
C O M P U T E      |     S T O R E      |     A N A L Y Z E

Porting Computational Physics Applications  
to the Titan Supercomputer  
with OpenACC and OpenMP 

 
Aaron Vose  -  Cray Inc.  

GTC - 03/19/2015 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Porting - Overview 

● Porting methodology: 
● Express underlying algorithmic parallelism. 

● Port to OpenMP first. 

● Port to OpenACC second. 
 

● Case studies / examples: 
 
● TACOMA 

 

● Delta5D 
 

● NekCEM 
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Porting - Overview 

● For each case study / example code: 
(TACOMA, Delta5D, and NekCEM) 
 

 
● Introduction to the code and example loop. 

 

● OpenMP / OpenACC porting of the loop. 
● Express underlying algorithmic parallelism. 

 

● OpenACC data motion with simplified call tree. 
 

● Performance results. 
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Porting - OpenMP 

● Express existing loop-level parallelism with OpenMP 
directives. 
● Cray’s Reveal tool can do much of this automatically. 

 

● Port to OpenMP before OpenACC. 
● OpenACC can reuse most OpenMP scoping. 

● OpenMP porting to CPU is easier than OpenACC porting to GPU. 

● Data motion can be ignored when porting to OpenMP. 
 

● Modify loops to expose more of underlying algorithms’ 
parallelism. 
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Porting - OpenACC 

● Identify candidate loops: 
● Check loops’ trip/iteration count (CrayPAT). 

 

● Add OpenACC directives / Optimize Kernels: 
● Check compiler listing for proper vectorization. 

● Ignore data motion (best performed once kernels are done and have 
known data requirements). 
 

● Finally, optimize device <-> host data motion. 
● Perform bottom-up, hierarchical data optimization. 
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Porting - TACOMA 
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Case Study I: 
TACOMA 
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Porting - TACOMA 

● From GE’s Brian Mitchell. 
 

● Computational fluid 
dynamics is essential to 
design jet engines, 
gas/steam turbines, and 
more. 
 

● Finite-volume, block-
structured, compressible 
flow solver, with stability 
achieved via JST. 
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Porting - TACOMA 

● Example loop nest from TACOMA. 
 
● Representative of a number of costly routines. 

 

● Can be made to parallelize on CPUs with OpenMP. 
 

● GPU vectorization requires more work. 
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TACOMA - Algo. Parallelism 
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do k=1,n3 
  do j=1,n2 
    do i=1,n1 
      df(1:3) = dflux(i,j,k) 
      R(i,j,k)   += df(1) + 
                    df(2) + 
                    df(3) 
      R(i-1,j,k) -= df(1) 
      R(i,j-1,k) -= df(2) 
      R(i,j,k-1) -= df(3) 
    end do 
  end do 
end do 
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TACOMA - Algo. Parallelism 
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do k=1,n3 
  do j=1,n2 
    do i=1,n1 
      df(1:3) = dflux(i,j,k) 
      R(i,j,k)   += df(1) + 
                    df(2) + 
                    df(3) 
      R(i-1,j,k) -= df(1) 
      R(i,j-1,k) -= df(2) 
      R(i,j,k-1) -= df(3) 
    end do 
  end do 
end do 

t0 

OpenMP 

t1 
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TACOMA - Algo. Parallelism 
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do k=1,n3 
  do j=1,n2 
    do i=1,n1 
      df(1:3) = dflux(i,j,k) 
      R(i,j,k)   += df(1) + 
                    df(2) + 
                    df(3) 
      R(i-1,j,k) -= df(1) 
      R(i,j-1,k) -= df(2) 
      R(i,j,k-1) -= df(3) 
    end do 
  end do 
end do 

do k=ts3,tn3 
  do j=ts2,tn2 
    do i=ts1,tn1 
      df(1:3) = dflux(i,j,k) 
      if mycolor(i,j,k,tid) 
        R(i,j,k)   += df(1) + 
                      df(2) + 
                      df(3) 
      if mycolor(i-1,j,k,tid) 
        R(i-1,j,k) -= df(1) 
   end do 
  end do 
end do OpenMP 
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TACOMA - Algo. Parallelism 
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do k=1,n3 
  do j=1,n2 
    do i=1,n1 
      df(1:3) = dflux(i,j,k) 
      R(i,j,k)   += df(1) + 
                    df(2) + 
                    df(3) 
      R(i-1,j,k) -= df(1) 
      R(i,j-1,k) -= df(2) 
      R(i,j,k-1) -= df(3) 
    end do 
  end do 
end do 

do  
  df(i,j,k,1:3) = dflux(i,j,k) 
end do 
 
do  
  R(i,j,k) += df(i,j,k,1) + 
              df(i,j,k,2) + 
              df(i,j,k,3) 
  R(i,j,k) -= df(i+1,j,k,1) + 
              df(i,j+1,k,2) + 
              df(i,j,k+1,3) 
end do 
 OpenACC 
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TACOMA - OpenACC Data  

● Create OpenACC data regions: 
● Keep data on the GPU device as long as possible. 
● Create data regions in bottom-up, hierarchical fashion. 
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TACOMA - Performance 
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Porting - Delta5D 
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Case Study II: 
Delta5D 
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Porting - Delta5D 

● From ORNL’s Donald Spong. 
 

● Monte-Carlo fusion code. 
 

● Boozer space particle orbits. 
 

● Hamiltonian guiding center 
equations solved with  
4th order Runge Kutta. 
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Porting - Delta5D 

● Example loop from Delta5D. 
 
● Fast enough to run in serial on CPU; slow on GPU. 

 

● Data motion rules out running on CPU. 
 

● Needs to run in parallel on GPU. 
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Delta5D - Algo. Parallelism 

● If a particle’s trajectory takes it outside the confined 
plasma volume, append it to a list of escaped particles: 
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… 

… 
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Delta5D - Algo. Parallelism 
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  do i=1,maxorb 
     ! -- Record this particle if it has "escaped". 
     if(psinor(i) .gt. 1.) then  
        iloss = iloss + 1    
        phi_loss(iloss)   = y(6*i-3) 
        psi_loss(iloss)   = y(6*i-4)/psimax 
        thet_loss(iloss)  = y(6*i-5) 
        elost = elost + hkin(i)/ejoule 
     end if 
  end do 

v1 
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Delta5D - Algo. Parallelism 
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  do i=1,maxorb 
     ! -- Record this particle if it has "escaped". 
     if(psinor(i) .gt. 1.) then  
  !$acc atomic capture 
        iloss    = iloss + 1            ! update-statement  
        my_iloss = iloss                ! capture-statement  
  !$acc end atomic    
        phi_loss(my_iloss)   = y(6*i-3) 
        psi_loss(my_iloss)   = y(6*i-4)/psimax 
        thet_loss(my_iloss)  = y(6*i-5) 
        elost = elost + hkin(i)/ejoule 
     end if 
  end do 

v2 
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Delta5D - OpenACC Data 
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Delta5D - OpenACC Performance 
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OpenACC Sequential OpenACC Atomics 

19.446s 0.425s 

● 45x kernel speedup. 

● Up to ~5-10% improvement in total runtime. 
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Porting - NekCEM 
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Case Study III: 
NekCEM 
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Porting - NekCEM 

● From ANL’s Mi Sun Min. 
 

● Nekton for Computational 
Electro Magnetics. 
 

● High-fidelity electro-
magnetics solver based on 
spectral element methods. 
 

● Written in Fortran and C. 
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Porting - NekCEM 

● Example loop from NekCEM. 
 
● Initial loop structure does not vectorize on GPU. 

 

● Gather/scatter benefits from high GPU bandwidth. 
 

● Data motion needed around MPI communication. 

 

25 
Copyright 2015 Cray Inc. & GE 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

NekCEM - Algo. Parallelism 

● Scatter from u to dbuf with indirect addressing using 
description vector snd_map internally terminated by -1. 

 

26 
Copyright 2015 Cray Inc. & GE 

1 0 3 -1 0 3 -1 6 2 … -1 -1 

2 1 1 3 5 … 

13 21 3 1 5 8 2 … 

snd_map[]: 

dbuf[]: 

u[]: 
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NekCEM - Algo. Parallelism 
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for(k=0; k<vn; k++) { 
  l_map = snd_map; 
  while( (i=*l_map++) != -1 ) { 
    t = u[i+k*dstride]; 
    j = *l_map++; 
    do { 
      dbuf[j*vn] = t; 
    } while( (j=*l_map++) != -1 ); 
  } 
  dbuf++; 
} 

v1 
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NekCEM - Algo. Parallelism 
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for(k=0; k<vn; k++) { 
  for(i=0; snd_map[i]!=-1; i=j+1){ 
    for(j=i+1; snd_map[j]!=-1; j++){ 
      dbuf[k+snd_map[j]*vn] = u[snd_map[i]+k*dstride]; 
    } 
  } 
} 

v2 
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NekCEM - Algo. Parallelism 
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for(k=0; k<vn; k++) { 
  for(i=0; i<snd_m_nt; i++){ 
    for(j=0; j<snd_mapf[i*2+1]; j++) { 
      dbuf[k+snd_map[snd_mapf[i*2]+j+1]*vn] = 
         u[snd_map[snd_mapf[i*2]]+k*dstride]; 
    } 
  } 
} 

v3 
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NekCEM - OpenACC Data  
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NekCEM - Performance 
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GPU run uses 

39% the total 

energy of the 

CPU run! 
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NekCEM - Performance 
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Porting - Conclusion 

● Lessons learned: 
 
● Port to OpenMP before OpenACC. 

● Reuse scoping work. 
 

● Optimize OpenACC data motion last. 
● Perform bottom-up, hierarchical data optimization. 

 

● Express underlying algorithm’s parallelism. 
● Don’t limit parallelism by existing implementation. 
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Porting - Legal 

● Contact Information:  Aaron Vose -- email: avose@cray.com -- phone: (865) 574-8140. 
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