
4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 1/34

gofmt 的文化演变
The Cultural Evolution of gofmt

Robert Griesemer
Google, Inc.



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 2/34

gofmt

Go源代码格式化工具

定义了“标准“格式

golang.org代码库中所有提交的Go代码都必须通过gofmt格式化过

除了gofmt之外，相同功能可以通过go/format库获得

不需要设置！



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 3/34

初衷

代码审查是软件工程的最佳实践

代码审查是基于代码规范和正规格式的

太多时间浪费在审查格式上而不是代码本身了

但是这工作对机器来说是最好不过了的

第一个决定就是要写一个好的格式美化器



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 4/34

历史

格式美化器和代码美化工具在计算机发展的早期就已出现

对于产生可读的Lisp代码很重要的：

GRINDEF  (Bill Gosper, 1967)           第一个计算行长度

其他：

SOAP     (R. Scowen et al, 1969)       简化了晦涩的算法程序
NEATER2  (Ken Conrow, R. Smith, 1970)  PL／1格式器，作为（早期的）纠错工具
cb       (Unix Version 7, 1979)        C程序美化器
indent   (4.2 BSD, 1983)               缩进和格化化C代码
等等

最近的：

ClangFormat                            C/C++/Objective-C 格式器
Uncrustify                             C, C++, C#, ObjectiveC, D, Java, Pawn and VALA的美化器
等等



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 5/34

事实上

在2007年，没人喜欢代码格式器

例外：IDE强制的格式化

但是：很多程序员不用IDE...

问题：如果是格式化太具有毁坏性，那么就没有人会用

被忽视的观点：“刚刚好“的，统一化的格式是好过于各种不同的格式的。

规范的价值在于：整齐划一，而不是完美



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 6/34

好的格式美化器的问题

当越多人思考他们自己的格式风格的时候，他们就变得更加固执于此了

错误的结论：自动格式器必须要有很多选项！

但是有很多选项的格式器其实违背他们的目的

此外，支持很多选项是难的

尊重用户的想法是最关键的

处理注释是很难的

语言本身也会增加很多额外的复杂度（比如，C的宏）



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 7/34

格式化Go



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 8/34

尽量保证其简单

小的语言能让事情变得简单

不要为行长度烦恼

相反的，尊重用户：考虑原有代码中的断行

不要支持任何选项

使其使用傻瓜化

一个格化标准搞定所有！



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 9/34

gofmt的基本结构

源代码的处理

基本的格式化

附加：注释的处理

完善：代码和注释的对齐

但是，没有牛X的通用布局算法

相反的：基于节点的精细优化



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 10/34

处理源代码

使用`go/scanner ,̀ `go/parser`及其相关的库

给每一个go文件生成一个抽象语法树

每一个语法结构都有相应的AST节点

// Syntax of an if statement.
IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .

// An IfStmt node represents an if statement.
IfStmt struct {
    If   token.Pos // position of "if" keyword
    Init Stmt      // initialization statement; or nil
    Cond Expr      // condition
    Body *BlockStmt
    Else Stmt // else branch; or nil
}

AST节点有（选择性的）位置信息。



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 11/34

基本的格式化

遍历AST然后打印每个节点

case *ast.IfStmt:
    p.print(token.IF)
    p.controlClause(false, s.Init, s.Cond, nil)
    p.block(s.Body, 1)
    if s.Else != nil {
        p.print(blank, token.ELSE, blank)
        switch s.Else.(type) {
        case *ast.BlockStmt, *ast.IfStmt:
            p.stmt(s.Else, nextIsRBrace)
        default:
            p.print(token.LBRACE, indent, formfeed)
            p.stmt(s.Else, true)
            p.print(unindent, formfeed, token.RBRACE)
        }
    }

打印器（`p.print`）接收包括位置和空格符等的一系列记号



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 12/34

细致的调节

基于优先级安排操作数之间的空格.

提高表达式的可读性.

x = a + b
x = a + b*c
if a+b <= d {
if a+b*c <= d {

使用位置信息决定何时换行.

其他一些策略.



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 13/34

注释的处理

注释可以出现在程序的任何两个词汇之间.

通常情况下，不能很明显的知道注释属于哪个 AST 节点.

注释经常是成组出现:

// A CommentGroup represents a sequence of comments
// with no other tokens and no empty lines between.
//
type CommentGroup struct {
    List []*Comment // len(List) > 0
}

成组的注释被处理为一个大的注释.



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 14/34

注释在 AST 上的表达

注释组的连续列表被连接到 AST 的文件节点.

另外，一些被标示为 doc strings 的注释被连接到声明节点.



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 15/34

格式化注释

基本的办法：基于位置信息合并词汇流和注释流.



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 16/34

魔鬼就在细节中

在源代码中估计当前的位置.

比较当前的位置和注释的位置去决定下一个是什么.

词汇也包含了空格词汇 - 注释必须被合理的分布!

维持一个未被打印的空格缓冲区，在下一个词汇之前输出，然后分布注释.

多种策略得以正确地处理空格.

很多次的尝试和错误.



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 17/34

格式化单独的注释

区分代码行和注释.

努力对多行注释进行合理的缩进.

func f() {              func() {
 /*                             /*
  * foo                          * foo
  * bar         ==>              * bar
  * bal                          * bal
 */                              */
        if ...                   if  ...
}                       }

但并不总是能够处理正确.

想达到两个效果：注释能够缩进，注释的内容不进行处理。还没有好的解决办法.



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 18/34

对齐

仔细选择的对齐可以让代码更容易阅读.

var (                                 var (
        x, y int = 2, 3 // foo                x, y int     = 2, 3 // foo
        z float32 // bar         ==>          z    float32        // bar
        s string // bal                       s    string         // bal
)                                     )

很难进行手工维护 (制表符并不能够做到）.

但是却非常适合使用格式化工具.



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 19/34

灵活的制表符宽度

通常的制表符把当前的写位置移动到下一个固定的位置.

基本的办法：让制表符宽度更加灵活.

制表符可以标示一个文本单元的结束位置.

一个列块是一个连续的相邻的单元.

一个列块的宽度可以到达多个单元里最宽文本的宽度.

被 Nick Gravgaard 提出于2006

nickgravgaard.com/elastic-tabstops/ (http://nickgravgaard.com/elastic-tabstops/)

实现在 text/tabwriter 包中.

http://nickgravgaard.com/elastic-tabstops/


4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 20/34

灵活制表符宽度的展示



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 21/34

综合在一起 (1)

分析器生成 AST.

打印工具递归地打印AST，使用制表符去灵活的标示制表符的位置.

产生的词汇，位置和空格流会和注释流进行合并.

词汇会扩展为字符串，所有的文本流将会被制表符写入器处理.

制表符写入器会将制表符替换为合适数量的空格.

对于固定宽度的字体，处理的很好.

比例大小的字体也可以被编辑器支持，如果这个编辑器可以支持灵活的制表符宽度.



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 22/34

综合在一起 (2)



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 23/34

从宏观上看



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 24/34

gofmt 的应用



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 25/34

gofmt 作为源代码变换工具

改写 Go 的代码 (Russ Cox)， gofmt -r

gofmt -w -r 'a[i:len(x)] -> a[i:]' *.go

简化 Go 的代码， gofmt -s

更新 API (Russ Cox), go fix

改变语言 （去掉分号，其它）

goimport (Brad Fitzpatrick)



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 26/34

大家的反应

Go 项目要求所有提交的源代码都用 gofmt 的格式。

一开始，大家都抱怨：`gofmt` 不知道怎样格式成我的风格！

慢慢地，大家不作声了：Go 项目组一定要用 gofmt！

最后，大家看清了：gofmt 不是任何人的风格，但所有人都喜欢 gofmt 的风格。

现在，大家都赞扬： gofmt 是大家喜欢 Go 的一个原因。

现在，格式已经不是一个问题。



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 27/34

其它语言也在向我们学习

Google 的 BUILD 文件现在也有格式器 (Russ Cox).

Java 格式器

Clang 格式器

Dartfmt

www.dartlang.org/tools/dartfmt/ (https://www.dartlang.org/tools/dartfmt/)

等等

现在，任何语言都被要求带有自动的源代码格式器。

https://www.dartlang.org/tools/dartfmt/


4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 28/34

总结



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 29/34

编程文化的演变

gomft 是 Go 语言的一个重要的卖点

大家渐渐达成共识：一致的“足够好“的格式很有好处

这种在 AST-级别上的源代码操作带动了一系列的新的工具。

其它语言也在向我们学习：编程的文化在慢慢演变。



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 30/34

至今的收获：应用程序

一开始，基本的源代码格式化是一个很好的目标。

但是，真正的用处在于源代码的变换工具。

不要给大家有选择格式的机会。

越简单越好。

我们想要：

Go 分析器：源代码 => 语法树

尽可能让语法树的操作变得容易。

Go 打印器：语法树 => 源代码



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 31/34

至今的收获：实现过程

最初的版本有很多的尝试和失败。

最大的错误：注释没有连到 AST-节点上.

=> 现在的设计使得操作 AST 和保持注释在正确的地方十分困难。

很混乱：ast.CommentMap

我们想要：

容易操作语法树，连带注释。



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 32/34

将来的计划

正在设计新的语法树（仍在试验阶段）

语法树操作起来更加简单和容易（例如：声明结点）

更快和更容易地使用分析器和打印器。

让工具用起来可靠并且快。其它一概不理。



4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 33/34

Thank you

Robert Griesemer
Google, Inc.
gri@golang.org (mailto:gri@golang.org)

mailto:gri@golang.org


4/21/2015 gofmt 的文化演变

http://127.0.0.1:3999/gofmt-cn.slide#1 34/34


