
Michael Wolfe
PGI compiler engineer

michael.wolfe@pgroup.com

OpenACC for

Fortran Programmers

Outline
GPU Architecture

Low-level GPU Programming and CUDA

OpenACC Introduction

Using the PGI Compilers

Advanced Topics

Multiple Devices

Global Data

Procedures

Derived Types

Managed Memory

CUDA Fortran Interfacing

CPU / Accelerator Differences

 Faster clock (2.5-3.5 GHz)

 More work per clock

Pipelining (deep)

Multiscalar (3-5)

SIMD width (4-16)

More cores (6-12)

 Fewer stalls

Large cache memories

Complex branch prediction

Out-of-order execution

Multithreading (2-4)

 Slower clock (0.8-1.0 GHz)

 More work per clock

Pipelining (shallow)

Multiscalar (1-2)

SIMD width (16-64)

More cores (15-60)

 Fewer stalls

Small cache memories

Little branch prediction

In-order execution

Multithreading (15-32)

Simple Fortran Example
 real, allocatable :: a(:), b(:)

...

allocate(a(n),b(n))

...

call process(a, b, n)

...

subroutine process(a, b, n)

 real :: a(:), b(:)

 integer :: n, i

 do i = 1, n

 b(i) = exp(sin(a(i)))

 enddo

end subroutine

Low-Level Programming: CUDA Fortran
• Data Management

• Parallel Kernel Execution

real, allocatable :: a(:), b(:)

real, device, allocatable :: da(:),db(:)

...

allocate(a(n),b(n))

...

allocate(da(n),db(n))

da = a

nthrd = 128

nblk = (n+nthrd-1)/nthrd

call gprocess<<<nblk,nthrd>>>(da, db, n)

b = db

deallocate(da,db)

...

Low-Level Programming: CUDA Fortran
attributes(global) subroutine gprocess(a, b, n)

 real :: a(*), b(*)

 integer, value :: n

 integer :: i

 i = (blockidx%x-1)*blockdim%x + threadidx%x

 if(i <= n)

 b(i) = exp(sin(a(i)))

end subroutine

What is OpenACC?

A set of directive-based extensions to C, C++ and
Fortran that allow you to annotate regions of code
and data for offloading from a CPU host to an
attached Accelerator

maintainable, portable, scalable

http://www.pgroup.com/lit/videos/pgi_openacc_webinar_july2012.html

http://www.pgroup.com/lit/videos/ieee_openacc_webinar_june2013.html

Higher-Level Programming: OpenACC

real, allocatable :: a(:), b(:)

...

allocate(a(n),b(n))

...

!$acc data copy(a,b)

call process(a, b, n)

!$acc end data

...

subroutine process(a, b, n)

 real :: a(:), b(:)

 integer :: n, i

 !$acc parallel loop

 do i = 1, n

 b(i) = exp(sin(a(i)))

 enddo

end subroutine

Data directives
• Data construct

• allocates device memory

• moves data in/out

• Update self(b)

• copies device->host

• aka update host(b)

• Update device(b)

• copies host->device

real, allocatable :: a(:), b(:)

...

allocate(a(n),b(n))

...

!$acc data copyin(a) copyout(b)

...

 call process(a, b, n)

...

!$acc update self(b)

 call updatehalo(b)

!$acc update device(b)

...

!$acc end data

...

Data directives
• Enter data

• like entry to data construct

• allocates memory

• moves data in

• Exit data

• like exit from data construct

• moves data out

• deallocates memory

real, allocatable :: a(:), b(:)

...

allocate(a(n),b(n))

...

!$acc enter data copyin(a) create(b)

...

 call process(a, b, n)

...

!$acc update self(b)

 call updatehalo(b)

!$acc update device(b)

...

!$acc exit data delete(a) copyout(b)

...

Compute regions
• Parallel region

• launches a device kernel

• gangs / workers / vectors

subroutine process(a, b, n)

 real :: a(:), b(:)

 integer :: n, i

 !$acc parallel loop present(a,b)

 do i = 1, n

 b(i) = exp(sin(a(i)))

 enddo

end subroutine

Compute regions
• Parallel region

• launches a device kernel

• gangs / workers / vectors

subroutine process(a, b, n)

 real :: a(:,:), b(:,:)

 integer :: n, i, j

 !$acc parallel loop present(a,b)

 do j = 1, n

 !$acc loop vector

 do i = 1, n

 b(i,j) = exp(sin(a(i,j)))

 enddo

 enddo

end subroutine

Compute regions
• Kernels region

• launches one or more device
kernels

• gangs / workers / vectors

• more autoparallelization

subroutine process(a, b, n)

 real :: a(:,:), b(:,:)

 integer :: n, i, j

 !$acc kernels loop gang present(a,b)

 do j = 1, n

 !$acc loop vector

 do i = 1, n

 b(i,j) = exp(sin(a(i,j)))

 enddo

 enddo

end subroutine

Reductions
• reduction(operator:scalar)

+, *, min, max
iand, ior, ieor,
.and., .or., .eqv., .neqv.

subroutine process(a, b, total, n)

 real :: a(:,:), b(:), total

 integer :: n, i, j

 real :: partial

 total = 0

 !$acc kernels loop gang present(a,b) &

 reduction(+:total)

 do j = 1, n

 partial = 0

 !$acc loop vector reduction(+:partial)

 do i = 1, n

 partial = partial + a(i,j)

 enddo

 b(i) = partial

 total = total + partial

 enddo

end subroutine

Collapse
• collapse(2)

subroutine process(a, b, total, n)

 real :: a(:,:), b(:,:), total

 integer :: n, i, j

 total = 0

 !$acc parallel loop collapse(2) &

 gang present(a,b) reduction(+:total)

 do j = 1, n

 do i = 1, n

 total = total + a(i,j)*b(i,j)

 enddo

 enddo

end subroutine

Independent / Auto
• parallel construct

• independent

• kernels construct

• auto

subroutine process(a, b, indx, n)

 real :: a(:,:), b(:)

 integer :: n, indx(:), i, j

 !$acc kernels loop present(a,b)

 do j = 1, n

 !$acc loop vector independent

 do i = 1, n

 a(indx(i),j) = b(i,j)*2.0

 enddo

 enddo

end subroutine

Private
• private to the gang /

worker / vector lane
executing that thread

subroutine process(a, b, indx, n)

 real :: a(:,:), b(:)

 integer :: n, indx(:), i, j, jt

 !$acc parallel loop present(a,b) &

 gang private(jt) independent

 do j = 1, n

 jt = indx(j)

 !$acc loop vector

 do i = 1, n

 a(i,jt) = b(i,j)*2.0

 enddo

 enddo

end subroutine

Atomic
• atomic update

• atomic read

• atomic write

• atomic capture

subroutine process(a, b, indx, n)

 real :: a(:,:), b(:)

 integer :: n, indx(:), i, j

 !$acc parallel loop present(a,b)

 do j = 1, n

 !$acc loop vector

 do i = 1, n

 !$acc atomic update

 b(indx(i)) = b(indx(i)) + a(i,j)

 !$acc end atomic

 enddo

 enddo

end subroutine

Update
• copy values between host

and device copies

subroutine process(a, b, indx, n)

 real :: a(:), b(:)

 integer :: n, indx(:), i, j, jt

 !$acc data present(a,b)

 !$acc parallel loop

 do j = 1, n

 a(j) = b(j)*2.0

 enddo

 !$acc update self(a)

 !$acc end data

end subroutine

Using the PGI compilers
• pgfortran

• -acc

• default –ta=tesla,host

• -ta=tesla[:suboptions...]

• implies –acc

• -ta=radeon[:suboptions...]

• implies –acc

• -ta=host

• -Minfo=accel

% pgfortran –ta=tesla a.f90 –Minfo=accel

% ./a.out

% pgfortran –acc –c b.f90 –Minfo=accel

% pgfortran –acc –c c.f90 –Minfo=accel

% pgfortran –acc –o c.exe b.o c.o

% ./c.exe

tesla suboptions
-ta=tesla default: compiles for Fermi + Kepler + K20

-ta=tesla:cc35 compile for Kepler K20 only

-ta=tesla:[no]rdc enable(default)/disable relocatable device code

-ta=tesla:[no]fma enable/disable fused multiply-add

-ta=tesla:cuda6.0|cuda6.5 select toolkit version (6.0 default with PGI 15.1)

-ta=tesla:O0 override opt level: O0,O1,O2,O3

-ta=tesla:keepgpu keeps file.n001.gpu generated file

-ta=tesla –help print command line help

-Minfo=accel
% pgfortran –c -acc –Minfo=accel

process:

 4, Accelerator kernel generated

 5, !$acc loop gang ! blockidx%x

 7, !$acc loop vector(256) ! threadidx%x

 4, Generating copyout(b(:n,:n))

 Generating copyin(a(:n,:n))

 Generating Tesla code

 7, Loop is parallelizable

PGI_ACC_NOTIFY
% setenv PGI_ACC_NOTIFY 3

% a.out

upload CUDA data file=/home/mwolfe/test2/15.03.test/a.f90

function=process line=6 device=0 variable=descriptor bytes=96

upload CUDA data file=/home/mwolfe/test2/15.03.test/a.f90

function=process line=6 device=0 variable=descriptor bytes=96

upload CUDA data file=/home/mwolfe/test2/15.03.test/a.f90

function=process line=6 device=0 variable=a bytes=10000

launch CUDA kernel file=/home/mwolfe/test2/15.03.test/a.f90

function=process line=6 device=0 num_gangs=50 num_workers=1

vector_length=256 grid=50 block=256

download CUDA data file=/home/mwolfe/test2/15.03.test/a.f90

function=process line=13 device=0 variable=b bytes=10000

PGI_ACC_TIME
% setenv PGI_ACC_TIME 1

% a.out

Accelerator Kernel Timing data

/home/mwolfe/test2/15.03.test/a.f90

 process NVIDIA devicenum=0

 time(us): 53

 6: data region reached 1 time

 6: data copyin transfers: 3

 device time(us): total=32 max=22 min=5 avg=10

 13: data copyout transfers: 1

 device time(us): total=15 max=15 min=15 avg=15

 6: compute region reached 1 time

 6: kernel launched 1 time

 grid: [50] block: [256]

 device time(us): total=6 max=6 min=6 avg=6

 elapsed time(us): total=322 max=322 min=322 avg=322

Advanced: host_data
• replaces address of ‘a’ by

device address of ‘a’

• mostly used in calls

!$acc data create(a(:,:))

...

!$acc host_data use_device(a)

 call MPI_Send(a, n*n, ...)

!$acc end host_data

Advanced: Multiple Threads
• Nest OpenACC within

OpenMP regions

• All threads share context
on the device

• Race conditions!

• no omp and acc on same
loop

!$omp parallel

 ...

!$acc data copyin(a(:,:), b(:,:))

 ...

 !$omp parallel do

 do i = 1, n

 !$acc parallel loop

 do j = 1, n

 a(i,j) = sin(b(i,j))

 enddo

 enddo

 ...

!$acc end data

Advanced: Multiple Devices
• acc_set_device_num()

• MPI Ranks attach to
different device

• OpenMP threads attach to
different device

• Single thread switches
between devices

call MPI_Comm_Rank(MPI_COMM_WORLD, rank)

ndev = acc_get_num_devices(acc_device_nvidia)

idev = mod(rank,ndev)

call acc_set_device_num(idev,acc_device_nvidia)

...

!$acc data copy(a)

 ...

Advanced: Declare global data
• Global data

• Subprogram scope data

module mymod

 real :: coef

 !$acc declare create(coef)

 real, allocatable :: value(:)

 !$acc declare create(value)

end module

subroutine s

 use mymod

 !$acc parallel loop

 do i = 1, n

 value(i) = coef*value(i)

 enddo

end subroutine

Advanced: Procedures
• Compile subprograms for

device execution

• Specify whether the
subprogram has parallel
loops

• routine seq implies no
parallelism

• within a single file, nordc
works

• across files, must use rdc
(default)

module mymod

 real :: coef

 !$acc declare create(coef)

 real, allocatable :: value(:)

 !$acc declare create(value)

contains

 subroutine initvalue(ri, rs)

 !$acc routine gang

 real :: ri, rs

 integer :: i

 !$acc loop gang vector

 do i = 1, ubound(value,1)

 value(i) = ri + (i-1)*rs

 enddo

 end subroutine

end module

Asynchronous Operations
• async(q) clause

• enter/exit data

• update

• parallel/kernels

• wait directive

• waits for all async queues

• wait(q) directive

• waits only for queue q

• wait(q) async(r) together

!$acc enter data copyin(a) async(1)

!$acc enter data copyin(b) async(1)

!$acc parallel loop async(1)

 do i = 1, n

 a(i) = a(i) + 1

 enddo

!$acc update self async(1)

...

!$acc wait(1)

 s = sum(a)

Asynchronous Operations
• async(q) clause

• enter/exit data

• update

• parallel/kernels

• wait directive

• waits for all async queues

• wait(q) directive

• waits only for queue q

• wait(q) async(r) together

• won’t start until queue q is
ready

• host program continues

!$acc enter data copyin(a) async(1)

!$acc enter data copyin(b) async(2)

!$acc parallel loop wait(2) async(1)

 do i = 1, n

 a(i) = a(i) + 1

 enddo

!$acc update self async(1)

...

!$acc wait(1)

 s = sum(a)

Advanced: Derived Types
• Arrays of derived type just

work

• Derived type with
allocatable array members
require some work

• Array of derived type with
allocatable array members
require more work

module gdatamod

 type point

 real :: x, y, z

 end type

 type gdata

 type(point), allocatable :: &

 loc(:), vel(:)

 real, allocatable :: weight(:)

 end type

end module

 use gdatamod

 type(gdata) :: d

 allocate(d%points(n), g%weights(n))

 do i = 1, n

 d%loc(i)%x = d%loc(i)%x + d%vel(i)%x

 ...

 enddo

Advanced: Derived Types
 type(gdata) :: d

 ...

 !$acc enter data copyin(d)

 !$acc enter data copyin(d%loc)

 !$acc enter data copyin(d%vel)

 !$acc parallel loop present(d)

 do i = 1, n

 d%loc(i)%x = d%loc(i)%x &

 + d%vel(i)%x

 ...

 enddo

 !$acc update self(d%loc)

module gdatamod

 type point

 real :: x, y, z

 end type

 type gdata

 type(point), allocatable :: &

 loc(:), vel(:)

 real, allocatable :: &

 weight(:)

 end type

end module

Advanced: Managed Memory
• CUDA Unified (managed)

Memory – 64-bit Linux only

• One address space for host
and device

• Data allocated in managed
memory

• is moved to GPU when a
kernel is launched

• is moved back to system
memory at host page fault

• Limited to device memory
size

• -ta=tesla:managed

module mymod

 real :: coef

 !$acc declare create(coef)

 real, allocatable :: value(:)

contains

 subroutine initvalue(ri, rs)

 !$acc routine gang

 real :: ri, rs

 integer :: i

 !$acc loop gang vector

 do i = 1, ubound(value,1)

 value(i) = ri + (i-1)*rs

 enddo

 end subroutine

end module

Advanced: Interoperability
• CUDA data in OpenACC

compute constructs

• OpenACC data in CUDA
kernel launches

• OpenACC calling CUDA
device routines

module mymod

 real, allocatable, device :: value(:)

contains

 subroutine initvalue(ri, rs)

 real :: ri, rs

 integer :: i

 !$acc parallel loop

 do i = 1, ubound(value,1)

 value(i) = ri + (i-1)*rs

 enddo

 end subroutine

end module

Advanced: Interoperability
• CUDA data in OpenACC

compute constructs

• OpenACC data in CUDA
kernel launches

• OpenACC calling CUDA
device routines

module mymod

 real, allocatable :: value(:)

contains

 attributes(global) &

 subroutine ss(a)

 real :: a(*)

 ...

 end subroutine

 subroutine initvalue(value, n)

 real :: value(*)

 !$acc data present(value)

 call ss<<<n/64,64>>>(value)

 !$acc end data

 end subroutine

end module

Advanced: Interoperability
• CUDA data in OpenACC

compute constructs

• OpenACC data in CUDA
kernel launches

• OpenACC calling CUDA
device routines

module mymod

 real, allocatable, device :: value(:)

contains

 attributes(device) real function ss(a,j)

 real :: a(*)

 integer, value :: j

 ...

 end function

 subroutine initvalue(value, ini, n)

 real :: value(*), ini(*)

 integer :: i, n

 !$acc parallel loop present(value,ini)

 do i = 1, ubound(value,1)

 value(i) = ss(ini, i)

 enddo

 end subroutine

end module

Common Errors or Problems
• Access array out of bounds

• Data not present

• Stale Data

• Async error

• Roundoff error changes

• Parallelization errors

• Bad data clause limits

• Missing data clause

• Missing update directive

• Missing wait, >1 async queue

• Reduction, FMA

• bad parallel or loop independent

Summary
• Data: data construct, enter data / exit data, update device / update self

• Compute: parallel/kernels, loop directive, reduction clause, atomic

• Global data and Procedures: acc declare and acc routine

• Asynchronous operations: async clause, wait directive, wait clause

• Interoperability: data sharing, CUDA device routines

• Future: unified memory (even better than managed), deep copy

• More information:

• www.openacc.org

• www.pgroup.com/openacc

• michael.wolfe@pgroup.com

