to access the scenegraph directly. For example, we can temporarily
change the appearence of an object, or we can add objects to the scene that have no real existence in the
FreeCAD document, such as construction geometry, helpers, graphical hints or tools such as manipulators or
on-screen information.

Scenegraph

Scenegraph 2

http://www-evasion.imag.fr/~Francois.Faure/doc/inventorMentor/sgi_html/index.html

FreeCAD itself features several tools to see or modify openInventor code. For example, the following python
code will show the openInventor representation of a selected object:

obj = FreeCAD.ActiveDocument.ActiveObject
viewprovider = obj.ViewObject
print viewprovider.toString()

But we also have a python module that allows complete access to anything managed by Coin3D, such as our
FreeCAD scenegraph. So, read on to Pivy.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Scenegraph"

Scenegraph

Scenegraph 3

Pivy
Pivy is a python binding library for Coin3d, the 3D-rendering library used FreeCAD. When imported in a
running python interpreter, it allows to dialog directly with any running Coin3d scenegraphs, such as the
FreeCAD 3D views, or even to create new ones. Pivy is bundled in standard FreeCAD installation.

The coin library is divided into several pieces, coin itself, for manipulating scenegraphs and bindings for
several GUI systems, such as windows or, like in our case, qt. Those modules are available to pivy too,
depending if they are present on the system. The coin module is always present, and it is what we will use
anyway, since we won't need to care about anchoring our 3D display in any interface, it is already done by
FreeCAD itself. All we need to do is this:

from pivy import coin

Accessing and modifying the scenegraph

We saw in the Scenegraph page how a typical Coin scene is organized. Everything that appears in a FreeCAD
3D view is a coin scenegraph, organized the same way. We have one root node, and all objects on the screen
are its children.

FreeCAD has an easy way to access the root node of a 3D view scenegraph:

sg = FreeCADGui.ActiveDocument.ActiveView.getScenegraph()
print sg

This will return the root node:

<pivy.coin.SoSelection; proxy of <Swig Object of type 'SoSelection *' at 0x360cb60> >

We can inspect the immediate children of our scene:

for node in sg.getChilden()
 print node

Some of those nodes, such as SoSeparators or SoGroups, can have children themselves. The complete list of
the available coin objects can be found in the official coin documentation.

Let's try to add something to our scenegraph now. We'll add a nice red cube:

col = coin.SoBaseColor()
col.rgb=(1,0,0)
cub = coin.SoCube()
myCustomNode = coin.SoSeparator()
myCustomNode.addChild(col)
myCustomNode.addChild(cub)
sg.addChild(myCustomNode)

and here is our (nice) red cube. Now, let's try this:

col.rgb=(1,1,0)

Pivy

Pivy 1

http://pivy.coin3d.org/
http://www.coin3d.org
http://doc.coin3d.org/Coin/classes.html

See? everything is still accessible and modifiable on-the-fly. No need to recompute or redraw anything, coin
takes care of everything. You can add stuff to your scenegraph, change properties, hide stuff, show temporary
objects, anything. Of course, this only concerns the display in the 3D view. That display gets recomputed by
FreeCAD on file open, and when an object needs recomputing. So, if you change the aspect of an existing
FreeCAD object, those changes will be lost if the object gets recomputed or when you reopen the file.

A key to work with scenegraphs in your scripts is to be able to access certain properties of the nodes you
added when needed. For example, if we wanted to move our cube, we would have added a SoTranslation node
to our custom node, and it would have looked like this:

col = coin.SoBaseColor()
col.rgb=(1,0,0)
trans = coin.SoTranslation()
trans.translation.setValue([0,0,0])
cub = coin.SoCube()
myCustomNode = coin.SoSeparator()
myCustomNode.addChild(col)
mtCustomNode.addChild(trans)
myCustomNode.addChild(cub)
sg.addChild(myCustomNode)

Remember that in an openInventor scenegraph, the order is important. A node affects what comes next, so you
can say something like: color red, cube, color yellow, sphere, and you will get a red cube and a yellow sphere.
If we added the translation now to our existing custom node, it would come after the cube, and not affect it. If
we had inserted it when creating it, like here above, we could now do:

trans.translation.setValue([2,0,0])

And our cube would jump 2 units to the right. Finally, removing something is done with:

sg.removeChild(myCustomNode)

Using callback mechanisms

A callback mechanism is a system that permits a library that you are using, such as our coin library, to call
you back, that is, to call a certain function from your currently running python object. This is extremely
useful, because that way coin can notify you if some specific event occurs in the scene. Coin can watch very
different things, such as mouse position, clicks of a mouse button, keyboard keys being pressed, and many
other things.

FreeCAD features an easy way to use such callbacks:

class ButtonTest:
 def __init__(self):
 self.view = FreeCADGui.ActiveDocument.ActiveView
 self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getMouseClick)
 def getMouseClick(self,event_cb):
 event = event_cb.getEvent()
 if event.getState() == SoMouseButtonEvent.DOWN:
 print "Alert!!! A mouse button has been improperly clicked!!!"
 self.view.removeEventCallbackSWIG(SoMouseButtonEvent.getClassTypeId(),self.callback)

ButtonTest()

Pivy

Accessing and modifying the scenegraph 2

http://en.wikipedia.org/wiki/Callback_%28computer_science%29

The callback has to be initiated from an object, because that object must still be running when the callback
will occur. See also a complete list of possible events and their parameters, or the official coin documentation.

Documentation

Unfortunately pivy itself still doesn't have a proper documentation, but since it is an accurate translation of
coin, you can safely use the coin documentation as reference, and use python style instead of c++ style (for
example SoFile::getClassTypeId() would in pivy be SoFile.getClassId())

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Pivy"

Pivy

Using callback mechanisms 3

http://doc.coin3d.org/Coin/classes.html

Embedding FreeCAD
FreeCAD has the amazing ability to be importable as a python module in other programs or in a standalone
python console, together with all its modules and components. It's even possible to import the FreeCAD GUI
as python module -- with some restrictions, however.

Using FreeCAD without GUI

One first, direct, easy and useful application you can make of this is to import FreeCAD documents into your
program. In the following example, we'll import the Part geometry of a FreeCAD document into blender. Here
is the complete script. I hope you'll be impressed by its simplicity:

FREECADPATH = '/opt/FreeCAD/lib' # path to your FreeCAD.so or FreeCAD.dll file
import Blender, sys
sys.path.append(FREECADPATH)

def import_fcstd(filename):
 try:
 import FreeCAD
 except ValueError:
 Blender.Draw.PupMenu('Error%t|FreeCAD library not found. Please check the FREECADPATH variable in the import script is correct')
 else:
 scene = Blender.Scene.GetCurrent()
 import Part
 doc = FreeCAD.open(filename)
 objects = doc.Objects
 for ob in objects:
 if ob.Type[:4] == 'Part':
 shape = ob.Shape
 if shape.Faces:
 mesh = Blender.Mesh.New()
 rawdata = shape.tessellate(1)
 for v in rawdata[0]:
 mesh.verts.append((v.x,v.y,v.z))
 for f in rawdata[1]:
 mesh.faces.append.append(f)
 scene.objects.new(mesh,ob.Name)
 Blender.Redraw()

def main():
 Blender.Window.FileSelector(import_fcstd, 'IMPORT FCSTD',
 Blender.sys.makename(ext='.fcstd'))

This lets you import the script without running it
if __name__=='__main__':
 main()

The first, important part is to make sure python will find our FreeCAD library. Once it finds it, all FreeCAD
modules such as Part, that we'll use too, will be available automatically. So we simply take the sys.path
variable, which is where python searches for modules, and we append the FreeCAD lib path. This
modification is only temporary, and will be lost when we'll close our python interpreter. Another way could
be making a link to your FreeCAD library in one of the python search paths. I kept the path in a constant
(FREECADPATH) so it'll be easier for another user of the script to configure it to his own system.

Embedding_FreeCAD

Embedding FreeCAD 1

http://www.blender.org

Once we are sure the library is loaded (the try/except sequence), we can now work with FreeCAD, the same
way as we would inside FreeCAD's own python interpreter. We open the FreeCAD document that is passed to
us by the main() function, and we make a list of its objects. Then, as we choosed only to care about Part
geometry, we check if the Type property of each object contains "Part", then we tesselate it.

The tesselation produce a list of vertices and a list of faces defined by vertices indexes. This is perfect, since it
is exactly the same way as blender defines meshes. So, our task is ridiculously simple, we just add both lists
contents to the verts and faces of a blender mesh. When everything is done, we just redraw the screen, and
that's it!

Of course this script is very simple (in fact I made a more advanced here), you might want to extend it, for
example importing mesh objects too, or importing Part geometry that has no faces, or import other file
formats that FreeCAD can read. You might also want to export geometry to a FreeCAD document, which can
be done the same way. You might also want to build a dialog, so the user can choose what to import, etc... The
beauty of all this actually lies in the fact that you let FreeCAD do the ground work while presenting its results
in the program of your choice.

Using FreeCAD with GUI

From version 4.2 on Qt has the intriguing ability to embed Qt-GUI-dependent plugins into non-Qt host
applications and share the host's event loop.

Especially, for FreeCAD this means that it can be imported from within another application with its whole
user interface where the host application has full control over FreeCAD, then.

The whole python code to achieve that has only two lines

import FreeCADGui
FreeCADGui.showMainWindow()

If the host application is based on Qt then this solution should work on all platforms which Qt supports.
However, the host should link the same Qt version as FreeCAD because otherwise you could run into
unexpected runtime errors.

For non-Qt applications, however, there are a few limitations you must be aware of. This solution probably
doesn't work together with all other toolkits. For Windows it works as long as the host application is directly
based on Win32 or any other toolkit that internally uses the Win32 API such as wxWidgets, MFC or
WinForms. In order to get it working under X11 the host application must link the "glib" library.

Note, for any console application this solution of course doesn't work because there is no event loop running.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Embedding_FreeCAD"

Embedding_FreeCAD

Using FreeCAD without GUI 2

http://yorik.orgfree.com/scripts/import_freecad.py

Code snippets
This page contains examples, pieces, chunks of FreeCAD python code collected from users experiences and
discussions on the forums. Read and use it as a start for your own scripts...

Contents

1 A typical InitGui.py file•
2 A typical module file•
3 Import a new filetype•
4 Adding a line•
5 Adding a polygon•
6 Adding and removing an object to a group•
7 Adding a Mesh•
8 Adding an arc or a circle•
9 Accessing and changing representation of an
object

•

10 Observing mouse events in the 3D viewer via
Python

•

11 Manipulate the scenegraph in Python•
12 Adding and removing objects to/from the
scenegraph

•

13 Adding custom widgets to the interface•

A typical InitGui.py file

Every module must contain, besides your main module file, an InitGui.py file, responsible for inserting the
module in the main Gui. This is an example of a simple one.

class ScriptWorkbench (Workbench):
 MenuText = "Scripts"
 def Initialize(self):
 import Scripts # assuming Scripts.py is your module
 list = ["Script_Cmd"] # That list must contain command names, that can be defined in Scripts.py
 self.appendToolbar("My Scripts",list)

Gui.addWorkbench(ScriptWorkbench())

A typical module file

This is an example of a main module file, containing everything your module does. It is the Scripts.py file
invoked by the previous example. You can have all your custom commands here.

import FreeCAD, FreeCADGui

class ScriptCmd:
 def Activated(self):
 # Here your write what your ScriptCmd does...

Code_snippets

Code snippets 1

 FreeCAD.Console.PrintMessage('Hello, World!')
 def GetResources(self):
 return {'Pixmap' : 'path_to_an_icon/myicon.png', 'MenuText': 'Short text', 'ToolTip': 'More detailed text'}

FreeCADGui.addCommand('Script_Cmd', ScriptCmd())

Import a new filetype

Making an importer for a new filetype in FreeCAD is easy. FreeCAD doesn't consider that you import data in
an opened document, but rather that you simply can directly open the new filetype. So what you need to do is
to add the new file extension to FreeCAD's list of known extensions, and write the code that will read the file
and create the FreeCAD objects you want:

This line must be added to the InitGui.py file to add the new file extension to the list:

Assumes Import_Ext.py is the file that has the code for opening and reading .ext files
FreeCAD.addImportType("Your new File Type (*.ext)","Import_Ext")

Then in the Import_Ext.py file:

def open(filename):
 doc=App.newDocument()
 # here you do all what is needed with filename, read, classify data, create corresponding FreeCAD objects
 doc.recompute()

To export your document to some new filetype works the same way, except that you use:

FreeCAD.addExportType("Your new File Type (*.ext)","Export_Ext")

Adding a line

A line simply has 2 points.

import Part,PartGui
doc=App.activeDocument()
add a line element to the document and set its points
l=Part.Line()
l.StartPoint=(0.0,0.0,0.0)
l.EndPoint=(1.0,1.0,1.0)
doc.addObject("Part::Feature","Line").Shape=l.toShape()
doc.recompute()

Adding a polygon

A polygon is simply a set of connected line segments (a polyline in AutoCAD). It doesn't need to be closed.

import Part,PartGui
doc=App.activeDocument()
n=list()
create a 3D vector, set its coordinates and add it to the list
v=App.Vector(0,0,0)
n.append(v)

Code_snippets

A typical module file 2

v=App.Vector(10,0,0)
n.append(v)
#... repeat for all nodes
Create a polygon object and set its nodes
p=doc.addObject("Part::Polygon","Polygon")
p.Nodes=n

doc.recompute()

Adding and removing an object to a group

doc=App.activeDocument()
grp=doc.addObject("App::DocumentObjectGroup", "Group")
lin=doc.addObject("Part::Feature", "Line")
grp.addObject(lin) # adds the lin object to the group grp
grp.removeObject(lin) # removes the lin object from the group grp

Note: You can even add other groups to a group...

Adding a Mesh

import Mesh
doc=App.activeDocument()
create a new empty mesh
m = Mesh.Mesh()
build up box out of 12 facets
m.addFacet(0.0,0.0,0.0, 0.0,0.0,1.0, 0.0,1.0,1.0)
m.addFacet(0.0,0.0,0.0, 0.0,1.0,1.0, 0.0,1.0,0.0)
m.addFacet(0.0,0.0,0.0, 1.0,0.0,0.0, 1.0,0.0,1.0)
m.addFacet(0.0,0.0,0.0, 1.0,0.0,1.0, 0.0,0.0,1.0)
m.addFacet(0.0,0.0,0.0, 0.0,1.0,0.0, 1.0,1.0,0.0)
m.addFacet(0.0,0.0,0.0, 1.0,1.0,0.0, 1.0,0.0,0.0)
m.addFacet(0.0,1.0,0.0, 0.0,1.0,1.0, 1.0,1.0,1.0)
m.addFacet(0.0,1.0,0.0, 1.0,1.0,1.0, 1.0,1.0,0.0)
m.addFacet(0.0,1.0,1.0, 0.0,0.0,1.0, 1.0,0.0,1.0)
m.addFacet(0.0,1.0,1.0, 1.0,0.0,1.0, 1.0,1.0,1.0)
m.addFacet(1.0,1.0,0.0, 1.0,1.0,1.0, 1.0,0.0,1.0)
m.addFacet(1.0,1.0,0.0, 1.0,0.0,1.0, 1.0,0.0,0.0)
scale to a edge langth of 100
m.scale(100.0)
add the mesh to the active document
me=doc.addObject("Mesh::Feature","Cube")
me.Mesh=m

Adding an arc or a circle

import Part
doc = App.activeDocument()
c = Part.Circle()
c.Radius=10.0
f = doc.addObject("Part::Feature", "Circle") # create a document with a circle feature
f.Shape = c.toShape() # Assign the circle shape to the shape property
doc.recompute()

Code_snippets

Adding a polygon 3

Accessing and changing representation of an object

Each object in a FreeCAD document has an associated view representation object that stores all the
parameters that define how the object appear, like color, linewidth, etc...

gad=Gui.activeDocument() # access the active document containing all
 # view representations of the features in the
 # corresponding App document

v=gad.getObject("Cube") # access the view representation to the Mesh feature 'Cube'
v.ShapeColor # prints the color to the console
v.ShapeColor=(1.0,1.0,1.0) # sets the shape color to white

Observing mouse events in the 3D viewer via Python

The Inventor framework allows to add one or more callback nodes to the scenegraph of the viewer. By default
in FreeCAD one callback node is installed per viewer which allows to add global or static C++ functions. In
the appropriate Python binding some methods are provided to make use of this technique from within Python
code.

App.newDocument()
v=Gui.activeDocument().activeView()

#This class logs any mouse button events. As the registered callback function fires twice for 'down' and
#'up' events we need a boolean flag to handle this.
class ViewObserver:
 def logPosition(self, info):
 down = (info["State"] == "DOWN")
 pos = info["Position"]
 if (down):
 FreeCAD.Console.PrintMessage("Clicked on position: ("+str(pos[0])+", "+str(pos[0])+")\n")

o = ViewObserver()
c = v.addEventCallback("SoMouseButtonEvent",o.logPosition)

Now, pick somewhere on the area in the 3D viewer and observe the messages in the output window. To finish
the observation just call

v.removeEventCallback("SoMouseButtonEvent",c)

The following event types are supported

SoEvent -- all kind of events•
SoButtonEvent -- all mouse button and key events•
SoLocation2Event -- 2D movement events (normally mouse movements)•
SoMotion3Event -- 3D movement events (normally spaceball)•
SoKeyboradEvent -- key down and up events•
SoMouseButtonEvent -- mouse button down and up events•
SoSpaceballButtonEvent -- spaceball button down and up events•

The Python function that can be registered with addEventCallback() expects a dictionary. Depending on the
watched event the dictionary can contain different keys.

Code_snippets

 Accessing and changing representation of an object 4

For all events it has the keys:

Type -- the name of the event type i.e. SoMouseEvent, SoLocation2Event, ...•
Time -- the current time as string•
Position -- a tuple of two integers, mouse position•
ShiftDown -- a boolean, true if Shift was pressed otherwise false•
CtrlDown -- a boolean, true if Ctrl was pressed otherwise false•
AltDown -- a boolean, true if Alt was pressed otherwise false•

For all button events, i.e. keyboard, mouse or spaceball events

State -- A string 'UP' if the button was up, 'DOWN' if it was down or 'UNKNOWN' for all other cases•

For keyboard events:

Key -- a character of the pressed key•

For mouse button event

Button -- The pressed button, could be BUTTON1, ..., BUTTON5 or ANY•

For spaceball events:

Button -- The pressed button, could be BUTTON1, ..., BUTTON7 or ANY•

And finally motion events:

Translation -- a tuple of three floats•
Rotation -- a quaternion for the rotation, i.e. a tuple of four floats•

Manipulate the scenegraph in Python

It is also possible to get and change the scenegraph in Python, with the 'pivy' module -- a Python binding for
Coin.

from pivy.coin import * # load the pivy module
view = Gui.ActiveDocument.ActiveView # get the active viewer
root = view.getSceneGraph() # the root is an SoSeparator node
root.addChild(SoCube())
view.fitAll()

The Python API of pivy is created by using the tool SWIG. As we use in FreeCAD some self-written nodes
you cannot create them directly in Python. However, it is possible to create a node by its internal name. An
instance of the type 'SoFCSelection' can be created with

type = SoType.fromName("SoFCSelection")
node = type.createInstance()

Code_snippets

Observing mouse events in the 3D viewer via Python 5

Adding and removing objects to/from the scenegraph

Adding new nodes to the scenegraph can be done this way. Take care of always adding a SoSeparator to
contain the geometry, coordinates and material info of a same object. The following example adds a red line
from (0,0,0) to (10,0,0):

from pivy import coin
sg = Gui.ActiveDocument.ActiveView.getSceneGraph()
co = coin.SoCoordinate3()
pts = [[0,0,0],[10,0,0]]
co.point.setValues(0,len(pts),pts)
ma = coin.SoBaseColor()
ma.rgb = (1,0,0)
li = coin.SoLineSet()
li.numVertices.setValue(2)
no = coin.SoSeparator()
no.addChild(co)
no.addChild(ma)
no.addChild(li)
sg.addChild(no)

To remove it, simply issue:

sg.removeChild(no)

Adding custom widgets to the interface

You can create custom widgets with Qt designer, transform them into a python script, and then load them into
the FreeCAD interface with PyQt4.

The python code produced by the Ui python compiler (the tool that converts qt-designer .ui files into python
code) generally looks like this (it is simple, you can also code it directly in python):

class myWidget_Ui(object):
 def setupUi(self, myWidget):
 myWidget.setObjectName("my Nice New Widget")
 myWidget.resize(QtCore.QSize(QtCore.QRect(0,0,300,100).size()).expandedTo(myWidget.minimumSizeHint())) # sets size of the widget

 self.label = QtGui.QLabel(myWidget) # creates a label
 self.label.setGeometry(QtCore.QRect(50,50,200,24)) # sets its size
 self.label.setObjectName("label") # sets its name, so it can be found by name

 def retranslateUi(self, draftToolbar): # built-in QT function that manages translations of widgets
 myWidget.setWindowTitle(QtGui.QApplication.translate("myWidget", "My Widget", None, QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("myWidget", "Welcome to my new widget!", None, QtGui.QApplication.UnicodeUTF8))

Then, all you need to do is to create a reference to the FreeCAD Qt window, insert a custom widget into it,
and "transform" this widget into yours with the Ui code we just made:

 app = QtGui.qApp
 FCmw = app.activeWindow() # the active qt window, = the freecad window since we are inside it
 myNewFreeCADWidget = QtGui.QDockWidget() # create a new dckwidget
 myNewFreeCADWidget.ui = myWidget_Ui() # load the Ui script
 myNewFreeCADWidget.ui.setupUi(myNewFreeCADWidget) # setup the ui
 FCmw.addDockWidget(QtCore.Qt.RightDockWidgetArea,myNewFreeCADWidget) # add the widget to the main window

Code_snippets

 Adding and removing objects to/from the scenegraph 6

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Code_snippets"

Code_snippets

Adding custom widgets to the interface 7

Line drawing function
This page shows how advanced functionality can easily be built in Python. In this exercise, we will be
building a new tool that draws a line. This tool can then be linked to a FreeCAD command, and that command
can be called by any element of the interface, like a menu item or a toolbar button.

Contents

1 The main script•
2 Detailed explanation•
3 Testing & Using the script•
4 Registering the script in the FreeCAD
interface

•

5 So you want more?•

The main script

First we will write a script containing all our functionality. Then, we will save this in a file, and import it in
FreeCAD, so all classes and functions we write will be availible to FreeCAD. So, launch your favorite text
editor, and type the following lines:

import FreeCADGui, Part
from pivy.coin import *
class line:
 "this class will create a line after the user clicked 2 points on the screen"
 def __init__(self):
 self.view = FreeCADGui.ActiveDocument.ActiveView
 self.stack = []
 self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getpoint)
 def getpoint(self,event_cb):
 event = event_cb.getEvent()
 if event.getState() == SoMouseButtonEvent.DOWN:
 pos = event.getPosition()
 point = self.view.getPoint(pos[0],pos[1])
 self.stack.append(point)
 if len(self.stack) == 2:
 l = Part.Line(self.stack[0],self.stack[1])
 shape = l.toShape()
 Part.show(shape)
 self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.callback)

Detailed explanation
import Part, FreeCADGui
from pivy.coin import *

In Python, when you want to use functions from another module, you need to import it. In our case, we will
need functions from the Part Module, for creating the line, and from the Gui module (FreeCADGui), for
accessing the 3D view. We also need the complete contents of the coin library, so we can use directly all coin
objects like SoMouseButtonEvent, etc...

Line_drawing_function

Line drawing function 1

class line:

Here we define our main class. Why do we use a class and not a function? The reason is that we need our tool
to stay "alive" while we are waiting for the user to click on the screen. A function ends when its task has been
done, but an object (a class defines an object) stays alive until it is destroyed.

"this class will create a line after the user clicked 2 points on the screen"

In Python, every class or function can have a description string. This is particularly useful in FreeCAD,
because when you'll call that class in the interpreter, the description string will be displayed as a tooltip.

def __init__(self):

Python classes can always contain an __init__ function, which is executed when the class is called to create an
object. So, we will put here everything we want to happen when our line tool begins.

self.view = FreeCADGui.ActiveDocument.ActiveView

In a class, you usually want to append self. before a variable name, so it will be easily accessible to all
functions inside and outside that class. Here, we will use self.view to access and manipulate the active 3D
view.

self.stack = []

Here we create an empty list that will contain the 3D points sent by the getpoint function.

self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getpoint)

This is the important part: Since it is actually a coin3D scene, the FreeCAD uses coin callback mechanism,
that allows a function to be called everytime a certain scene event happens. In our case, we are creating a
callback for SoMouseButtonEvent events, and we bind it to the getpoint function. Now, everytime a mouse
button is pressed or released, the getpoint function will be executed.

Note that there is also an alternative to addEventCallbackPivy() called addEventCallback() which dispenses
the use of pivy. But since pivy is a very efficient and natural way to access any part of the coin scene, it is
much better to use it as much as you can!

def getpoint(self,event_cb):

Now we define the getpoint function, that will be executed when a mouse button is pressed in a 3D view. This
function will receive an argument, that we will call event_cb. From this event callback we can access the
event object, which contains several pieces of information (mode info here).

if event.getState() == SoMouseButtonEvent.DOWN:

The getpoint function will be called when a mouse button is pressed or released. But we want to pick a 3D
point only when pressed (otherwise we would get two 3D points very close to each other). So we must check
for that here.

pos = event.getPosition()

Here we get the screen coordinates of the mouse cursor

Line_drawing_function

Detailed explanation 2

http://www.coin3d.org/
http://doc.coin3d.org/Coin/group__events.html

point = self.view.getPoint(pos[0],pos[1])

This function gives us a FreeCAD vector (x,y,z) containing the 3D point that lies on the focal plane, just under
our mouse cursor. If you are in camera view, imagine a ray coming from the camera, passing through the
mouse cursor, and hitting the focal plane. There is our 3D point. If we are in orthogonal view, the ray is
parallel to the view direction.

self.stack.append(point)

We add our new point to the stack

if len(self.stack) == 2:

Do we have enough points already? if yes, then let's draw the line!

l = Part.Line(self.stack[0],self.stack[1])

Here we use the function Line() from the Part Module that creates a line from two FreeCAD vectors.
Everything we create and modify inside the Part module, stays in the Part module. So, until now, we created a
Line Part. It is not bound to any object of our active document, so nothing appears on the screen.

shape = l.toShape()

The FreeCAD document can only accept shapes from the Part module. Shapes are the most generic type of the
Part module. So, we must convert our line to a shape before adding it to the document.

Part.show(shape)

The Part module has a very handy show() function that creates a new object in the document and binds a
shape to it. We could also have created a new object in the document first, then bound the shape to it
manually.

self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.callback)

Since we are done with our line, let's remove the callback mechanism, that consumes precious CPU cycles.

Testing & Using the script

Now, let's save our script to some place where the FreeCAD python interpreter will find it. When importing
modules, the interpreter will look in the following places: the python installation paths, the FreeCAD bin
directory, and all FreeCAD modules directories. So, the best solution is to create a new directory in one of the
FreeCAD Mod directories, and to save our script in it. For example, let's make a "MyScripts" directory, and
save our script as "exercise.py".

Now, everything is ready, let's start FreeCAD, create a new document, and, in the python interpreter, issue:

import exercise

If no error message appear, that means our exercise script has been loaded. We can now check its contents
with:

Line_drawing_function

 Testing & Using the script 3

dir(exercise)

The command dir() is a built-in python command that lists the contents of a module. We can see that our
line() class is there, waiting for us. Now let's test it:

exercise.line()

Then, click two times in the 3D view, and bingo, here is our line! To do it again, just type exercise.line()
again, and again, and again... Feels great, no?

Registering the script in the FreeCAD interface

Now, for our new line tool to be really cool, it should have a button on the interface, so we don't need to type
all that stuff everytime. The easiest way is to transform our new MyScripts directory into a full FreeCAD
workbench. It is easy, all that is needed is to put a file called InitGui.py inside your MyScripts directory. The
InitGui.py will contain the instructions to create a new workbench, and add our new tool to it. Besides that we
will also need to transform a bit our exercise code, so the line() tool is recognized as an official FreeCAD
command. Let's start by making an InitGui.py file, and write the following code in it:

class MyWorkbench (Workbench):
 MenuText = "MyScripts"
 def Initialize(self):
 import exercise
 commandslist = ["line"]
 self.appendToolbar("My Scripts",commandslist)
Gui.addWorkbench(MyWorkbench())

By now, you should already understand the above script by yourself, I think: We create a new class that we
call MyWorkbench, we give it a title (MenuText), and we define an Initialize() function that will be executed
when the workbench is loaded into FreeCAD. In that function, we load in the contents of our exercise file, and
append the FreeCAD commands found inside to a command list. Then, we make a toolbar called "My Scripts"
and we assign our commands list to it. Currently, of course, we have only one tool, so our command list
contains only one element. Then, once our workbench is ready, we add it to the main interface.

But this still won't work, because a FreeCAD command must be formatted in a certain way to work. So we
will need to transform a bit our line() tool. Our new exercise.py script will now look like this:

import FreeCADGui, Part
from pivy.coin import *
class line:
 "this class will create a line after the user clicked 2 points on the screen"
 def Activated(self):
 self.view = FreeCADGui.ActiveDocument.ActiveView
 self.stack = []
 self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getpoint)
 def getpoint(self,event_cb):
 event = event_cb.getEvent()
 if event.getState() == SoMouseButtonEvent.DOWN:
 pos = event.getPosition()
 point = self.view.getPoint(pos[0],pos[1])
 self.stack.append(point)
 if len(self.stack) == 2:
 l = Part.Line(self.stack[0],self.stack[1])
 shape = l.toShape()

Line_drawing_function

 Registering the script in the FreeCAD interface 4

 Part.show(shape)
 self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.callback)
 def GetResources(self):
 return {'Pixmap' : 'path_to_an_icon/line_icon.png', 'MenuText': 'Line', 'ToolTip': 'Creates a line by clicking 2 points on the screen'}
FreeCADGui.addCommand('line', line())

What we did here is transform our __init__() function into an Activated() function, because when FreeCAD
commands are run, they automatically execute the Activated() function. We also added a GetResources()
function, that informs FreeCAD where it can find an icon for the tool, and what will be the name and tooltip
of our tool. Any jpg, png or svg image will work as an icon, it can be any size, but it is best to use a size that
is close to the final aspect, like 16x16, 24x24 or 32x32. Then, we add the line() class as an official FreeCAD
command with the addCommand() method.

That's it, we now just need to restart FreeCAD and we'll have a nice new workbench with our brand new line
tool!

So you want more?

If you liked this exercise, why not try to improve this little tool? There are many things that can be done, like
for example:

Add user feedback: until now we did a very bare tool, the user might be a bit lost when using it. Sowe
could add some feedback, telling him what to do next. For example, you could issue messages to the
FreeCAD console. Have a look in the FreeCAD.Console module

•

Add a possibility to type the 3D points coordinates manually. Look at the python input() function, for
example

•

Add the possibility to add more than 2 points•
Add events for other things: Now we just check for Mouse button events, what if we would also do
something when the mouse is moved, like displaying current coordinates?

•

Give a name to the created object•

Don't hesitate to write your questions or ideas on the talk page!

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Line_drawing_function"

Line_drawing_function

 So you want more? 5

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Talk:Line_drawing_function&action=edit&redlink=1

Dialog creation
In this page we will show how to build a simple Qt Dialog with Qt Designer, Qt's official tool for designing
interfaces, then convert it to python code, then use it inside FreeCAD. I'll assume in the example that you
know how to edit and run python scripts already, and that you can do simple things in a terminal window such
as navigate, etc. You must also have, of course, pyqt installed.

Contents

1 Designing the dialog•
2 Converting our dialog to
python

•

3 Making our dialog do
something

•

4 The complete script•

Designing the dialog

In CAD applications, designing a good UI (User Interface) is very important. About everything the user will
do will be through some piece of interface: reading dialog boxes, pressing buttons, choosing between icons,
etc. So it is very important to think carefully to what you want to do, how you want the user to behave, and
how will be the workflow of your action.

There are a couple of concepts to know when designing interface:

Modal/non-modal dialogs: A modal dialog appears in front of your screen, stopping the action of the
main window, forcing the user to respond to the dialog, while a non-modal dialog doesn't stop you
from working on the main window. In some case the first is better, in other cases not.

•

Identifying what is required and what is optional: Make sure the user knows what he must do. Label
everything with proper description, use tooltips, etc.

•

Separating commands from parameters: This is usually done with buttons and text input fields. The
user knows that clicking a button will produce an action while changing a value inside a text field will
change a parameter somewhere. Nowadays, though, users usually know well what is a button, what is
an input field, etc. The interface toolkit we are using, Qt, is a state-of-the-art toolkit, and we won't
have to worry much about making things clear, since they will already be very clear by themselves.

•

So, now that we have well defined what we will do, it's time to open the qt designer. Let's design a very
simple dialog, like this:

Dialog_creation

Dialog creation 1

http://doc.trolltech.com/4.3/designer-manual.html
http://en.wikipedia.org/wiki/Modal_window

We will then use this dialog in FreeCAD to produce a nice rectangular plane. You might find it not very
useful to produce nice rectangular planes, but it will be easy to change it later to do more complex things.
When you open it, Qt Designer looks like this:

It is very simple to use. On the left bar you have elements that can be dragged on your widget. On the right
side you have properties panels displaying all kinds of editable properties of selected elements. So, begin with
creating a new widget. Select "Dialog without buttons", since we don't want the default Ok/Cancel buttons.
Then, drag on your widget 3 labels, one for the title, one for writing "Height" and one for writing "Width".
Labels are simple texts that appear on your widget, just to inform the user. If you select a label, on the right
side will appear several properties that you can change if you want, such as font style, height, etc.

Dialog_creation

Designing the dialog 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Qttestdialog.jpg
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Qtdesigner-screenshot.jpg

Then, add 2 LineEdits, which are text fields that the user can fill in, one for the height and one for the width.
Here too, we can edit properties. For example, why not set a default value? For example 1.00 for each. This
way, when the user will see the dialog, both values will be filled already and if he is satisfied he can directly
press the button, saving precious time. Then, add a PushButton, which is the button the user will need to
press after he filled the 2 fields.

Note that I choosed here very simple controls, but Qt has many more options, for example you could use
Spinboxes instead of LineEdits, etc... Have a look at what is available, you will surely have other ideas.

That's about all we need to do in Qt Designer. One last thing, though, let's rename all our elements with easier
names, so it will be easier to identify them in our scripts:

Converting our dialog to python

Now, let's save our widget somewhere. It will be saved as an .ui file, that we will easily convert to python
script with pyuic. On windows, the pyuic program is bundled with pyqt (to be verified), on linux you probably
will need to install it separately from your package manager (on debian-based systems, it is part of the
pyqt4-dev-tools package). To do the conversion, you'll need to open a terminal window (or a command
prompt window on windows), navigate to where you saved your .ui file, and issue:

pyuic mywidget.ui > mywidget.py

On some systems the program is called pyuic4 instead of pyuic. This will simply convert the .ui file into a
python script. If we open the mywidget.py file, its contents are very easy to understand:

from PyQt4 import QtCore, QtGui

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName("Dialog")
 Dialog.resize(187, 178)
 self.title = QtGui.QLabel(Dialog)
 self.title.setGeometry(QtCore.QRect(10, 10, 271, 16))

Dialog_creation

 Converting our dialog to python 3

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Qtpropeditor.jpg

 self.title.setObjectName("title")
 self.label_width = QtGui.QLabel(Dialog)
 ...

 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None, QtGui.QApplication.UnicodeUTF8))
 self.title.setText(QtGui.QApplication.translate("Dialog", "Plane-O-Matic", None, QtGui.QApplication.UnicodeUTF8))
 ...

As you see it has a very simple structure: a class named Ui_Dialog is created, that stores the interface
elements of our widget. That class has two methods, one for setting up the widget, and one for translating its
contents, that is part of the general Qt mechanism for translating interface elements. The setup method simply
creates, one by one, the widgets as we defined them in Qt Designer, and sets their options as we decided
earlier. Then, the whole interface gets translated, and finally, the slots get connected (we'll talk about that
later).

We can now create a new widget, and use this class to create its interface. We can already see our widget in
action, by putting our mywidget.py file in a place where FreeCAD will find it (in the FreeCAD bin directory,
or in any of the Mod subdirectories), and, in the FreeCAD python interpreter, issue:

from PyQt4 import QtGui
import mywidget
d = QtGui.QWidget()
d.ui = mywidget.Ui_Dialog()
d.ui.setupUi(d)
d.show()

And our dialog will appear! Note that our python interpreter is still working, we have a non-modal dialog. So,
to close it, we can (apart from clicking its close icon, of course) issue:

d.hide()

Making our dialog do something

Now that we can show and hide our dialog, we just need to add one last part: To make it do something! If you
play a bit with Qt designer, you'll quickly discover a whole section called "signals and slots". Basically, it
works like this: elements on your widgets (in Qt terminology, those elements are themselves widgets) can
send signals. Those signals differ according to the widget type. For example, a button can send a signal when
it is pressed and when it is released. Those signals can be connected to slots, which can be special
functionality of other widgets (for example a dialog has a "close" slot to which you can connect the signal
from a close button), or can be custom functions. The PyQt Reference Documentation lists all the qt widgets,
what they can do, what signals they can send, etc...

What we will do here, is create a new function that will create a plane based on height and width, and connect
that function to the pressed signal emitted by our "Create!" button. So, let's begin with importing our
FreeCAD modules, by putting the following line at the top of the script, where we already import QtCore and
QtGui:

import FreeCAD, Part

Dialog_creation

 Making our dialog do something 4

http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/html/classes.html

Then, let's add a new function to our Ui_Dialog class:

def createPlane(self):
 try:
 # first we check if valid numbers have been entered
 w = float(self.width.text())
 h = float(self.height.text())
 except ValueError:
 print "Error! Width and Height values must be valid numbers!"
 else:
 # create a face from 4 points
 p1 = FreeCAD.Vector(0,0,0)
 p2 = FreeCAD.Vector(w,0,0)
 p3 = FreeCAD.Vector(w,h,0)
 p4 = FreeCAD.Vector(0,h,0)
 pointslist = [p1,p2,p3,p4,p1]
 mywire = Part.makePolygon(pointslist)
 myface = Part.Face(mywire)
 Part.show(myface)
 self.hide()

Then, we need to inform Qt to connect the button to the function, by placing the following line just before
QtCore.QMetaObject.connectSlotsByName(Dialog):

QtCore.QObject.connect(self.create,QtCore.SIGNAL("pressed()"),self.createPlane)

This, as you see, connects the pressed() signal of our create object (the "Create!" button), to a slot named
createPlane, which we just defined. That's it! Now, as a final touch, we can add a little function to create the
dialog, it will be easier to call. Outside the Ui_Dialog class, let's add this code:

class plane():
 d = QtGui.QWidget()
 d.ui = Ui_Dialog()
 d.ui.setupUi(d)
 d.show()

Then, from FreeCAD, we only need to do:

import mywidget
mywidget.plane()

That's all Folks... Now you can try all kinds of things, like for example inserting your widget in the FreeCAD
interface (see the Code snippets page), or making much more advanced custom tools, by using other elements
on your widget.

The complete script

This is the complete script, for reference:

-*- coding: utf-8 -*-

Form implementation generated from reading ui file 'mywidget.ui'
#
Created: Mon Jun 1 19:09:10 2009
by: PyQt4 UI code generator 4.4.4

Dialog_creation

 The complete script 5

#
WARNING! All changes made in this file will be lost!

from PyQt4 import QtCore, QtGui
import FreeCAD, Part

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName("Dialog")
 Dialog.resize(187, 178)
 self.title = QtGui.QLabel(Dialog)
 self.title.setGeometry(QtCore.QRect(10, 10, 271, 16))
 self.title.setObjectName("title")
 self.label_width = QtGui.QLabel(Dialog)
 self.label_width.setGeometry(QtCore.QRect(10, 50, 57, 16))
 self.label_width.setObjectName("label_width")
 self.label_height = QtGui.QLabel(Dialog)
 self.label_height.setGeometry(QtCore.QRect(10, 90, 57, 16))
 self.label_height.setObjectName("label_height")
 self.width = QtGui.QLineEdit(Dialog)
 self.width.setGeometry(QtCore.QRect(60, 40, 111, 26))
 self.width.setObjectName("width")
 self.height = QtGui.QLineEdit(Dialog)
 self.height.setGeometry(QtCore.QRect(60, 80, 111, 26))
 self.height.setObjectName("height")
 self.create = QtGui.QPushButton(Dialog)
 self.create.setGeometry(QtCore.QRect(50, 140, 83, 26))
 self.create.setObjectName("create")

 self.retranslateUi(Dialog)
 QtCore.QObject.connect(self.create,QtCore.SIGNAL("pressed()"),self.createPlane)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None, QtGui.QApplication.UnicodeUTF8))
 self.title.setText(QtGui.QApplication.translate("Dialog", "Plane-O-Matic", None, QtGui.QApplication.UnicodeUTF8))
 self.label_width.setText(QtGui.QApplication.translate("Dialog", "Width", None, QtGui.QApplication.UnicodeUTF8))
 self.label_height.setText(QtGui.QApplication.translate("Dialog", "Height", None, QtGui.QApplication.UnicodeUTF8))
 self.create.setText(QtGui.QApplication.translate("Dialog", "Create!", None, QtGui.QApplication.UnicodeUTF8))

 def createPlane(self):
 try:
 # first we check if valid numbers have been entered
 w = float(self.width.text())
 h = float(self.height.text())
 except ValueError:
 print "Error! Width and Height values must be valid numbers!"
 else:
 # create a face from 4 points
 p1 = FreeCAD.Vector(0,0,0)
 p2 = FreeCAD.Vector(w,0,0)
 p3 = FreeCAD.Vector(w,h,0)
 p4 = FreeCAD.Vector(0,h,0)
 pointslist = [p1,p2,p3,p4,p1]
 mywire = Part.makePolygon(pointslist)
 myface = Part.Face(mywire)
 Part.show(myface)

class plane():
 d = QtGui.QWidget()
 d.ui = Ui_Dialog()
 d.ui.setupUi(d)

Dialog_creation

 The complete script 6

 d.show()

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Dialog_creation"

Dialog_creation

 The complete script 7

Tracker
SourceForge provides a very helpfull tool to keep record of bugs, feature request, patches, and support
request when developing a software: The Tracker.

Contents

1 Where to
find?

•

2 When to
use?

2.1
Bugs

♦

2.2
Feature
Requests

♦

2.3
Support
Requests

♦

2.4
New
Patches

♦

•

Where to find?

The FreeCAD project has its own tracker summary page. There you find the overview on the individual
sections of the tracker.

When to use?

The FreeCAD Bug Tracker

Bugs

If you think you might have found a bug, go to the Bugs Section of the tracker and choose "any" for status to
see all bug request ever filed. The keyword search allows you to find bug tracker entries for a similiar issue. If
you can not find an older entry about your problem, you should file a new entry on the same page.

Tracker

Tracker 1

https://sourceforge.net/tracker/?group_id=49159
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Bugtracker_Screenshot_annotated.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Bugtracker_Screenshot_annotated.png
http://sourceforge.net/tracker/?atid=455298&group_id=49159&func=browse

Feature Requests

If you are missing a feature in FreeCAD that you think of as beeing absolutely necessary to become the
worlds best CAD-Software, you might find the Feature Request section helpfull.

Support Requests

If you don't get around compiling FreeCAD and the Compile On Windows or Compile On Unix section does
not give you a hint, or you try to port it to a new environment or are programming new modules or extensions
for FreeCAD and need some assistance then the Support Requests section is the place you might want to go
to.

New Patches

In case you have programmed a bug fix, an extension or something else that can be of public use in FreeCAD,
create a patch using Subversion and file it in the patches section.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Tracker"

Tracker

 Feature Requests 2

http://sourceforge.net/tracker/?atid=455301&group_id=49159&func=browse
http://sourceforge.net/tracker/?atid=455299&group_id=49159&func=browse
https://sourceforge.net/tracker/?group_id=49159&atid=455300

CompileOnWindows
This article explains step by step how to compile FreeCAD on Windows.

Contents

1 Prerequisites•
2 Building with cMake

2.1 The switch to
cMake

♦

2.2 Configure the
build process

♦

2.3 Options for the
Build Process

♦

2.4 command line
build

♦

•

3 Building older versions
3.1 Using LibPack

3.1.1
Directory
setup in
Visual Studio

3.1.1.1
Includes

⋅

3.1.1.2
Libs

⋅

3.1.1.3
Executables

⋅

◊

3.1.2 Python
needed

◊

3.1.3 Special
for VC8

◊

♦

3.2 Compile♦
3.3 After Compiling♦
3.4 Additional stuff♦

•

4 Bug Tracking•

Prerequisites

What you need is mainly the compiler. On Windows we use the M$ VisualStudio 8 Compiler with the highest
service pack. Although it's probably possible to use Cygwin or MingW gcc it's not tested or ported so far. We
have also ported to use VC8 Express Edition. You need to download the Windows Platform SDK to get e.g.
the Windows.h. Also you need all the Third Party Libraries to successfully compile FreeCAD.

If you use the M$ compilers you want most likely download the FreeCAD LibPack which provides you with
all needed libs to build FreeCAD on Windows.

CompileOnWindows

CompileOnWindows 1

Building with cMake

First of all, you have to download cMake and install it on your build machine.

The switch to cMake

Since version 0.9 we use the cMake build system to generate the build/make files for various compilers. We
do not longer deliver .vcproj files. If you want build former versions of FreeCAD (0.8 and older) see
"Building older versions" later in this article.

We switched because it became more and more painful to maintain project files for 30+ build targets and x
compilers. cMake gives us the posibility to support alternative IDEs, like Code::Blocks, Qt Creator and
Eclipse CDT the main compiler we use is still M$ VC9 Express, though. But we plan for the future a build
process on Windows without proprietary compiler software.

Configure the build process

The first step to build FreeCAD with cMake is to configure the environment. There are basically two ways to
go:

Using the LibPack•
Installing all needed libs and let cMake find them•

In the first case you only need to give cMake the path to the LibPack and all the rest should be done
automatically and you see such a screen:

CompileOnWindows

 Building with cMake 2

http://www.cmake.org/cmake/resources/software.html

You see the LibPack path inserted into the FREECAD_LIBPACK_DIR variable. Starting from that all
includes and paths are set. You just need to press the Generate button and the project files get generated.

If you switch the FREECAD_LIBPACK_USE options off, the configuration tries to find each and every
library needed on your system. Depending on the libs that works well more or less. So you have to do often
define some paths by hand. cMake will show you what is not found and need to be specified.

Options for the Build Process

The cMake build system gives us a lot more flexibility over the build process. That means we can switch on
and off some features or modules. It's in a way like the Linux kernel build. You have a lot switches to
determine the build process.

Here is the description of these switches. They will most likely change a lot in the future because we want to
increase the build flexibility a lot more.

Link table

Variable name Description Default

FREECAD_LIBPACK_USE Switch the usage of the FreeCAD
LibPack on or off

On Win32 on,
otherwishe off

CompileOnWindows

Configure the build process 3

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:CMake_Screen.png

FREECAD_LIBPACK_DIR Directory where the LibPack is FreeCAD SOURCE
dir

FREECAD_BUILD_GUI Build FreeCAD with all Gui related
modules ON

FREECAD_BUILD_CAM Build the CAM module, experimental! OFF

FREECAD_BUILD_INSTALLER Create the project files for the Windows
installer. OFF

FREECAD_BUILD_DOXYGEN_DOCU Create the project files for source code
documentation. OFF

FREECAD_MAINTAINERS_BUILD Switch on stuff needed only when you do
a Release build. OFF

command line build

Here an example how to build FreeCAD from the Command line:

rem @echo off
rem Build script, uses vcbuild to completetly build FreeCAD

rem update trunc
d:
cd "D:_Projekte\FreeCAD\FreeCAD_0.9"
"C:\Program Files (x86)\Subversion\bin\svn.exe" update

rem set the aprobiated Variables here or outside in the system

set PATH=C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem
set INCLUDE=
set LIB=

rem Register VS Build programms
call "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\vcvarsall.bat"

rem Set Standard include paths
set INCLUDE=%INCLUDE%;%FrameworkSDKDir%\include
set INCLUDE=%INCLUDE%;C:\Program Files\Microsoft SDKs\Windows\v6.0A\Include

rem Set lib Pathes
set LIB=%LIB%;C:\Program Files\Microsoft SDKs\Windows\v6.0A\Lib
set LIB=%LIB%;%PROGRAMFILES%\Microsoft Visual Studio\VC98\Lib

rem Start the Visuall Studio build process
"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\vcpackages\vcbuild.exe" "D:_Projekte\FreeCAD FreeCAD_0.9_build\FreeCAD_trunk.sln" /useenv

Building older versions

Using LibPack

To make it easier to get FreeCAD compiled, we provide a collection of all needed libraries. It's called the
LibPack. You can find it on the download page on sourceforge.

You need to set the following environment variables:

CompileOnWindows

Options for the Build Process 4

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=FreeCAD&action=edit&redlink=1
http://sourceforge.net/project/showfiles.php?group_id=49159

FREECADLIB = "D:\Wherever\LIBPACK"

QTDIR = "%FREECADLIB%"

Add "%FREECADLIB%\bin" and "%FREECADLIB%\dll" to the system PATH variable. Keep in mind that
you have to replace "%FREECADLIB%" with the path name, since Windows does not recursively replace
environment variables.

Directory setup in Visual Studio

Some search path of Visual Studio need to be set. To change them, use the menu
Toolsâ��Optionsâ��Directory

Includes

Add the following search path to the include path search list:

 %FREECADLIB%\include•
 %FREECADLIB%\include\Python•
 %FREECADLIB%\include\boost•
 %FREECADLIB%\include\xercesc•
 %FREECADLIB%\include\OpenCascade•
 %FREECADLIB%\include\OpenCV•
 %FREECADLIB%\include\Coin•
 %FREECADLIB%\include\SoQt•
 %FREECADLIB%\include\QT•
 %FREECADLIB%\include\QT\Qt3Support•
 %FREECADLIB%\include\QT\QtCore•
 %FREECADLIB%\include\QT\QtGui•
 %FREECADLIB%\include\QT\QtNetwork•
 %FREECADLIB%\include\QT\QtOpenGL•
 %FREECADLIB%\include\QT\QtSvg•
 %FREECADLIB%\include\QT\QtUiTools•
 %FREECADLIB%\include\QT\QtXml•
 %FREECADLIB%\include\Gts•
 %FREECADLIB%\include\zlib•

Libs

Add the following search path to the lib path search list:

 %FREECADLIB%\lib•

Executables

Add the following search path to the executable path search list:

 %FREECADLIB%\bin•

CompileOnWindows

Using LibPack 5

TortoiseSVN binary installation directory, usually "C:\Programm Files\TortoiseSVN\bin", this is
needed for a distribution build when SubWVRev.exe is used to extract the version number from
Subversion.

•

Python needed

During the compilation some Python scripts get executed. So the Python interpreter has to function on the OS.
Use a command box to check it. If the Python library is not properly installed you will get an error message
like Cannot find python.exe. If you use the LibPack you can also use the python.exe in the bin directory.

Special for VC8

When building the project with VC8, you have to change the link information for the WildMagic library,
since you need a different version for VC6 and VC8. Both versions are supplied in LIBPACK/dll. In the
project properties for AppMesh change the library name for the wm.dll to the VC8 version. Take care to
change it in Debug and Release configuration.

Compile

After you conform to all prerequisites the compilation is - hopefully - only a mouse click in VC ;-)

After Compiling

To get FreeCAD up and running from the compiler environment you need to copy a few files from the
LibPack to the bin folder where FreeCAD.exe is installed after a successful build:

python.exe and python_d.exe from LIBPACK/bin•
python25.dll and python25_d.dll from LIBPACK/bin•
python25.zip from LIBPACK/bin•
make a copy of Python25.zip and rename it to Python25_d.zip•
QtCore4.dll from LIBPACK/bin•
QtGui4.dll from LIBPACK/bin•
boost_signals-vc80-mt-1_34_1.dll from LIBPACK/bin•
boost_program_options-vc80-mt-1_34_1.dll from LIBPACK/bin•
xerces-c_2_8.dll from LIBPACK/bin•
zlib1.dll from LIBPACK/bin•
coin2.dll from LIBPACK/bin•
soqt1.dll from LIBPACK/bin•
QtOpenGL4.dll from LIBPACK/bin•
QtNetwork4.dll from LIBPACK/bin•
QtSvg4.dll from LIBPACK/bin•
QtXml4.dll from LIBPACK/bin•

When using a LibPack with a Python version older than 2.5 you have to copy two further files:

zlib.pyd and zlib_d.pyd from LIBPACK/bin/lib. This is needed by python to open the zipped python
library.

•

CompileOnWindows

Executables 6

_sre.pyd and _sre_d.pyd from LIBPACK/bin/lib. This is needed by python for the built in help system.•

If you don't get it running due to a Python error it is very likely that one of the zlib*.pyd files is missing.

Additional stuff

If you whant to build the source code documentation you need DoxyGen.

To create an intstaller package you need WIX.

During the compilation some Python scripts get executed. So the Python interpreter has to work properly.

For more details have also a look to README.Linux in your sources.

First of all you should build the Qt plugin that provides all custom widgets of FreeCAD we need for the Qt
Designer. The sources are located under

//src/Tools/plugins/widget//.

So far we don't provide a makefile -- but calling

qmake plugin.pro

creates it. Once that's done, calling make will create the library

//libFreeCAD_widgets.so//.

To make this library known to your Qt Designer you have to copy the file to

//$QTDIR/plugin/designer//.

SourceForge bug tracker: Finding compile bugs

Bug Tracking

If any bugs occurs while building from sources, please double-check this page, then you could jump to the
Bug Tracker on SourceForge, choose Any for status and click the Browse button to see previous reports on
compile problems.

CompileOnWindows

After Compiling 7

http://www.stack.nl/~dimitri/doxygen/
http://wix.sourceforge.net/
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Bugtracker_Screenshot_annotated.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Bugtracker_Screenshot_annotated.png

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=CompileOnWindows"

CompileOnWindows

Bug Tracking 8

CompileOnUnix
On recent linux distributions, FreeCAD is generally easy to build, since all dependencies are usually provided
by the package manager. Basically, you'll just need to get the FreeCAD source, then install the dependencies
listed below, then issue:

./autogen.sh && ./configure && make

or

./cmake . && make

to get FreeCAD built, depending on what build system you prefer to use (autotools or cmake). Below, you'll
find detailed explanations of the whole process and particularities you might encounter. Before you get too
bogged down in details, there is also a shellscript that you can use to follow along. If you find anything wrong
in it or here below, please help us correcting it.

Contents

1 Getting the source•
2 Prerequisites

2.1 Debian/Ubuntu and most
recent distributions

♦

2.2 Older and non-conventional
distributions

2.2.1 OpenCASCADE◊
2.2.2 SoQt◊
2.2.3 Pivy◊

♦

•

3 Compile FreeCAD
3.1 The autotools way♦
3.2 The cMake way♦
3.3 Optional parts♦

•

4 Troubleshooting
4.1 Note for 64bit systems♦
4.2 Automake macros♦

•

5 Making a debian package•
6 Automatic build scripts

6.1 Ubuntu 9.10 - Karmic Koala♦
6.2 Ubuntu 9.04 - Jaunty
Jackalope

♦

6.3 OpenSuse 11.2♦
6.4 OpenSuse 11.1♦
6.5 Debian Squeeze♦

•

Getting the source

Before you can compile FreeCAD, you must get the source code. First install subversion. Then, from the
directory of your choice (for example your user directory), do:

CompileOnUnix

CompileOnUnix 1

http://en.wikipedia.org/wiki/GNU_build_system
http://en.wikipedia.org/wiki/CMake
http://subversion.tigris.org/

svn co https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk freecad

This will perform an anonymous checkout of the current development version in a new directory called
"freecad". Alternatively you can download a source tarball but they could be already quite old so it's probably
better to always get the latest sources via subversion. Note, though, that the subversion version is the
FreeCAD version currently being worked on, and it might contain bugs or even fail to compile.

Prerequisites

To compile FreeCAD under Linux you have to install all libraries mentioned in Third Party Libraries first.
You also need the GNU gcc compiler version equal or above 3.0.0. g++ is also needed because FreeCAD is
completely written in C++. Both gcc and g++ are included in the build-essential package listed below. During
the compilation some Python scripts get executed. So the Python interpreter has to work properly.

To avoid any linker problems during the build process it would be a good idea to have the library paths either
in your LD_LIBRARY_PATH variable or in your ld.so.conf file. This is normally already the case in recent
distributions.

For more details have also a look to README.Linux in your sources.

Debian/Ubuntu and most recent distributions

On Debian based systems it is quite easy to get all needed dependencies installed. Most of the libraries are
available via apt-get or synaptic package manager. Below are listed all packgages you need to install. On
other distributions, the package names can vary, but usually you'll be able to find them all too:

build-essential
python
libcoin60-dev
libsoqt4-dev
libxerces-c2-dev (or libxerces28-dev depending on your system)
libboost-dev
libboost-date-time-dev
libboost-filesystem-dev
libboost-graph-dev
libboost-iostreams-dev
libboost-program-options-dev
libboost-serialization-dev
libboost-signals-dev
libboost-regex-dev
libqt4-dev
qt4-dev-tools
python2.5-dev (or higher version if available)
libopencascade-dev

To simply install all these libraries in one step, just copy/paste the following text in a terminal (only for
debian/ubuntu based systems) as root:

aptitude install build-essential python libcoin60-dev libsoqt4-dev libxerces-c2-dev
libboost-dev libboost-date-time-dev libboost-filesystem-dev libboost-graph-dev libboost-iostreams-dev
libboost-program-options-dev libboost-serialization-dev libboost-signals-dev libboost-regex-dev
libqt4-dev qt4-dev-tools python2.5-dev libopencascade-dev

CompileOnUnix

Getting the source 2

https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk
https://sourceforge.net/project/showfiles.php?group_id=49159
http://en.wikipedia.org/wiki/GNU_Compiler_Collection

optionally you can also install

libsimage-dev (to make Coin to support additinal image file formats)
checkinstall (to register your installed files into your system's package manager, so yo can easily uninstall later)
python-pivy (needed for the 2D Drafting module)
python-qt4 (needed for the 2D Drafting module)

Older and non-conventional distributions

On older distributions, however you might not find the following libraries:

OpenCASCADE

Not all Linux distributions have an official OpenCASCADE package in their repositories. You have to check
yourself for your distribution if one is available. At least from Debian Lenny and Ubuntu Intrepid on an
official .deb package is provided. For older Debian or Ubuntu releases you may get unofficial packages from
here. To build your own private .deb packages follow these steps:

wget http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0.orig.tar.gz
wget http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0-7.dsc
wget http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0-7.diff.gz

dpkg-source -x opencascade_6.2.0-7.dsc

Install OCC build-deps
sudo apt-get install build-essential devscripts debhelper autoconf
automake libtool bison libx11-dev tcl8.4-dev tk8.4-dev libgl1-mesa-dev
libglu1-mesa-dev java-gcj-compat-dev libxmu-dev

#Build Opencascade packages. This takes hours and requires
at least 8 GB of free disk space
cd opencascade-6.2.0 ; debuild

Install the resulting library debs
sudo dpkg -i libopencascade6.2-0_6.2.0-7_i386.deb
libopencascade6.2-dev_6.2.0-7_i386.deb

Alternatively, you can download and compile the latest version from opencascade.org:

Install the package normally, be aware that the installer is a java program that requires the official java
runtime edition from Sun (package name: sun-java6-jre), not the open-source java (gij) that is bundled with
Ubuntu. Install it if needed:

sudo apt-get remove gij
sudo apt-get install sun-java6-jre

Be careful, if you use gij java with other things like a browser plugin, they won't work anymore. If the
installer doesn't work, try:

java -cp path_to_file_setup.jar <-Dtemp.dir=path_to_tmp_directory> run

Once the package is installed, go into the "ros" directory inside the opencascade dir, and do

CompileOnUnix

Debian/Ubuntu and most recent distributions 3

http://lyre.mit.edu/~powell/opencascade
http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0.orig.tar.gz
http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0-7.dsc
http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0-7.diff.gz
http://www.opencascade.org

./configure --with-tcl=/usr/lib/tcl8.4 --with-tk=/usr/lib/tk8.4

Now you can build. Go back to the ros folder and do:

make

It will take a long time, maybe several hours.

When it is done, just install by doing

sudo make install

The library files will be copied into /usr/local/lib which is fine because there they will be found automatically
by any program. Alternatively, you can also do

sudo checkinstall

which will do the same as make install but create an entry in your package management system so you can
easily uninstall later. Now clean up the enormous temporary compilation files by doing

make clean

Possible error 1: If you are using OCC version 6.2, it is likely that the compiler will stop right after the
beginning of the "make" operation. If it happens, edit the "configure" script, locate the
CXXFLAGS="$CXXFLAGS " statement, and replace it by CXXFLAGS="$CXXFLAGS -ffriend-injection
-fpermissive". Then do the configure step again.

Possible error 2: Possibly several modules (WOKSH, WOKLibs, TKWOKTcl, TKViewerTest and TKDraw)
will complain that they couldn't find the tcl/tk headers. In that case, since the option is not offered in the
configure script, you will have to edit manually the makefile of each of those modules: Go into adm/make and
into each of the bad modules folders. Edit the Makefile, and locate the lines CSF_TclLibs_INCLUDES =
-I/usr/include and CSF_TclTkLibs_INCLUDES = -I/usr/include and add /tcl8.4 and /tk8.4 to it so they read:
CSF_TclLibs_INCLUDES = -I/usr/include/tcl8.4 and CSF_TclTkLibs_INCLUDES = -I/usr/include/tk8.4

SoQt

The SoQt library must be compiled against Qt4, which is the case in most recent distributions. But at the time
of writing this article there were only SoQt4 packages for Debian itself available but not for all Ubuntu
versions. To get the packages built do the following steps:

wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1.orig.tar.gz
wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1-6.dsc
wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1-6.diff.gz
dpkg-source -x soqt_1.4.1-6.dsc
sudo apt-get install doxygen devscripts fakeroot debhelper libqt3-mt-dev qt3-dev-tools libqt4-opengl-dev
cd soqt-1.4.1
debuild
sudo dpkg -i libsoqt4-20_1.4.1-6_i386.deb libsoqt4-dev_1.4.1-6_i386.deb libsoqt-dev-common_1.4.1-6_i386.deb

If you are on a 64bit system, you will probably need to change i386 by amd64.

CompileOnUnix

OpenCASCADE 4

http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1.orig.tar.gz
http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1-6.dsc
http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1-6.diff.gz

Pivy

Pivy is not needed to build FreeCAD or to run it, but it is needed for the 2D Drafting module to work. If you
are not going to use that module, you won't need pivy. At the time of writing, Pivy is very new and might not
have made its way into your distribution repository. You can grab debian/ubuntu packages on the FreeCAD
download page:

http://sourceforge.net/projects/free-cad/files/FreeCAD%20Linux/

or compile pivy yourself:

Pivy compilation instructions

Compile FreeCAD

SourceForge bug tracker: Finding compile bugs

The autotools way

You must have automake and libtool installed on your system; on Debian/Ubuntu:

aptitude install automake libtool

If you got the sources with subversion then the very first step must be

./autogen.sh

that creates the configure script and more. For the build process itself we provide a configure script. Just type

./configure

To get everything configured. If you want an overview of all options you can specify, you can type

./configure --help.

Normally you need none of them - unless you have one of your libraries installed in a really uncommon
directory. After configuration has finished, compiling FreeCAD is as simple as

make

CompileOnUnix

 Pivy 5

http://sourceforge.net/projects/free-cad/files/FreeCAD%20Linux/
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Bugtracker_Screenshot_annotated.png
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=File:Bugtracker_Screenshot_annotated.png

If any error occurs while building from sources, please double-check this page and README.Linux file, then
you could jump to the Bug Tracker on SourceForge, choose Any for status and click the Browse button to see
previous reports on compile problems. After having built FreeCAD successfully, do

make install

to install it onto your machine. The default install directory is

~/FreeCAD

It will be installed in a FreeCAD folder in your home folder, so you don't need root privileges. Instead of
make install, you can also do

checkinstall

In this way FreeCAD will be installed by your package management system, so you can uninstall it easily
later. But since all of FreeCAD installation resides into one single directory, just removing the FreeCAD
directory is a valid way to uninstall too.

The cMake way

cMake is a newer build system which has the big advantage of being common for different target systems
(Linux, Windows, MacOSX, etc). FreeCAD is progressively switching to the cMake system, and you can
already build FreeCAD in that way. Assuming cMake is installed on your system, switch to your FreeCAD
source folder, and issue:

cmake .

To have the source configured, then

make

To have FreeCAD built. A proper system-wide installation of FreeCAD still cannot be made with cmake, but
you can run FreeCAD simply by issuing

,/bin/FreeCAD

Optional parts

If you want to develop Qt stuff for FreeCAD, you'll need the Qt Designer plugin that provides all custom
widgets of FreeCAD. Go to

freecad/src/Tools/plugins/widget

So far we don't provide a makefile -- but calling

qmake plugin.pro

creates it. Once that's done, calling

CompileOnUnix

The autotools way 6

make

will create the library libFreeCAD_widgets.so. To make this library known to Qt Designer you have to copy
the file to

$QTDIR/plugin/designer

Troubleshooting

Note for 64bit systems

When building FreeCAD for 64-bit there is a known issue with the OpenCASCADE 64-bit package. To get
FreeCAD running properly you might need to run the ./configure script with the additional define _OCC64
set:

./configure CXXFLAGS="-D_OCC64"

For Debian based systems this workaround is not needed when using the prebuilt package because there the
OpenCASCADE package is built to set internally this define. Now you just need to compile FreeCAD the
same way as described above.

Automake macros

The configure script of FreeCAD makes use of several automake macros that are sometimes not installed with
their packages: bnv_have_qt.m4, coin.m4, and gts.m4. If needed (error while configuring), google for them
and you will find them easily. They are just simple scripts that you need to put in your /usr/share/aclocal
folder.

Making a debian package

If you plan to build a Debian package out of the sources you need to install those packages first:

dh-make
devscripts
lintian (optional, used for checking if packages are standard-compliant)

To build a package open a console, simply go to the FreeCAD directory and call

debuild

Once the package is built, you can use lintian to check if the package contains errors

lintian your-fresh-new-freecad-package.deb (replace by the name of the package you just created)

CompileOnUnix

Optional parts 7

Automatic build scripts

Here is all what you need for a complete build of FreeCAD. It's a one-script-approach and works on a fresh
installed distro. The commands will ask for root password (for installation of packages) and sometime to
acknowledge a fingerprint for an external repository server or https-subversion repository. This scripts should
run on 32 and 64 bit versions. They are written for distinct version, but are also likely to run on a later version
with or without minor changes.

If you have such a script for your preferred distro, please send it! We will incorporate it into this article.

Ubuntu 9.10 - Karmic Koala

sudo apt-get install build-essential python libcoin60-dev libsoqt4-dev \
libxerces-c2-dev libboost-dev libboost-date-time-dev libboost-filesystem-dev \
libboost-graph-dev libboost-iostreams-dev libboost-program-options-dev \
libboost-serialization-dev libboost-signals-dev libboost-regex-dev \
libqt4-dev qt4-dev-tools python2.6-dev libopencascade-dev libsoqt4-dev \
libode-dev subversion cmake libeigen2-dev libsimage-dev python-qt4 \
libtool autotools-dev automake bison flex

checkout the latest source
svn co https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk freecad

go to source dir
cd freecad

build configuration
cmake .

build FreeCAD
make

test FreeCAD
cd bin
./FreeCAD -t 0

Ubuntu 9.04 - Jaunty Jackalope

get the needed tools and libs
sudo apt-get install build-essential python libcoin40-dev libsoqt4-dev \
libxerces-c2-dev libboost-dev libboost-date-time-dev libboost-filesystem-dev \
libboost-graph-dev libboost-iostreams-dev libboost-program-options-dev \
libboost-serialization-dev libboost-signals-dev libboost-regex-dev \
libqt4-dev qt4-dev-tools python2.6-dev \
libsimage-dev libopencascade-dev \
libsoqt4-dev libode0-dev subversion cmake libeigen2-dev python-pivy \
libtool autotools-dev automake

checkout the latest source
svn co https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk freecad

go to source dir
cd freecad

build configuration

CompileOnUnix

 Automatic build scripts 8

https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk
https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk

cmake .

build FreeCAD
make

test FreeCAD
cd bin
./FreeCAD -t 0

OpenSuse 11.2

This script is not working at the moment because:

libXerces-c-devel seams to be disappeared•

install needed packages for development
sudo zypper install gcc cmake subversion OpenCASCADE-devel \
libXerces-c-devel python-devel libqt4-devel python-qt4 \
Coin-devel SoQt-devel boost-devel libode-devel libQtWebKit-devel \
libeigen2-devel

get the source
svn co https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk freecad

go to source dir
cd freecad

build configuration
cmake .

build FreeCAD
nice make

test FreeCAD
cd bin
./FreeCAD -t 0

OpenSuse 11.1

additional repository (for OpenCascade)
sudo zypper -p http://packman.unixheads.com/suse/11.1/

install needed packages for development
sudo zypper install gcc cmake subversion OpenCASCADE-devel \
libXerces-c-devel python-devel libqt4-devel python-qt4 \
Coin-devel SoQt-devel boost-devel libode-devel libQtWebKit-devel \
libeigen2-devel

get the source
svn co https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk freecad

go to source dir
cd freecad

CompileOnUnix

Ubuntu 9.04 - Jaunty Jackalope 9

https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk
http://packman.unixheads.com/suse/11.1/
https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk

build configuration
cmake .

build FreeCAD
nice make

test FreeCAD
cd bin
./FreeCAD -t 0

Debian Squeeze

get the needed tools and libs
sudo apt-get install build-essential python libcoin60-dev libsoqt4-dev \
libxerces-c2-dev libboost-dev libboost-date-time-dev libboost-filesystem-dev \
libboost-graph-dev libboost-iostreams-dev libboost-program-options-dev \
libboost-serialization-dev libboost-signals-dev libboost-regex-dev \
libqt4-dev qt4-dev-tools python2.5-dev \
libsimage-dev libopencascade-dev \
libsoqt4-dev libode-dev subversion cmake libeigen2-dev python-pivy \
libtool autotools-dev automake

checkout the latest source
svn co https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk freecad

go to source dir
cd freecad

build configuration
cmake .

build FreeCAD
make

test FreeCAD
cd bin
./FreeCAD -t 0

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=CompileOnUnix"

CompileOnUnix

OpenSuse 11.1 10

https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk

CompileOnMac
Compiling FreeCAD on a Mac isn't much different from the steps on Linux or other UNIX variants. The
biggest challenge is really getting all of the dependencies installed. In the following sections, I (lhagan) will
detail the exact steps I had to go through to get this application to compile on Leopard and Snow Leopard
using an Intel Mac (PowerPC should be feasible, but requires recompiling some binary libraries that I haven't
got to yet). As far as I know, I'm the only one to successfully build FreeCAD on a Mac recently, so please
post on the discussion forum if these steps work for you, on the help forum if they don't, or edit this page if
you find errors.

Contents

1 Download the FreeCAD sources•
2 Install MacPorts and Library
Dependencies

•

3 Install Frameworks and OpenCASCADE•
4 Download and 'install' the FreeCAD.app
template

•

5 Compile•
6 Run•

Download the FreeCAD sources

First you need to get a copy of the FreeCAD source tree. Just check out the latest revision from the
Sourceforge subversion repository using this command in the terminal:

svn co http://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk freecad

This will put the FreeCAD source and related files in your home folder (~/freecad/). Location is not important
if you'd rather put it somewhere else, you just need full access to the files.

Install MacPorts and Library Dependencies

Next, if you don't already have it, install MacPorts. MacPorts is a system that allows you to download,
compile, and install many common open-source applications with a single command. Similar applications
from the UNIX/Linux world are PKGSRC and APT. To install, just download the disk image from the
MacPorts site and follow the directions:

http://www.macports.org/install.php

Whether or not you just installed MacPorts, you'll probably want to make sure it's up to date. Run:

sudo port selfupdate

Now that MacPorts is installed and up to date, you can start installing some of FreeCAD's required packages:

ode•

CompileOnMac

CompileOnMac 1

http://sourceforge.net/apps/phpbb/free-cad/viewforum.php?f=8
http://sourceforge.net/apps/phpbb/free-cad/viewforum.php?f=4
http://www.macports.org/install.php

xercesc•
boost•
gts•
opencv•

The following command will compile/install all required libraries. If MacPorts produces errors, you may want
to try installing them one at a time.

sudo port install ode xercesc boost gts opencv

On Snow Leopard, opencv does not currently build. You can, however, proceed without opencv.

Install Frameworks and OpenCASCADE

FreeCAD has other dependencies (see CompileOnUnix), but the rest are either included by default in OS X
Leopard or can be installed using Installer packages. Download and install the following:

Qt http://qt.nokia.com/downloads•

Get the "Framework Only" version unless you plan to develop using Qt (it's much smaller). FreeCAD
compiles on OS X Leopard with Qt 4.5. Installs in /Library/Frameworks and /usr/bin.

Coin http://www.coin3d.org/lib/coin/releases/•

Install Coin.pkg AND CoinTools.pkg. FreeCAD compiles on OS X Leopard with Coin 3.1.0. Installs
in /Library/Frameworks.

SoQt http://dl.getdropbox.com/u/103808/FreeCAD/SoQt-1.4.1.dmg•

Install SoQt.pkg AND SoQtTools.pkg. For some reason, the SoQt framework is not provided as an
official binary. For convenience, I'm providing the above compiled version. If you'd like to compile
your own, download the latest source from http://www.coin3d.org/lib/soqt/releases and follow the
directions in README.MACOSX. FreeCAD compiles on OS X Leopard with SoQt 1.4.1. Installs in
/Library/Frameworks.

OpenCASCADE
http://dl.getdropbox.com/u/103808/FreeCAD/OpenCASCADE_i386_6.3.0_20091128.dmg

•

The above OCC 6.3.0 binary distribution is a modified version of the one provided by the maintainers
of PythonOCC http://www.pythonocc.org/. You can use the version from PythonOCC, however
changes to the .la files are needed in order for the FreeCAD build process to properly link to it and
you'll need to download the OCC source separately. I have not yet successfully built OpenCASCADE
myself, but would like to eventually -- this would be key to providing a PowerPC distribution (if that's
even possible). If you get OpenCASCADE to build on OS X, let me know how. Installs in
/usr/local/lib/OCC and /usr/local/include/OCC.
UPDATED 2009-11-28 with fixes for Snow Leopard. If you installed OCC prior to this date, it is
recommended that you manually delete the old files and install the new package.

CompileOnMac

Install MacPorts and Library Dependencies 2

http://qt.nokia.com/downloads
http://www.coin3d.org/lib/coin/releases/
http://dl.getdropbox.com/u/103808/FreeCAD/SoQt-1.4.1.dmg
http://www.coin3d.org/lib/soqt/releases
http://dl.getdropbox.com/u/103808/FreeCAD/OpenCASCADE_i386_6.3.0_20091128.dmg
http://www.pythonocc.org/

sudo rm -r /usr/local/lib/OCC
sudo rm -r /usr/local/include/OCC

Download and 'install' the FreeCAD.app template

The following archive contains an application bundle template for FreeCAD. This is not strictly necessary, but
it makes working with FreeCAD more convenient than the default installation configuration. Mine is in the
/Applications folder, but you should be able to put it anywhere you want -- just remember that the bundle can't
be moved after FreeCAD is complied and installed (without some further modifications). Running make
install using the configuration below will install into this bundle.

http://dl.getdropbox.com/u/103808/FreeCAD/FreeCAD_bundle_template_20091128.tar.gz
UPDATED 2009-11-28 with the new FreeCAD application icon

Compile

Now configure, compile, and install FreeCAD using the following commands from within the root FreeCAD
folder. If you put your FreeCAD.app bundle somewhere other than /Applications (or aren't using the bundle),
change the 'PREFIX' line accordingly.

./autogen.sh

PREFIX=/Applications/FreeCAD.app/Contents

./configure --with-xercesc-lib=/opt/local/lib --with-xercesc-include=/opt/local/include --with-boost-lib=/opt/local/lib \
--with-boost-include=/opt/local/include --with-qt4-bin=/usr/bin --with-qt4-framework=/Library/Frameworks \
--with-occ-lib=/usr/local/lib/OCC --with-occ-include=/usr/local/include/OCC --with-coin=/Library/Frameworks \
--with-soqt=/Library/Frameworks --prefix=$PREFIX --bindir=$PREFIX/MacOS --libdir=$PREFIX/Frameworks/FreeCAD \
--includedir=$PREFIX/Resources/include --datarootdir=$PREFIX/Resources/share

make LDFLAGS=-Wl,-headerpad_max_install_names

make install

Depending on your machine, the make step can take quite a while.

Run

If everything went properly, double-clicking the .app bundle should start FreeCAD. If you have any issues,
post the details on the help forum.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=CompileOnMac"

CompileOnMac

Install Frameworks and OpenCASCADE 3

http://dl.getdropbox.com/u/103808/FreeCAD/FreeCAD_bundle_template_20091128.tar.gz
http://sourceforge.net/apps/phpbb/free-cad/viewforum.php?f=4

Third Party Libraries

Contents

1 Overview•
2 Links•
3 Details

3.1 Python
3.1.1
Description

◊

3.1.2
Credits

◊

♦

3.2
OpenCasCade

♦

3.3 Qt♦
3.4 Coin3D♦
3.5 ODE (Open
dynamic engine)

3.5.1
Credits

◊

♦

3.6 SoQt♦
3.7 Xerces-C++♦
3.8 GTS♦
3.9 Zlib♦
3.10 Boost♦

•

4 LibPack
4.1
FreeCADLibs7.x
Changelog

♦
•

Overview

These are libraries which are not changed in the FreeCAD project. They are basically used unchanged as a
dynamic link library (*.so or *.dll). If there is a change necessary or a wrapper class is needed, then the code
of the wrapper or the changed library code have to be moved to the FreeCAD base package. The used libraries
are:

Consider using LibPack instead of downloading and installing all the stuff on your own.

Links

Link table

Lib name Version needed Link to get it
Python >= 2.5.x http://www.python.org/
OpenCasCade >= 5.2 http://www.opencascade.org
Qt >= 4.1.x http://www.qtsoftware.com

Third_Party_Libraries

Third Party Libraries 1

http://www.python.org/
http://www.opencascade.org
http://www.qtsoftware.com

Coin3D >= 2.x http://www.coin3d.org
ODE >= 0.10.x http://www.ode.org
SoQt >= 1.2 http://www.coin3d.org
Xerces-C++ >= 2.7.x < 3.0 http://xml.apache.org/xerces-c/
GTS >= 0.7.x http://gts.sourceforge.net/
Zlib >= 1.x.x http://www.zlib.net/
Boost >= 1.33.x http://www.boost.org/
Eigen2 >= 2.0.5 http://eigen.tuxfamily.org/index.php?title=Main_Page

Details

Python

Version: 2.5 or higher

License: Python 2.5 license

You can use the source or binary from http://www.python.org/ or use alternetivly ActiveState Python from
http://www.activestate.com/ though it is a little bit hard to get the debug libs from ActiveState.

Description

Python is the primary scripting language and is used throughout the application. For example:

Implement test scripts for testing on:
memory leaks♦
ensure presents of functionality after changes♦
post build checks♦
test coverage tests♦

•

Macros and macro recording•
Implement application logic for standard packages•
Implementation of whole workbenches•
Dynamic loading of packages•
Implementing rules for design (Knowledge engineering)•
Doing some fancy Internet stuff like work groups and PDM•
And so on ...•

Especially the dynamic package loading of Python is used to load at run time additional functionality and
workbenches needed for the actual tasks. For a closer look to Python see: www.python.org Why Python you
may ask. There are some reasons: So far I used different scripting languages in my professional life:

Perl•
Tcl/Tk•
VB•
Java•

Third_Party_Libraries

Links 2

http://www.coin3d.org
http://www.ode.org
http://www.coin3d.org
http://xml.apache.org/xerces-c/
http://gts.sourceforge.net/
http://www.zlib.net/
http://www.boost.org/
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Main_Page
http://www.python.org/
http://www.activestate.com/

Python is more OO then Perl and Tcl, the code is not a mess like in Perl and VB. Java isn't a script language
in the first place and hard (or impossible) to embed. Python is well documented and easy to embed and
extend. It is also well tested and has a strong back hold in the open source community.

Credits

Goes to Guido van Rossum and a lot of people made Python such a success!

OpenCasCade

Version: 5.2 or higher

License: OCTPL

OCC is a full-featured CAD Kernel. Originally, it's developed by Matra Datavision in France for the Strim
(Styler) and Euclid Quantum applications and later on made Open Source. It's a really huge library and makes
a free CAD application possible in the first place, by providing some packages which would be hard or
impossible to implement in an Open Source project:

A complete STEP compliant geometry kernel•
A topological data model and all needed functions to work on (cut, fuse, extrude, and so on. . .)•
Standard Import- / Export processors like STEP, IGES, VRML•
3D and 2D viewer with selection support•
A document and project data structure with support for save and restore, external linking of
documents, recalculation of design history (parametric modeling) and a facility to load new data types
as an extension package dynamically

•

To learn more about OpenCasCade take a look at the OpenCasCade page or http://www.opencascade.org.

Qt

Version: 4.1.x or higher

License: GPL v2.0/v3.0 or Commercial (from version 4.5 on also LPGL v2.1)

I don't think I need to tell a lot about Qt. It's one of the most often used GUI toolkits in Open Source projects.
For me the most important point to use Qt is the Qt Designer and the possibility to load whole dialog boxes as
a (XML) resource and incorporate specialized widgets. In a CAX application the user interaction and dialog
boxes are by far the biggest part of the code and a good dialog designer is very important to easily extend
FreeCAD with new functionality. Further information and a very good online documentation you'll find on
http://www.qtsoftware.com.

Coin3D

Version: 2.0 or higer

License: GPL v2.0 or Commercial

Third_Party_Libraries

Description 3

http://www.opencascade.org
http://www.qtsoftware.com

Coin is a high-level 3D graphics library with a C++ Application Programming Interface. Coin uses
scenegraph data structures to render real-time graphics suitable for mostly all kinds of scientific and
engineering visualization applications.

Coin is portable over a wide range of platforms: any UNIX / Linux / *BSD platform, all Microsoft Windows
operating system, and Mac OS X.

Coin is built on the industry-standard OpenGL immediate mode rendering library, and adds abstractions for
higher-level primitives, provides 3D interactivity, immensely increases programmer convenience and
productivity, and contains many complex optimization features for fast rendering that are transparent for the
application programmer.

Coin is based on the SGI Open Inventor API. Open Inventor, for those who are not familiar with it, has long
since become the de facto standard graphics library for 3D visualization and visual simulation software in the
scientific and engineering community. It has proved it's worth over a period of more than 10 years, its
maturity contributing to its success as a major building block in thousands of large-scale engineering
applications around the world.

We will use OpenInventor as 3D viewer in FreeCAD because the OpenCasCade viewer (AIS and
Graphics3D) has serios limitations and performace bottlenecks, especially when it goes in large-scale
engineering rendering. Other things like textures or volumetric rendering are not really supported, and so on
....

Since Version 2.0 Coin uses a different licence model. It's not longer LGPL. They use GPL for open source
and a commercial licence for closed source. That means if you want to sell your work based on FreeCAD
(extension modules) you need to purchase a Coin licence!

ODE (Open dynamic engine)

Version: 0.10.0 or higher

License: LGPL v2.1 or later or BSD

ODE is an open source, high performance library for simulating rigid body dynamics. It is fully featured,
stable, mature and platform independent with an easy to use C/C++ API. It has advanced joint types and
integrated collision detection with friction. ODE is useful for simulating vehicles, objects in virtual reality
environments and virtual creatures. It is currently used in many computer games, 3D authoring tools and
simulation tools.

Credits

Russell Smith is the primary author of ODE.

Third_Party_Libraries

Coin3D 4

SoQt

Version: 1.2.0 or higher

License: GPL v2.0 or Commercial

SoQt is the Inventor binding to the Qt Gui Toolkit. Unfortunately, it's not longer LGPL so we have to remove
it from the code base of FreeCAD and link it as a library. It has the same licence model like Coin. And you
have to compile it with your version of Qt.

Xerces-C++

Version: 2.7.0 or higher

License: Apache Software License Version 2.0

Xerces-C++ is a validating XML parser written in a portable subset of C++. Xerces-C++ makes it easy to give
your application the ability to read and write XML data. A shared library is provided for parsing, generating,
manipulating, and validating XML documents.

Xerces-C++ is faithful to the XML 1.0 recommendation and many associated standards (see Features below).

The parser provides high performance, modularity, and scalability. Source code, samples and API
documentation are provided with the parser. For portability, care has been taken to make minimal use of
templates, no RTTI, and minimal use of #ifdefs.

The parser is used for saving and restoring parameters in FreeCAD.

GTS

Version: 0.7.x

License: LGPL v2.0 or later

GTS stands for the GNU Triangulated Surface Library. It is an Open Source Free Software Library intended
to provide a set of useful functions to deal with 3D surfaces meshed with interconnected triangles. The source
code is available free of charge under the Free Software LGPL license.

Actually not needed to compile FreeCAD. You can switch on the usage with a proprocessor switch in
FCConfig.h.

Zlib

Version: 1.x.x

License: zlib License

Third_Party_Libraries

 SoQt 5

zlib is designed to be a free, general-purpose, legally unencumbered -- that is, not covered by any patents --
lossless data-compression library for use on virtually any computer hardware and operating system. The zlib
data format is itself portable across platforms. Unlike the LZW compression method used in Unix
compress(1) and in the GIF image format, the compression method currently used in zlib essentially never
expands the data. (LZW can double or triple the file size in extreme cases.) zlib's memory footprint is also
independent of the input data and can be reduced, if necessary, at some cost in compression.

Boost

Version: 1.33.x

License: Boost Software License - Version 1.0

The Boost C++ libraries are a collection of peer-reviewed, open source libraries that extend the functionality
of C++. The libraries are licensed under the Boost Software License, designed to allow Boost to be used with
both open and closed source projects. Many of Boost's founders are on the C++ standard committee and
several Boost libraries have been accepted for incorporation into the Technical Report 1 of C++0x.

The libraries are aimed at a wide range of C++ users and application domains. They range from
general-purpose libraries like SmartPtr, to OS Abstractions like FileSystem, to libraries primarily aimed at
other library developers and advanced C++ users, like MPL.

In order to ensure efficiency and flexibility, Boost makes extensive use of templates. Boost has been a source
of extensive work and research into generic programming and meta-programming in C++.

See: http://www.boost.org/ for details.

LibPack

LibPack is a convenient package with all the above libraries packed together. It is currently available for the
Windows platform on the Download page! If you're working under Linux you don't need a LibPack, instead
of you should make use of the package repositories of your Linux distribution.

FreeCADLibs7.x Changelog

Using QT 4.5.x and Coin 3.1.x•
Eigen template lib for Robot added•
SMESH experimental•

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Third_Party_Libraries"

Third_Party_Libraries

Zlib 6

http://www.boost.org/

Third Party Tools

Contents

1 Tool Page
1.1 Platform
independend
tools

1.1.1
Qt-Toolkit

◊

1.1.2
InkScape

◊

1.1.3
Doxygen

◊

1.1.4
The
Gimp

◊

♦

1.2 Tools on
Windows

1.2.1
Visual
Studio
8
Express

◊

1.2.2
CamStudio

◊

1.2.3
Tortoise
SVN

◊

1.2.4
StarUML

◊

♦

1.3 Tools on
Linux

♦

•

Tool Page

For every serious software development you need tools. Here is a list of tools we use to develop FreeCAD:

Platform independend tools

Qt-Toolkit

The Qt-toolkit is a state of the art, plattform independend user interface design tool. It is contained in the
LibPack of FreeCAD, but can also be downloaded at www.trolltech.com.

Third_Party_Tools

Third Party Tools 1

http://www.trolltech.com

InkScape

Great vector drawing programm. Adhers to the SVG standard and is used to draw Icons and Pictures. Get it at
www.inkscape.org.

Doxygen

A very good and stable tool to generate source documentation from the .h and .cpp files.

The Gimp

Not much to say about the Gnu Image Manipulation Programme. Besides it can handle .xpm files which is a
very convenient way to handle Icons in QT Programms. XPM is basicly C-Code which can be compiled into a
programme.

Get the GIMP here: www.gimp.org

Tools on Windows

Visual Studio 8 Express

Although VC8 is for C++ development not really a step forward since VisualStudio 6 (IMO a big step back),
its a free development system on Windows. For native Win32 applications you need to download the
PlatformSDK from M$.

So the Express edition is hard to find. But you might try this link

CamStudio

Is a Open Source tool to record Screencasts (Webcasts). Its a very good tool to create tutorials by recording
them. Its far not so boring as writing documentation.

See camstudio.org for details.

Tortoise SVN

This is a very great tool. It makes using Subversion (our version control system on sf.net) a real pleasure. You
can throught out the explorer integration, easily manage Revisions, check on Diffs, resolve Confilcts, make
branches, and so on.... The commit dialog itself is a piece of art. It gives you an overview over your changed
files and allows you to put them in the commit or not. That makes it easy to bundle the changes to logical
units and give them an clear commit message.

Third_Party_Tools

 InkScape 2

http://www.inkscape.org
http://www.gimp.org/
http://msdn.microsoft.com/vstudio/express/visualc/default.aspx
http://camstudio.org/

You find ToroiseSVN on tortoisesvn.tigris.org.

StarUML

A full featured Open Source UML programm. It has a lot of features of the big ones, including reverse
engeniering C++ source code....

Download here: staruml.sourceforge.net

Tools on Linux

TODO

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Third_Party_Tools"

Third_Party_Tools

Tortoise SVN 3

http://tortoisesvn.tigris.org/
http://staruml.sourceforge.net/en/

Start up and Configuration
This page shows the different ways to start FreeCAD and the most important configuration features.

Contents

1 Starting FreeCAD from the
Command line

1.1 Command line options♦
1.2 Response and config files♦
1.3 Hidden options♦

•

2 Running FreeCAD without User
Interface

•

3 Running FreeCAD as a python
module

•

4 The Config set
4.1 User related information♦
4.2 Command line arguments♦
4.3 System related♦
4.4 Build related information♦
4.5 Branding related♦

•

Starting FreeCAD from the Command line

FreeCAD can be started normally, by double-clicking on its desktop icon or selecting it from the start menu,
but it can also be started directly from the command line. This allows you to change soem of the default
startup options.

Command line options

The command line options are subject of frequent changes, therefore it is a good idea to check the current
options by typing:

FreeCAD --help

From the response you can read the possible parameters:

Usage:
FreeCAD [options] File1 File2
Allowed options:

Generic options:
 -v [--version] print version string
 -h [--help] print help message
 -c [--console] start in console mode

Configuration:
 -l [--write-log] arg write a log file
 -t [--run-test] arg test level
 -M [--module-path] arg additional module paths

Start_up_and_Configuration

Start up and Configuration 1

 -P [--python-path] arg additional python paths
 --response-file arg can be specified with '@name', too

Response and config files

FreeCAD can read some of these options from a config file. This file must be in the bin path and must be
named FreeCAD.cfg. Be aware that options specified in the command line override the config file!

Some operating system have very low limit of the command line length. The common way to work around
those limitations is using response files. A response file is just a configuration file which uses the same syntax
as the command line. If the command line specifies a name of response file to use, it's loaded and parsed in
addition to the command line:

FreeCAD @ResponseFile.txt

or:

FreeCAD --response-file=ResponseFile.txt

Hidden options

There are a couple of options not visible to the user. These options are e.g. the X-Window parameters parsed
by the Windows system:

-display display, sets the X display (default is $DISPLAY).•
-geometry geometry, sets the client geometry of the first window that is shown.•
-fn or -font font, defines the application font. The font should be specified using an X logical font
description.

•

-bg or -background color, sets the default background color and an application palette (light and dark
shades are calculated).

•

-fg or -foreground color, sets the default foreground color.•
-btn or -button color, sets the default button color.•
-name name, sets the application name.•
-title title, sets the application title.•
-visual TrueColor, forces the application to use a TrueColor visual on an 8-bit display.•
-ncols count, limits the number of colors allocated in the color cube on an 8-bit display, if the
application is using the QApplication::ManyColor color specification. If count is 216 then a 6x6x6
color cube is used (i.e. 6 levels of red, 6 of green, and 6 of blue); for other values, a cube
approximately proportional to a 2x3x1 cube is used.

•

-cmap, causes the application to install a private color map on an 8-bit display.•

Running FreeCAD without User Interface

FreeCAD normally starts in GUI mode, but you can also force it to start in console mode by typing:

FreeCAD -c

Start_up_and_Configuration

Command line options 2

from the command line. In console mode, no user interface will be displayed, and you will be presented with a
python interpreter prompt. From that python prompt, you have the same functionality as the python interpreter
that runs inside the FreeCAD GUI, and normal access to all modules and plugins of FreeCAD, excepted the
FreeCADGui module. Be aware that modules that depend on FreeCADGui might also be unavailable.

Running FreeCAD as a python module

FreeCAD can also be used to run as a python module inside other applications that use python or from an
external python shell. For that, the host python application must know where your FreeCAD libs reside. The
best way to obtain that is to temporarily append FreeCAD's lib path to the sys.path variable. The following
code typed from any python shell will import FreeCAD and let you run it the same way as in console mode:

import sys sys.path.append("path/to/FreeCAD/lib") # change this by your
own FreeCAD lib path import FreeCAD

Once FreeCAD is loaded, it is up to you to make it interact with your host application in any way you can
imagine!

The Config set

On every Startup FreeCAD examines its surrounding and the command line parameters. It builds up a
configuration set which holds the essence of the runtime information. This information is later used to
determine the place where to save user data or log files. It is also very important for post postmortem
analyzes. Therefore it is saved in the log file.

User related information

User config entries

Config var name Synopsis Example M$ Example Posix (Linux)

UserAppData

Path where
FreeCAD
stores User
Related
application
data.

C:\Documents and
Settings\username\Application
Data\FreeCAD

/home/username/.FreeCAD

UserParameter

File where
FreeCAD
stores User
Related
application
data.

C:\Documents and
Settings\username\Application
Data\FreeCAD\user.cfg

/home/username/.FreeCAD/user.cfg

Start_up_and_Configuration

Running FreeCAD without User Interface 3

SystemParameter

File where
FreeCAD
stores
Application
Related data.

C:\Documents and
Settings\username\Application
Data\FreeCAD\system.cfg

/home/username/.FreeCAD/system.cfg

UserHomePath
Home path
of the
current user

C:\Documents and
Settings\username\My
Documents

/home/username

Command line arguments

User config entries

Config var name Synopsis Example

LoggingFile 1 if the logging is switched on 1

LoggingFileName File name where the log is placed
C:\Documents and
Settings\username\Application
Data\FreeCAD\FreeCAD.log

RunMode

This indicates how the main loop will
work. "Script" means that the given
script is called and then exit. "Cmd" runs
the command line interpreter. "Internal"
runs an internal script. "Gui" enters the
Gui event loop. "Module" loads a given
python module.

"Cmd"

FileName Meaning depends on the RunMode

ScriptFileName Meaning depends on the RunMode

Verbose Verbosity level of FreeCAD "" or "strict"

OpenFileCount Holds the number of files opened through
command line arguments "12"

AdditionalModulePaths Holds the additional Module paths given
in the cmd line "extraModules/"

System related

User config entries

Config var name Synopsis Example M$ Example Posix (Linux)

AppHomePath Path where FreeCAD is installed c:/Progam
Files/FreeCAD_0.7 /user/local/FreeCAD_0.7

PythonSearchPath

Start_up_and_Configuration

User related information 4

Holds a list of paths which
python search modules. This is at
startup can change during
execution

Some libraries need to call system environment variables. Sometimes when there is a problem with a
FreeCAD installation, it is because some environment variable is absent or set wrongly. Therefore, some
important variables get duplicated in the Config and saved in the log file.

Python related environment variables:

PYTHONPATH•
PYTHONHOME•
TCL_LIBRARY•
TCLLIBPATH•

OpenCascade related environment variables:

CSF_MDTVFontDirectory•
CSF_MDTVTexturesDirectory•
CSF_UnitsDefinition•
CSF_UnitsLexicon•
CSF_StandardDefaults•
CSF_PluginDefaults•
CSF_LANGUAGE•
CSF_SHMessage•
CSF_XCAFDefaults•
CSF_GraphicShr•
CSF_IGESDefaults•
CSF_STEPDefaults•

System related environment variables:

PATH•

Build related information

The table below shows the availible informations about the Build version. Most of it comes from the
Subversion repository. This stuff is needed to exactly rebuild a version!

User config entries

Config var name Synopsis Example

BuildVersionMajor

Major Version number
of the Build. Defined
in
src/Build/Version.h.in

0

BuildVersionMinor 7

Start_up_and_Configuration

System related 5

Minor Version number
of the Build. Defined
in
src/Build/Version.h.in

BuildRevision

SVN Repository
Revision number of
the src in the Build.
Generated by SVN

356

BuildRevisionRange Range of differnt
changes 123-356

BuildRepositoryURL Repository URL https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk/src

BuildRevisionDate Date of the above
Revision 2007/02/03 22:21:18

BuildScrClean
Indicates if the source
was changed ager
checkout

Src modified

BuildScrMixed Src not mixed

Branding related

These Config entries are related to the branding mechanism of FreeCAD. See Branding for more details.

User config entries

Config var name Synopsis Example

ExeName Name of the build Executable file. Can diver from FreeCAD
if a different main.cpp is used. FreeCAD.exe

ExeVersion Over all Version shows up at start time V0.7

AppIcon Icon which is used for the Executable, shows in Application
MainWindow. "FCIcon"

ConsoleBanner Banner which is prompted in console mode

SplashPicture Name of the Icon used for the Splash Screen "FreeCADSplasher"

SplashAlignment Alignment of the Text in the Splash dialog Left"

SplashTextColor Color of the splasher Text "#000000"

StartWorkbench Name of the Workbech which get started automaticly after
Startup "Part design"

HiddenDockWindow List of dockwindows (separated by a semicolon) which will
be disabled "Property editor"

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Start_up_and_Configuration"

Start_up_and_Configuration

Build related information 6

https://free-cad.svn.sourceforge.net/svnroot/free-cad/trunk/src

FreeCAD Build Tool
The FreeCAD build tool or fcbt is a python script located at

trunc/src/Tools/fcbt.py

It can be used to simplify some frequent tasks in building, distributing and extending FreeCAD.

Contents

1 Usage
1.1
DistSrc

♦

1.2
DistBin

♦

1.3
DistSetup

♦

1.4
DistSetup

♦

1.5
DistAll

♦

1.6
BuildDoc

♦

1.7
NextBuildNumber

♦

1.8
CreateModule

♦

•

Usage

With Python correctly installed, fcbt can be invoked by the command

python fbct.py

It displays a menu, where you can select the task you want to use it for:

FreeCAD Build Tool
 Usage:
 fcbt <command name> [command parameter]
 possible commands are:
 - DistSrc (DS) Build a source Distr. of the current source tree
 - DistBin (DB) Build a binary Distr. of the current source tree
 - DistSetup (DI) Build a Setup Distr. of the current source tree
 - DistSetup (DUI) Build a User Setup Distr. of the current source tree
 - DistAll (DA) Run all three above modules
 - BuildDoc (BD) Create the documentation (source docs)
 - NextBuildNumber (NBN) Increase the Build Number of this Version
 - CreateModule (CM) Insert a new FreeCAD Module in the module directory

 For help on the modules type:
 fcbt <command name> ?

FreeCAD_Build_Tool

FreeCAD Build Tool 1

http://en.wikipedia.org/wiki/Python_(programming_language)

At the input promt enter the abbreviated command you want to call. For example type "CM" for creating a
module.

DistSrc

The command "DS" creates a source distribution of the current source tree.

DistBin

The command "DB" creates a binary distribution of the current source tree.

DistSetup

The command "DI" creates a setup distribution of the current source tree.

DistSetup

The command "DUI" creates a user setup distribution of the current source tree.

DistAll

The command "DA" executes "DS", "DB" and "DI" in sequence.

BuildDoc

The command "BD" creates the software documentation by running Doxygen that must be installed.

NextBuildNumber

The "NBN" command increments the build number to create a new release version of FreeCAD.

CreateModule

The "CM" command creates a new application module.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=FreeCAD_Build_Tool"

FreeCAD_Build_Tool

Usage 2

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Create_Source_Distribution&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Create_Binary_Distibution&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Create_Setup_Distribution&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Create_User_Setup_Distribution&action=edit&redlink=1
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Create_Software_Documentation&action=edit&redlink=1
http://en.wikipedia.org/wiki/Doxygen
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Increment_Build_Number&action=edit&redlink=1

Module Creation
Creating a new application module in FreeCAD is rather simple. In the FreeCAD development tree exists
the FreeCAD Build Tool (fcbt) that does the most important things for you. It is a Python script located under

trunk/src/Tools/fcbt.py

When your python interpreter is correctly installed you can execute the script from a command line with

python fcbt.py

It will display the following menu:

FreeCAD Build Tool
Usage:
 fcbt <command name> [command parameter]
possible commands are:
 - DistSrc (DS) Build a source Distr. of the current source tree
 - DistBin (DB) Build a binary Distr. of the current source tree
 - DistSetup (DI) Build a Setup Distr. of the current source tree
 - DistSetup (DUI) Build a User Setup Distr. of the current source tree
 - DistAll (DA) Run all three above modules
 - BuildDoc (BD) Create the documentation (source docs)
 - NextBuildNumber (NBN) Increase the Build Number of this Version
 - CreateModule (CM) Insert a new FreeCAD Module in the module directory

For help on the modules type:
 fcbt <command name> ?

At the command prompt enter CM to start the creation of a module:

Insert command: CM

You are now asked to specify a name for your new module. Lets call it TestMod for example:

Please enter a name for your application: TestMod

After pressing enter fcbt starts copying all necessary files for your module in a new folder at

trunk/src/Mod/TestMod/

Then all files are modified with your new module name. The only thing you need to do now is to add the two
new projects "appTestMod" and "appTestModGui" to your workspace (on Windows) or to your makefile
targets (unix). Thats it!

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Module_Creation"

Module_Creation

Module Creation 1

http://en.wikipedia.org/wiki/Python_(programming_language)

Debugging

Test first

Before you go through the pain off debugging use the test framework to check if the standard tests work
properly. If not there is maybe a broken installation.

command line

The debugging of FreeCAD is supported by a few internal mechanisms. The command line version of
FreeCAD provides to options for debugging support:

-v
With the "v" option FreeCAD gives a more verbose output.

-l
With the "l" option FreeCAD writes additional information to a logfile.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Debugging"

Debugging

Debugging 1

Testing

Introduction

FreeCAD comes with an extensive testing framework. The testing bases on a set of Python scripts which are
located in the test module.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Testing"

Testing

Testing 1

Branding
This article describes the Branding of FreeCAD. Branding means to start your own application on base of
FreeCAD. That can be only your own executable or splash screen till a complete reworked program. On base
of the flexible architecture of FreeCAD it's easy to use it as base for your own special purpose program.

Contents

1 General•
2 Images

2.1
Icons

♦

2.2
Background
Image

♦

•

General

Most of the branding is done in the MainCmd.cpp or MainGui.cpp. These Projects generate the executable
files of FreeCAD. To make your own Brand just copy the Main or MainGui projets and give the executable an
own name, e.g. FooApp.exe. The most important settings for a new look can be made in one place in the
main() function. Here is the code section that controls the branding:

int main(int argc, char ** argv)
{
 // Name and Version of the Application
 App::Application::Config()["ExeName"] = "FooApp.exe";
 App::Application::Config()["ExeVersion"] = "0.7";

 // set the banner (for loging and console)
 App::Application::Config()["ConsoleBanner"] = sBanner;
 App::Application::Config()["AppIcon"] = "FCIcon";
 App::Application::Config()["SplashPicture"] = "FooAppSplasher";
 App::Application::Config()["StartWorkbench"] = "Part design";
 App::Application::Config()["HiddenDockWindow"] = "Property editor";
 App::Application::Config()["SplashAlignment"] = "Bottom|Left";
 App::Application::Config()["SplashTextColor"] = "#000000"; // black

 // Inits the Application
 App::Application::Config()["RunMode"] = "Gui";
 App::Application::init(argc,argv);

 Gui::BitmapFactory().addXPM("FooAppSplasher", (const char**) splash_screen);

 Gui::Application::initApplication();
 Gui::Application::runApplication();
 App::Application::destruct();

 return 0;
}

The first Config entry defines the program name. This is not the executable name, which can be changed by
renaming or by compiler settings, but the name that is displayed in the task bar on windows or in the program

Branding

Branding 1

list on Unix systems.

The next lines define the Config entries of your FooApp Application. A description of the Config and its
entries you find in Start up and Configuration.

Images

All image resources are compiled into FreeCAD. This reduces delayed loading and keeps the installation
compact. The images are included in XPM-Format which is basically a text format that uses C-syntax. You
can basically draw this images with a text editor, but it is more comfortable to create the images with your
favorite graphics program and convert it later to XPM format.

The GNU image program Gimp can save XPM file.

For conversion you can use the ImageConv tool which is included with freecad. You can find it under

/trunk/src/Tools/ImageTools/ImageConv

It can not only convert images but also automatically update the BmpFactoryIcons.cpp file, where the images
are registered. The typical usage is as simple like the following example:

ImageConv -i InputImage.png -o OutputImage.xpm

This converts the file InputImage.png in XPM-format and writes the result to file OutputImage.xpm.

The line:

Gui::BitmapFactory().addXPM("FooAppSplasher", (const char**) splash_screen);

in the main() then include the image in the BitmapFactory of FreeCAD.

Icons

The main application icon FCIcon that appears in window titles and other places is defined in

/trunk/src/Gui/Icons/images.cpp

and starts with the line

static const char *FCIcon[]={

Replace it with your favourite icon, recompile freecad and the next step to create your own brand is done.
There are many other icons in this file that you might change to your gusto.

If you need to add new icons, you have to register it in

/trunk/src/Gui/Icons/BmpFactoryIcons.cpp

so that you can access from FreeCAD.

Branding

General 2

http://gimp.org/

Background Image

The background image appears, when no document window is open. Like the splash screen it is defined in
developers.h in the section starting with:

static const char* const background[]={

You should choose a low contrast image for the background. Otherwise it might irritate the user.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Branding"

Branding

 Background Image 3

Localisation
Localisation is in general the process of providing a Software with a multiple language user interface. In
FreeCAD you can set the language of the user interface under Editâ��Preferencesâ��Application. FreeCAD
uses Qt to enable multiple language support.

Contents

1 Helping to translate FreeCAD
1.1 How to Translate♦
1.2 Available translation files♦

•

2 Preparing your own modules/applications for
translation

2.1 Prerequisites♦
2.2 Project Setup♦
2.3 Setting up python files for translation♦

•

Helping to translate FreeCAD

How to Translate

One of the very important things you can do for FreeCAD if you are not a programmer, is to help to translate
the program in your language. To do so is very easy:

Open all of the language folders of FreeCAD shown below•
Verify that a .ts file with your language code doesn't exist ("fr" for french, "de" for german, etc...)•
If it exists, you can download that file, if you want to modify/review/better the translation (click the
file, then download)

•

If it doesn't exist, download the .ts file without language code (or any other .ts available, it will work
too)

•

Rename that file with your language code•
Open it with the Qt-Linguist program•
Start translating (Qt Linguist is very easy to use)•
Once it's completely done, save your file•
send the files to us so we can include them in the freecad source code so they benefit other users too.•

Available translation files

FreeCAD main GUI•
Complete Workbench•
Drawing Workbench•
Draft Workbench•
Reverse Engineering Workbench•
FEM Workbench•
Robot Workbench•
Image Workbench•

Localisation

Localisation 1

http://en.wikipedia.org/wiki/Qt_(toolkit)
http://sourceforge.net/apps/mantisbt/free-cad/main_page.php
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Gui/Language/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Complete/Gui/Resources/translations/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Drawing/Gui/Resources/translations/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Draft/Languages/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/ReverseEngineering/Gui/Resources/translations/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Fem/Gui/Resources/translations/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Robot/Gui/Resources/translations/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Image/Gui/

Sketcher Workbench•
Mesh Workbench•
Test Workbench•
Points Workbench•
Raytracing Workbench•
Part Workbench•
PartDesign Workbench•
Assembly Workbench•

Preparing your own modules/applications for translation

Prerequisites

To localise your application module your need to helpers that come with Qt. You can download them from the
Trolltech-Website, but they are also contained in the LibPack:

qmake
Generates project files

lupdate
Extracts or updates the original texts in your project by scanning the source code

Qt-Linguist
The Qt-Linguist is very easy to use and helps you translating with nice features like a phrase book for
common sentences.

Project Setup

To start the localisation of your project go to the GUI-Part of you module and type on the command line:

qmake -project

This scans your project directory for files containing text strings and creates a project file like the following
example:

##
Automatically generated by qmake (1.06c) Do 2. Nov 14:44:21 2006
##

TEMPLATE = app
DEPENDPATH += .\Icons
INCLUDEPATH += .

Input
HEADERS += ViewProvider.h Workbench.h
SOURCES += AppMyModGui.cpp \
 Command.cpp \
 ViewProvider.cpp \
 Workbench.cpp
TRANSLATIONS += MyMod_de.ts

Localisation

Available translation files 2

http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Sketcher/Gui/Resources/translations/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Mesh/Gui/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Test/Gui/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Points/Gui/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Raytracing/Gui/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Part/Gui/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/PartDesign/Gui/Resources/translations/
http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Assembly/Gui/Resources/translations/
http://www.trolltech.com/products/qt/downloads

You can manually add files here. The section TRANSLATIONS contains a list of files with the translation for
each language. In the above example MyMod_de.ts is the german translation.

Now you need to run lupdate to extract all string literals in your GUI. Running lupdate after changes in
the source code is allways safe since it never deletes strings from your translations files. It only adds new
strings.

Now you need to add the .ts-files to your VisualStudio project. Specifiy the following custom build method
for them:

python ..\..\..\Tools\qembed.py "$(InputDir)\$(InputName).ts"
 "$(InputDir)\$(InputName).h" "$(InputName)"

Note: Enter this in one command line, the line break is only for layout purpose.

By compiling the .ts-file of the above example, a header file MyMod_de.h is created. The best place to
include this is in App<Modul>Gui.cpp. In our example this would be AppMyModGui.cpp. There you add the
line

new Gui::LanguageProducer("Deutsch", <Modul>_de_h_data, <Modul>_de_h_len);

to publish your translation in the application.

Setting up python files for translation

To ease localization for the py files you can use the tool "pylupdate4" which accepts one or more py files.
With the -ts option you can prepare/update one or more .ts files. For instance to prepare a .ts file for French
simply enter into the command line:

pylupdate4 *.py -ts YourModule_fr.ts

the pylupdate tool will scan your .py files for translate() or tr() functions and create a YourModule_fr.ts file.
That file can the be translated with QLinguist and a YourModule_fr.qm file produced from QLinguist or with
the command

lrelease YourModule_fr.ts

Beware that the pylupdate4 tool is not very good at recognizing translate() functions, they need to be
formatted very specifically (see the Draft module files for examples). Inside your file, you can then setup a
translator like this (after loading your QApplication but BEFORE creating any qt widget):

translator = QtCore.QTranslator()
translator.load("YourModule_"+languages[ln])
QtGui.QApplication.installTranslator(translator)

Optionally, you can also create the file XML Draft.qrc with this content:

<RCC>
<qresource prefix="/translations" >
<file>Draft_fr.qm</file>
</qresource>

Localisation

Project Setup 3

</RCC>

and running pyrcc4 Draft.qrc -o qrc_Draft.py creates a big Python containing all resources. BTW this
approach also works to put icon files in one resource file

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Localisation"

Localisation

Setting up python files for translation 4

Extra python modules
The python interpreter inside FreeCAD can easily be extended by adding new modules to your system's
python installation. Those modules will be automatically detected and used by FreeCAD.

All pyhton modules can be used from within FreeCAD, but several of them, listed below, have a special
importance because they allow python programs complete access to core functionality of FreeCAD. Examples
of use of those modules can also be found on the Code snippets page.

Note: of the following modules, Pivy is now fully integrated into any FreeCAD installation package, and
PyQt4 is also integrated in the Windows installation package.

Contents

1 PyQt4
1.1
Installation

♦

1.2 Usage♦
1.3
Documentation

♦

•

2 Pivy
2.1
Installation

2.1.1
Debian
&
Ubuntu

◊

2.1.2
Other
linux
distributions

◊

2.1.3
Windows

◊

♦

2.2 Usage♦
2.3
Documentation

♦

•

PyQt4

homepage: http://www.riverbankcomputing.co.uk/pyqt

PyQt (version 4) is a python bindings library which allow programs to access, create or modify Qt interfaces.
Since the FreeCAD interface is built with Qt, installing PyQt4 on your system allow python programs inside
FreeCAD to access all the interface, modify its parts, create new widgets or gather info from interface parts.

PyQt is released under a multiple licensing system, same system as used by Qt. To resume, there is a
commercial version and a free GPL version. If you want to use it to make commercial (closed source)
programs, you need to purchase the commercial license, otherwise you can simply install and use freely the
GPL version.

Extra_python_modules

Extra python modules 1

http://www.riverbankcomputing.co.uk/pyqt
http://en.wikipedia.org/wiki/Qt_(toolkit)
http://trolltech.com/products/qt

Installation

Before installing PyQt4, you obviously need a python environment installed and working.

Linux

The simplest way to install PyQt4 is through your distribution's package manager. On Debian/Ubuntu
systems, the package name is generally python-qt4, while on RPM-based systems it is named pyqt4. The
necessary dependencies (Qt and SIP) will be taken care of automatically.

Windows

The program can be downloaded from here. You'll need to install the Qt and SIP libraries before installing
pyqt4 (to be documented).

Usage

Once it is installed, you can check that everything is working by typing in FreeCAD python console:

import PyQt4

To access the FreeCAD interface, type:

from PyQt4 import QtCore,QtGui
app = QtGui.qApp
FreeCADWindow = app.activeWindow()

Now you can start to explore the interface with the dir() command. You can add new elements, like a custom
widget, with commands like:

FreeCADWindow.addDockWidget(QtCore.Qt.RghtDockWidgetArea,my_custom_widget)

Documentation

More pyQt4 tutorials (including how to build interfaces with Qt Designer to use with python):

http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/html/classes.html - the official PyQt4 API
Reference

http://www.rkblog.rk.edu.pl/w/p/introduction-pyqt4/ - a simple introduction

http://www.zetcode.com/tutorials/pyqt4/ - very complete in-depth tutorial

Extra_python_modules

 Installation 2

http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/html/classes.html
http://www.rkblog.rk.edu.pl/w/p/introduction-pyqt4/
http://www.zetcode.com/tutorials/pyqt4/

Pivy

homepage: http://pivy.coin3d.org/

Pivy is a coin bindings library for python, officially supported by coin. Coin itself is a toolkit for building 3D
applications in OpenGL. It is the toolkit that FreeCAD uses to draw its 3d Scene on the screen. Installing Pivy
on your system will allow python programs to access the FreeCAD scenegraph, draw new objects on the
scene and use the wide range of available Coin tools for drawing operations. Coin is based on the open
Inventor scene description language. Pivy is used by the 2D drafting module of FreeCAD (and also by the
complete module), so it is needed if you want to use any tool of those modules.

It is important to know that FreeCAD only uses coin for representation of objects on the screen, which is
separated from the definition of objects. This means that pivy won't be able to modify existing objects, neither
to create valid FreeCAD objects. But it can be used to draw all kind of temporary things on screen, such as
axis, grids, manipulators, construction geometry, etc...

Pivy, as well as Coin, is released under a GPL license.

Installation

Debian & Ubuntu

Starting with Debian Squeeze and Ubuntu Lucid, pivy will be available directly from the official repositories,
saving us a lot of hassle. In the meantime, you can either download one of the packages we made (for debian
and ubuntu karmic) availables on the Download pages, or compile it yourself.

The best way to compile pivy easily is to grab the debian source package for pivy and make a package with
debuild. It is the same source code from the official pivy site, but the debian people made several bug-fixing
additions. It also compiles fine on ubuntu karmic: http://packages.debian.org/squeeze/python-pivy (download
the .orig.gz and the .diff.gz file, then unzip both, then apply the .diff to the source: go to the unzipped pivy
source folder, and apply the .diff patch:

patch -p1 < ../pivy_0.5.0~svn765-2.diff

then

debuild

to have pivy properly built into an official installable package. Then, just install the package with gdebi.

Other linux distributions

First get the latest sources from the project's repository:

svn co https://svn.coin3d.org/repos/Pivy/trunk Pivy

Then you need a tool called SWIG to generate the C++ code for the Python bindings. It is recommended to

Extra_python_modules

 Pivy 3

http://pivy.coin3d.org/
http://www.coin3d.org
http://packages.debian.org/squeeze/python-pivy
https://svn.coin3d.org/repos/Pivy/trunk

use version 1.3.25 of SWIG, not the latest version, because at the moment pivy will only function correctly
with 1.3.25. Download a 1.3.25 source tarball from http://www.swig.org. Then unpack it and from a
command line do (as root):

./configure
make
make install (or checkinstall if you use it)

It takes just a few seconds to build.

After that go to the pivy sources and call

python setup.py build

which creates the source files. You may run into a compiler error where a 'const char*' cannot be converted in
a 'char*'. To fix that you just need to write a 'const' before in the appropriate lines. There are six lines to fix.
After that, install by issuing (as root):

python setup.py install (or checkinstall python setup.py install)

That's it, pivy is installed.

Windows

Assuming your are using Visual Studio 2005 or later you should open a command prompt with 'Visual Studio
2005 Command prompt' from the Tools menu. If the Python interpreter is not yet in the system path do

set PATH=path_to_python_2.5;%PATH%

To get pivy working you should get the latest sources from the project's repository:

svn co https://svn.coin3d.org/repos/Pivy/trunk Pivy

Then you need a tool called SWIG to generate the C++ code for the Python bindings. It is recommended to
use version 1.3.25 of SWIG, not the latest version, because at the moment pivy will only function correctly
with 1.3.25. Download the binaries for 1.3.25 from http://www.swig.org. Then unpack it and from the
command line add it to the system path

set PATH=path_to_swig_1.3.25;%PATH%

and set COINDIR to the appropriate path

set COINDIR=path_to_coin

On Windows the pivy config file expects SoWin instead of SoQt as default. I didn't find an obvious way to
build with SoQt, so I modified the file setup.py directly. In line 200 just remove the part 'sowin' :
('gui._sowin', 'sowin-config', 'pivy.gui.') (do not remove the closing parenthesis).

After that go to the pivy sources and call

python setup.py build

Extra_python_modules

Other linux distributions 4

http://www.swig.org
https://svn.coin3d.org/repos/Pivy/trunk
http://www.swig.org

which creates the source files. You may run into a compiler error several header files couldn't be found. In this
case adjust the INCLUDE variable

set INCLUDE=%INCLUDE%;path_to_coin_include_dir

and if the SoQt headers are not in the same place as the Coin headers also

set INCLUDE=%INCLUDE%;path_to_soqt_include_dir

and finally the Qt headers

set INCLUDE=%INCLUDE%;path_to_qt4\include\Qt

If you are using the Express Edition of Visual Studio you may get a python keyerror exception. In this case
you have to modify a few things in msvccompiler.py located in your python installation.

Go to line 122 and replace the line

vsbase = r"Software\Microsoft\VisualStudio\%0.1f" % version

with

vsbase = r"Software\Microsoft\VCExpress\%0.1f" % version

Then retry again. If you get a second error like

error: Python was built with Visual Studio 2003;...

you must also replace line 128

self.set_macro("FrameworkSDKDir", net, "sdkinstallrootv1.1")

with

self.set_macro("FrameworkSDKDir", net, "sdkinstallrootv2.0")

Retry once again. If you get again an error like

error: Python was built with Visual Studio version 8.0, and extensions need to be built with the same version of the compiler, but it isn't installed.

then you should check the environment variables DISTUTILS_USE_SDK and MSSDK with

echo %DISTUTILS_USE_SDK%
echo %MSSDK%

If not yet set then just set it e.g. to 1

set DISTUTILS_USE_SDK=1
set MSSDK=1

Now, you may run into a compiler error where a 'const char*' cannot be converted in a 'char*'. To fix that you
just need to write a 'const' before in the appropriate lines. There are six lines to fix. After that copy the
generated pivy directory to a place where the python interpreter in FreeCAD can find it.

Extra_python_modules

Windows 5

Usage

To have Pivy access the FreeCAD scenegraph do the following:

from pivy import coin
App.newDocument() # Open a document and a view
view = Gui.ActiveDocument.ActiveView
FCSceneGraph = view.getSceneGraph() # returns a pivy Python object that holds a SoSeparator, the main "container" of the Coin scenegraph
FCSceneGraph.addChild(coin.SoCube()) # add a box to scene

You can now explore the FCSceneGraph with the dir() command.

Documentation

Unfortunately documentation about pivy is still almost inexistant on the net. But you might find Coin
documentation useful, since pivy simply translate Coin functions, nodes and methods in python, everything
keeps the same name and properties, keeping in mind the difference of syntax between C and python:

http://doc.coin3d.org/Coin/classes.html - Coin3D API Reference

http://www-evasion.imag.fr/~Francois.Faure/doc/inventorMentor/sgi_html/index.html - The Inventor Mentor
- The "bible" of Inventor scene description language.

You can also look at the Draft.py file in the FreeCAD Mod/Draft folder, since it makes big use of pivy.

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Extra_python_modules"

Extra_python_modules

 Usage 6

http://doc.coin3d.org/Coin/classes.html
http://www-evasion.imag.fr/~Francois.Faure/doc/inventorMentor/sgi_html/index.html

Contributors
Here an overview which people or companies contribute to FreeCAD. The credits for the used libraries see
Third Party Libraries.

Contents

1
Developer

1.1
Lead
developer

♦

1.2
Developers

♦

•

2
Companies

•

Developer

Lead developer

Only the lead developers are able to commit code in the SVN repository. Currently these are:

JÃ¼rgen Riegel•
Werner Mayer•

Later on there may be responsibilities on module base.

Developers

People who contributed a notable amount of code:

Yorik van Havre•
Graeme van der Vlugt•
Berthold Grupp•
Georg Wiora•

Companies

Companies which donated Code or Developer:

Imetric 3D•

Online version: "http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=Contributors"

Contributors

Contributors 1

http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=User:Jriegel
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=User:Wmayer
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=User:Yorikvanhavre
http://sourceforge.net/apps/mediawiki/free-cad/index.php?title=User:Xorx

