OpenACC for A
Fortran Programmers

Michael Wolfe
PGl compiler engineer

michael.wolfe@pgroup.com

v A

Outline

> GPU Architecture
~ Low-level GPU Programming and CUDA
~ OpenACC Introduction
>~ Using the PGl Compilers
~ Advanced Topics
~ Multiple Devices

Global Data

Procedures

Derived Types

- Managed Memory
CUDA Fortran Interfacing

© 2014 NVIDIA Corporation

High Speed Cores

Shared Cache

High
Capacity
Memory

Highly Parallel Cores

Shared Cache

High Bandwidth Memory

CPU / Accelerator Differences

» Faster clock (2.5-3.5 GHz)

= More work per clock
- Pipelining (deep)
~ Multiscalar (3-5)
~ SIMD width (4-16)
- More cores (6-12)
= Fewer stalls
~ Large cache memories
~ Complex branch prediction
~ Out-of-order execution
- Multithreading (2-4)

= Slower clock (0.8-1.0 GHz)

= More work per clock
~ Pipelining
> Multiscalar
>~ SIMD width
> More cores
= Fewer stalls
cache memories
branch prediction
execution
> Multithreading

Simple Fortran Example

real, allocatable :: af(:),

allocate(a(n),b(n))

call process(a, b, n)

subroutine process(a, b, n
a(:), b(:)

real ::

integer ::

do 1 =
b(1)
enddo

1,

n, 1
n
exp(sin(a(1)))

end subroutine

)

Low-Level Programming: CUDA Fortran

« Data Management
» Parallel Kernel Execution

real, allocatable :: a(:), b(:)
real, device, allocatable :: da(:),db(:)

allocate(a(n),b(n))

allocate(da(n),db(n))

da = a
nthrd = 128
nblk = (n+nthrd-1)/nthrd

call gprocess<<<nblk,nthrd>>>(da, db, n)
b = db
deallocate (da, db)

Low-Level Programming: CUDA Fortran

attributes (global) subroutine gprocess(a, b, n)

real :: a(*), b((*)

integer, value :: n

integer :: 1i

1 = (blockidx%x-1)*blockdim%x + threadidx%x

if(1 <= n)
b(i) = exp(sin(a(i)))
end subroutine

What is OpenACC?

- A set of directive-based extensions to C, C++ and
Fortran that allow you to annotate regions of code

and data for offloading from a CPU host to an
attached Accelerator

> maintainable, portable, scalable

http://www.pgroup.com/lit/videos/pgi_openacc_webinar july2012.html

http://www.pgroup.com/lit/videos/ieee_openacc_webinar_june2013.html

Higher-Level Programming: OpenACC

real, allocatable :: a(:), b(:)
allocate(a(n),b(n))

!Sacc data copy(a,b)
call process(a, b, n)
!Sacc end data

subroutine process(a, b, n)
real :: a(:), bi(:)
integer :: n, 1
!Sacc parallel loop
do 1 =1, n
b(i) = exp(sin(a(i)))
enddo
end subroutine

Data directives

 Data construct real, allocatable :: a(:), b(:)
» allocates device memory

allocate(a(n),b(n))
* moves data in/out

« Update self(b) !Sacc data copyin(a) copyout (b)
» copies device->host
« aka update host(b)

» Update device(b) | Sacc update self (b)

« copies host->device call updatehalo (b)
!Sacc update device (b)

call process(a, b, n)

!Sacc end data

Data directives

e Enter data real, allocatable :: a(:), b(:)

« like entry to data construct T
y allocate(a(n),b(n))
» allocates memory

* moves data in !Sacc enter data copyin(a) create (b)
- Exit data

call process(a, b, n
» like exit from data construct P (a, by)

* moves data out ! Sacc update self (b)
» deallocates memory call updatehalo (b)

!Sacc update device (b)

!Sacc exit data delete(a) copyout (b)

Compute regions

 Parallel region subroutine process(a, b, n)
« launches a device kernel real teoal), b)
integer :: n, 1
* gangs / workers / vectors lSacc parallel loop present (a,b)
do 1 =1, n
b(i) = exp(sin(a(i)))
enddo

end subroutine

Compute regions

. Paraue[regkn1 subroutine process(a, b, n)
real :: a(:,:), b(:,:)
integer :: n, 1,]

!Sacc parallel loop present (a,b)
do J =1, n
'Sacc loop vector
do 1 =1, n
b(i,J) = exp(sin(a(i,])))
enddo
enddo
end subroutine

* launches a device kernel
« gangs / workers / vectors

Compute regions

» Kernels region

subroutine process(a, b, n)

real :: a(:,:), b(:,:)

* launches one or more device
kernels

« gangs / workers / vectors
* more autoparallelization

integer :: n, i, J

!Sacc kernels loop gang present (a,b)

do J =1, n

'Sacc loop vector
do 1 =1, n

b(i,3) = exp(sin(a(i,])))
enddo

enddo
end subroutine

Reductions

. reduction(Operatorzscalar) subroutine process(a, b, total, n)
—— real :: a(:,:), b(:), total
+, *, min, max , -
jand, ior, ieor, integer :: n, 1, J
.and., .or., .eqv., .neqv. real :: partial
total = 0

!Sacc kernels loop gang present(a,b) &
reduction (+:total)
do J = 1, n
partial = 0
!Sacc loop vector reduction (+:partial)

do 1 =1, n
partial = partial + a(i,])
enddo
b(i) = partial
total = total + partial
enddo

end subroutine

Collapse

 collapse(2) subroutine process(a, b, total, n)
real :: a(:,:), b(:,:), total
integer :: n, i, J
total = 0

!'Sacc parallel loop collapse (2) &
gang present (a,b) reduction(+:total)
do J =1, n

do 1 =1, n
total = total + a(i,j)*b(i,7J)
enddo
enddo

end subroutine

Independent / Auto

 parallel construct subroutine process(a, b, indx, n)
+ independent feaj_ rroal:,) { b(:) .
integer :: n, 1indx(:), 1, 7J
* kernels construct o el Loos Areser ST
« auto do j = 1, n
'Sacc loop vector independent
do 1 =1, n
a(indx(i),j) = b(i,])*2.0
enddo
enddo

end subroutine

Private
« private to the gang / subroutine process(a, b, 1indx, n)
worker / vector lane gt e &2, 8], OB I
executing that thread integer :: n, indx(:), 1, J, Jt

!'Sacc parallel loop present(a,b) &
gang private (jt) independent

do J =1, n
Jt = indx (3)
'Sacc loop vector

do 1 =1, n
a(i,Jjt) = b(i,3)*2.0
enddo
enddo

end subroutine

Atomic

atomic update
atomic read
atomic write
atomic capture

subroutine process(a, b, indx, n)

real :: a(:,:), b(:)
integer :: n, indx(:), 1, J
!Sacc parallel loop present (a,b)
do J =1, n

'Sacc loop vector

do 1 =1, n

!Sacc atomic update

b(indx (1)) = b(indx (1)) + a(i,7)
!Sacc end atomic
enddo
enddo

end subroutine

Update

« copy values between host subroutine process(a, b, 1indx, n)
and device copies real :: a(:), b(:)
integer :: n, indx(:), 1i, 3j, Jjt

!'Sacc data present (a,b)
!'Sacc parallel loop
do J =1, n
a(j) = b(3)*2.0

enddo
!Sacc update self (a)
!Sacc end data

end subroutine

Using the PGI compilers

pgfortran —-ta=tesla a.f90 -Minfo=accel
./a.out

« pgfortran

o\ o\

* -acCcC

« default -ta=tesla,host

» -ta=tesla[:suboptions...]
* implies -acc

» -ta=radeon[:suboptions...]
* implies -acc

e -ta=host

pgfortran —-acc —-c¢ b.f90 -Minfo=accel
pgfortran —-acc —-c¢ c¢.f90 —-Minfo=accel
pgfortran —-acc -o c.exe b.o c.o
./c.exe

o°® o© o° o\©

* -Minfo=accel

tesla suboptions

-ta=tesla

-ta=tesla:
—-ta=tesla:
—ta=tesla:
—-ta=tesla:
—-ta=tesla:
—-ta=tesla:

-ta=tesla

cc35

[no] rdc

[no] fma
cuda6.0|cuda6.5
00

keepgpu
—help

default: compiles for Fermi + Kepler + K20
compile for Kepler K20 only
enable(default)/disable relocatable device code
enable/disable fused multiply-add

select toolkit version (6.0 default with PGI 15.1)
override opt level: 00,01, 02,03

keeps file.n001.gpu generated file

print command line help

-Minfo=accel

% pgfortran —-c -acc -Minfo=accel
process:
4, Accelerator kernel generated
5, !Sacc loop gang ! blockidx%x
7, !Sacc loop vector (256) ! threadidx%x
4, Generating copyout(b(:n, :n))
Generating copyin(a(:n, :n))
Generating Tesla code
7, Loop 1s parallelizable

PGI_ACC_NOTIFY

setenv PGI ACC NOTIFY 3
a.out

3
o
C)

upload CUDA data file=/home/mwolfe/test2/15.03.test/a.f90
function=process line=6 device=0 variable=descriptor bytes=96

upload CUDA data file=/home/mwolfe/test2/15.03.test/a.f90
function=process line=6 device=0 variable=descriptor bytes=96

upload CUDA data file=/home/mwolfe/test2/15.03.test/a.£f90
function=process line=6 device=0 variable=a bytes=10000
launch CUDA kernel file=/home/mwolfe/test2/15.03.test/a.f90
function=process line=6 device=0 num gangs=50 num workers=1
vector length=256 grid=50 block=256

download CUDA data file=/home/mwolfe/test2/15.03.test/a.f90
function=process line=13 device=0 wvariable=b bytes=10000

PGI_ACC_TIME

setenv PGI ACC TIME 1
a.out
Accelerator Kernel Timing data
/home/mwolfe/test2/15.03.test/a.f90
process NVIDIA devicenum=0

time (us): 53

6: data region reached 1 time

6: data copyin transfers: 3

o
C)
o

C)

device time (us): total=32 max=22 min=5 avg=10
13: data copyout transfers: 1
device time (us): total=15 max=15 min=15 avg=15

6: compute region reached 1 time
6: kernel launched 1 time
grid: [50] Dblock: [256]
device time (us): total=6 max=6 min=6 avg=6
elapsed time (us): total=322 max=322 min=322 avg=322

Advanced: host_data

* replaces address of ‘a’ by !Sacc data create(a(:,:))

device address of ‘a’ .
Sacc host data use device(a)

call MPI Send(a, n*n, ...)
!Sacc end host data

* mostly used in calls

Advanced: Multiple Threads

* Nest OpenACC within !Somp parallel
OpenMP regions

* All threads share context
on the device

!Sacc data copyin(a(:,:), b(:,:))

!'Somp parallel do
» Race conditions! do i =1, n
'Sacc parallel loop
do J =1, n
a(i,j) = sin(b(i,3J))
enddo
enddo

* no omp and acc on same
loop

!Sacc end data

Advanced: Multiple Devices

o acc_set_device_num() call MPI Comm Rank(MPI COMM WORLD, rank)
ndev = acc get num devices (acc device nvidia)
* MPI Ranks attach to —IE - - ~

diff e idev = mod(rank, ndev)
IHRSITENIG ISk call acc set device num(idev,acc device nvidia)

* OpenMP threads attach to
different device ISacc data copy(a)

 Single thread switches
between devices

Advanced: Declare global data

 Global data module mymod
real :: coef

’ Sprrogram scope data !Sacc declare create (coef)
real, allocatable :: value(:)

!Sacc declare create (value)
end module
subroutine s

use mymod

!'Sacc parallel loop

do 1 =1, n
value (1) = coef*value (1)
enddo

end subroutine

Advanced: Procedures

« Compile subprograms for module mymod

device execution real :: coef
. !Sacc declare create (coef)

* SPSCﬁy\Nhei?erthelll real, allocatable :: value(:)
fu program has paratle !Sacc declare create (value)
OOps contains

* routine seq implies no subroutine initvalue(ri, rs)
parallelism !Sacc routine gang

- within a single file, nordc Fiiig;: thr ES

1 AT S S—
works . 'Sacc loop gang vector

« across files, must use rdc do i = 1, ubound(value,1)
(default) value (i) = ri + (i-1)*rs

enddo

end subroutine
end module

Asynchronous Operations

async(q) clause
* enter/exit data
* update
» parallel/kernels
wait directive

« waits for all async queues

wait(q) directive

» waits only for queue q

wait(q) async(r) together

!Sacc enter data copyin(a) async (1)
!Sacc enter data copyin(b) async (1)
!'Sacc parallel loop async (1)
do 1 =1, n
a(i) = a(i) + 1
enddo
!'Sacc update self async (1)

!Sacc wait (1)
s = sum(a)

Asynchronous Operations

async(q) clause
* enter/exit data
* update
» parallel/kernels
wait directive

« waits for all async queues
wait(q) directive

» waits only for queue q
wait(q) async(r) together

« won’t start until queue q is
ready

« host program continues

!Sacc enter data copyin(a) async (1)
!Sacc enter data copyin(b) async(2)
!Sacc parallel loop wait(2) async(1l)
do 1 =1, n
a(i) = a(i) + 1
enddo

!'Sacc update self async (1)

!Sacc wait (1)
s = sum(a)

Advanced: Derived Types

« Arrays of derived type just module gdatamod
work type point
. . real :: x, , Z
» Derived type with REEE Y
allocatable array members type gdata
require some work type (point), allocatable :: &
 Array of derived type with loc(:), vel(:)
allocatable array members real, allocatable :: weight (:)
require more work end type

end module
use gdatamod

type (gdata) :: d
allocate(d%points(n), g%weights(n))
do 1 =1, n

d%loc (i) %$x = d%loc (1) %x + d%vel (1) %3x

enddo

Advanced: Derived Types

module gdatamod

type point
real :: %X, y, Z
end type
type gdata
type (point), allocatable
loc(:), vel(:)
real, allocatable
weight (:)
end type

end module

&

&

type (gdata) :: d
!'Sacc enter data copyin (d)
!'Sacc enter data copyin (d%$loc)

!Sacc enter data copyin (d%vel)

!'Sacc parallel loop present (d)

do 1 =1, n
d%loc (1) %$x = d%loc (i) %3x &
+ d%vel (1) $x
enddo

'Sacc update self (d$loc)

Advanced: Managed Memory

» CUDA Unified (managed) module mymod
Memory - 64-bit Linux only real :: coef
!Sacc declare create (coef)
* One add.ress SRACe for host real, allocatable :: wvalue(:)
and device contains
« Data allocated in managed subroutine initvalue(ri, rs)
memory Sacc routine gang
- is moved to GPU when a J':eal trori, IS
kernel is launched integer :: 1
« is moved back to system !Sacc loop gang vector
memory at host page fault do 1 = 1, ubound(value,l)
- Limited to device memory value (1) = ri + &) LS
enddo

size .
end subroutine
* —ta=tesla:managed end module

Advanced:

« CUDA data in OpenACC
compute constructs

* OpenACC data in CUDA
kernel launches

* OpenACC calling CUDA
device routines

Interoperability

module mymod
real, allocatable, device ::
contains
subroutine initvalue(ri, rs
real :: ri, rs
integer :: 1
Sacc parallel loop
do 1 = 1, ubound(value, 1)
value (i) = ri + (i-1)*rs
enddo
end subroutine
end module

value (:)

)

Advanced

« CUDA data in OpenACC

compute constructs

* OpenACC data in CUDA

kernel launches

* OpenACC calling CUDA

device routines

Interoperability

module mymod
real, allocatable :: value(:)
contains
attributes (global) &
subroutine ss(a)
real :: a(*)

end subroutine

subroutine initvalue(value, n
real :: value (*)
Sacc data present (value)
call ss<<<n/64,64>>>(value)
!Sacc end data

end subroutine

end module

)

Advanced:

« CUDA data in OpenACC
compute constructs

* OpenACC data in CUDA
kernel launches

* OpenACC calling CUDA
device routines

Interoperability

module mymod

real, allocatable, device :: value(:)
contains
attributes (device) real function ss(a,])
real :: a(*)
integer, value :: 7J

end function
subroutine initvalue(value, ini, n)

real :: value(*), 1ini(*)
integer :: 1, n
'Sacc parallel loop present (value,ini)
do 1 = 1, ubound(value, 1)
value (1) = ss(ini, 1)
enddo

end subroutine
end module

Common Errors or Problems

Access array out of bounds » Bad data clause limits
Data not present
Stale Data

Async error

Missing data clause

Missing update directive

Missing wait, >1 async queue
Reduction, FMA
bad parallel or loop independent

Roundoff error changes

Parallelization errors

Summary

Data: data construct, enter data / exit data, update device / update self
Compute: parallel/kernels, loop directive, reduction clause, atomic
Global data and Procedures: acc declare and acc routine

Asynchronous operations: async clause, wait directive, wait clause
Interoperability: data sharing, CUDA device routines

Future: unified memory (even better than managed), deep copy

More information:

WWwWw.openacc.org
WWW. pgroup.com/openacc
michael.wolfe@pgroup.com

