Space Details

Key:

Name:

Description:

GROOVY

Groovy

the JVM.

Creator (Creation Date): bob (Apr 15, 2004)

Last Modifier (Mod. Date):

glaforge (Apr 12, 2005)

Documentation and web site of the Groovy scripting language for

Available Pages

- Home ¢

e« Advanced Usage Guide

Ant Task Troubleshooting
BuilderSupport

Compiling Groovy

+ Compiling With Maven2

Design Patterns with Groovy

« Abstract Factory Pattern
Adapter Pattern

. Bouncer Pattern

« Chain of Responsibility Pattern
. Composite Pattern

. Decorator Pattern

. Delegation Pattern

. Flyweight Pattern

. Iterator Pattern

. Loan my Resource Pattern

. Null Object Pattern

. Pimp my Library Pattern

. Proxy Pattern

. Singleton Pattern

+ State Pattern

. Strategy Pattern

+ Template Method Pattern

. Visitor Pattern

Dynamic language beans in Spring
Embedding Groovy

Influencing class loading at runtime
Make a builder

Mixed Java and Groovy Applications
Optimising Groovy bytecodes with Soot

Document generated by Confluence on Dec 07, 2007 12:38

Page 1

Refactoring with Groovy

» Introduce Assertion

. Replace Inheritance with Delegation
Security

Writing Domain-Specific Languages

Articles
Community and Support

Contributing
Mailing Lists
Related Projects
User Groups

Cookbook Examples

Accessing SQLServer using groovy

Alternate Spring-Groovy-Integration

Batch Image Manipulation

command line groovy doc or methods lookup
Compute distance from Google Earth Path (in .kml file)
Convert SQL Result To XML

Embedded Derby DB examples

Embedding a Groovy Console in a Java Server Application
Executing External Processes From Groovy
Formatting simple tabular text data

Groovy Alternatives to Inner Classes
InstallTextMateGroovyBundle

Integrating Groovy in an application - a success story
Iterator Tricks

Martin Fowler's closure examples in Groovy

Other Examples

Parsing Groovy Doc Online

Plotting graphs with JFreeChart

PoorMansMixins

Reading from a Blob

Recipes For File

Search one or more jar files for a text string

Simple file download from URL

Solving Sudoku

SwingBuilder with custom widgets and observer pattern
Tomcat tools

Unsign Jar Files (Recursively)

Using JGoodies Animation with Groovy

Using JScience with Groovy

Using MarkupBuilder for Agile XML creation

Using the Delegating Meta Class

Using the Eclipse Modeling Framework (EMF)

Using the Eclipse UML2 Framework

Document generated by Confluence on Dec 07, 2007 12:38 Page 2

e Using the Proxy Meta Class
e Windows Look And Feel for groovyConsole
» Writing to a Blob
 Yaml and Groovy
. Developer Guide
e Building Groovy from Source
* Continuous Integration
. From source code to bytecode
. Groovy Backstage
. Groovy Method Invokation
. Groovy Internals
. Ivy
. Setup Groovy Development Environment
. Documentation
. Reference
« FAQ
+ Class Loading
. FAQ - Classes and Object Orientation
. FAQ - Closures
. FAQ - Collections, Lists, etc.
« FAQ-GSQL
. FAQ - RegExp
. General
. How can I edit the documentation
. Language questions
. Can I break a Groovy statement into multiple lines anyway I want?
. How can I dynamically add a library to the classpath
« Why does == differ from Java
. Learning about Groovy FAQ
. Runtime vs Compile time, Static vs Dynamic
. Getting Started Guide
. Beginners Tutorial
e Tutorial 1 - Getting started
Tutorial 2 - Code as data, or closures
e Tutorial 3 - Classes and Objects
e Tutorial 4 - Regular expressions basics
e Tutorial 5 - Capturing regex groups
e Tutorial 6 - Groovy SQL
. Differences to Other Languages
. Differences from Java
. Differences from Python
. Differences from Ruby
. Download
. Feature Overview
* Groovlets

Document generated by Confluence on Dec 07, 2007 12:38 Page 3

. Groovy Beans
. Groovy Templates
. GroovyMarkup
. For those new to both Java and Groovy
e JNO025-Starting
e JNO515-Integers
e INO525-Decimals
 INO535-Floats
. JNO545-Dates
e JN1015-Collections
e JN1025-Arrays
« JN1035-Maps
¢ IN1515-Characters
. JN1525-Strings
. JN1535-Patterns
e« JN2015-Files
e JN2025-Streams
e IN2515-Closures
« IN2525-Classes
e JN2535-Control
e JN3015-Types
e« IN3025-Inheritance
 JN3035-Exceptions
. JN3515-Interception
« IN3525-MetaClasses
« IN3535-Reflection
e Groovy for the Office
. Groovy Quick Start Project
. Quick Start
. Installing Groovy
. Running
. IDE Support
+ Debugging with JSwat
. Eclipse Plugin
. Debugging with Eclipse
. Eclipse GroovyConsole
. Eclipse Plugin Development
« Code Completion Proposal
. GroovyEclipse Specifications and Technical Articles
e The Classloader Conundrum
. GroovyEclipse Wish List
. Eclipse Plugin FAQ
« Intelli] IDEA Plugin (JetBrains Edition)
e Wish List (JetBrains Edition)
e JEdit Plugin

Document generated by Confluence on Dec 07, 2007 12:38 Page 4

. NetBeans Plugin
« Oracle JDeveloper Plugin
e Other Plugins
. Emacs Plugin
. UltraEdit Plugin
« TextMate
 Modules
. COM Scripting
« All About Arrays
. Change Log
. COM Data Types in Scriptom
. COM Events
¢ COM Methods and Properties in Scriptom
. Passing Values by Reference (in-out)
. Scriptom Archive
. Scriptom 1.2
e Scriptom Articles
« Bridging the Gap Between Java and .NET with Groovy and
Scriptom
. Using Scriptom to Automate Microsoft Excel
+ The Least You Need to Know about COM

. Gant
. Google Data Support
. Gram

. GraphicsBuilder
. GraphicsBuilder - Shapes

. Grapplet
. Griffon

. UberBuilder
. Groosh

. Groovy Jabber-RPC
. Groovy Monkey

. Groovy SOAP

. GroovylLab

. GroovySWT

. GroovyWSs
« GSP
« GSQL

. Native Launcher
. Windows NSIS-Installer
. WingSBuilder

. XMLRPC
. News and Further Information
. Books

. GinA Additional Information

Document generated by Confluence on Dec 07, 2007 12:38 Page 5

Groovy Series
PLEAC Examples

. Project Information

Events
News

 Testing Guide

Groovy Mocks

. Developer Testing using Closures instead of Mocks
. Developer Testing using Maps and Expandos instead of Mocks
. Mocking Static Methods using Groovy

. Using MockFor and StubFor

Integrating TPTP

Model-based testing using ModelJUnit

Test Combinations

. Effectiveness of testing combinations with all pairs
Test Coverage

e« Code Coverage with Cobertura

Testing Web Applications

Testing Web Services

Unit Testing

. Using JUnit 4 with Groovy

Using Other Testing Frameworks

. Using EasyMock with Groovy

. Using Instinct with Groovy

. Using JBehave with Groovy

. Using JDummy with Groovy

* Using JMock with Groovy

e Using JMockit with Groovy

. Using Popper with Groovy

. Using RMock with Groovy

. Using TestNG with Groovy

Using Testing Frameworks with Groovy

e Using GSpec with Groovy

. User Guide

Advanced OO

. Groovy way to implement interfaces
Annotations with Groovy

Ant Integration with Groovy

e The groovy Ant Task

e« The groovyc Ant Task

. Using Ant from Groovy

. Using Ant Libraries with AntBuilder
Bean Scripting Framework

Bitwise Operations

Builders

Document generated by Confluence on Dec 07, 2007 12:38

Page 6

. FactoryBuilderSupport

Closures

» Closures - Formal Definition

. Closures - Informal Guide

Collections

Constraint Programming

Control Structures

. Logical Branching

. Looping

Dynamic Groovy

. Evaluating the MetaClass runtime

« ExpandoMetaClass
. ExpandoMetaClass - Borrowing Methods
. ExpandoMetaClass - Constructors
. ExpandoMetaClass - Dynamic Method Names
. ExpandoMetaClass - GroovyObject Methods
« ExpandoMetaClass - Interfaces
. ExpandoMetaClass - Methods
. ExpandoMetaClass - Overriding static invokeMethod
. ExpandoMetaClass - Properties
. ExpandoMetaClass - Runtime Discovery
« ExpandoMetaClass - Static Methods

. Per-Instance MetaClass

e Using invokeMethod and getProperty

. Using methodMissing and propertyMissing

Functional Programming

GDK Extensions to Object

Generics

GPath

Groovy and JMX

Groovy Categories

Groovy CLI

Groovy Console

Groovy Math

Groovy Maven Plugin

Groovy Shell

Groovy Truth

Groovy Utils

. ConfigSlurper

. ObjectGraphBuilder

. ObservableMap

GUI Programming with Groovy

* Swing Builder
e Alphabetical Widgets List

. SwingBuilder.action

Document generated by Confluence on Dec 07, 2007 12:38

Page 7

e SwingBuilder.bind
e SwingBuilder.button
. SwingBuilder.checkBox
. SwingBuilder.compoundBorder
. SwingBuilder.emptyBorder
. SwingBuilder.etchedBorder
* SwingBuilder.imagelcon
. SwingBuilder.JComponent
. SwingBuilder.lineBorder
. SwingBuilder.loweredBevelBorder
. SwingBuilder.raisedBevelBorder
» SwingBuilder.raisedEtchedBorder
* SwingBuilder.slider
 SwingBuilder.tabbedPane
. SwingBuilder.textField

. Categorical Widget List

. Extending Swing Builder

* SwingXBuilder

. Effects
. Extending SwingXBuilder
. Graphs

. MultiSplitPane
. Painters
e« Widgets and Common Attributes
. Input Output
. Integration
 JSR 223 Scripting with Groovy
. Logging
» Migration From Classic to JSR syntax
. Operators
. Operator Overloading
. Processing XML
« Creating XML using Groovy's MarkupBuilder
. Creating XML using Groovy's StreamingMarkupBuilder
. Creating XML with Groovy and DOM
. Processing XML with XSLT
. Reading XML using Groovy's DOMCategory
. Reading XML using Groovy's XmlParser
. Reading XML using Groovy's XmlISlurper
. Reading XML with Groovy and DOM
. Reading XML with Groovy and SAX
. Reading XML with Groovy and StAX
. Reading XML with Groovy and XPath
e Updating XML with DOMCategory
. Updating XML with XmlParser

Document generated by Confluence on Dec 07, 2007 12:38 Page 8

« Updating XML with XmlISlurper

* Using Other XML Libraries
» Creating XML with Groovy and DOM4]
. Creating XML with Groovy and JDOM
. Creating XML with Groovy and XOM
. Processing XML with XQuery
. Reading XML with Groovy and DOM4]
. Reading XML with Groovy and Jaxen
. Reading XML with Groovy and JDOM
. Reading XML with Groovy and XOM

« Validating XML with a DTD

« Validating XML with a W3C XML Schema

» Validating XML with RELAX NG

« XML Example

Regular Expressions

Reserved Words

Running Groovy on .NET 2.0 using IKVM

Scoping and the Semantics of "def"

Scripts and Classes

Statements

Static Import Usage

Strings

Things to remember

Using Enums

Using Spring Factories with Groovy

Document generated by Confluence on Dec 07, 2007 12:38

Page 9

Home

This page last changed on Sep 20, 2007 by paulk_asert.

Groovy ...

e is an agile and dynamic language for the Java Virtual Machine

e builds upon the strengths of Java but has additional power features inspired by languages like
Python, Ruby and Smalltalk

e makes modern programming features available to Java developers with almost-zero learning
curve

e supports Domain Specific Languages and other compact syntax so your code becomes easy to read
and maintain

e makes writing shell and build scripts easy with its powerful processing primitives, OO abilities
and an Ant DSL

e increases developer productivity by reducing scaffolding code when developing web, GUI,
database or console applications

+ simplifies testing by supporting unit testing and mocking out-of-the-box

e seamlessly integrates with all existing Java objects and libraries

e compiles straight to Java bytecode so you can use it anywhere you can use Java

Groovy, a creative and innovative project

JAX is the most important Java conference in Germany. Every year, the organizers are running a contest
to select the most innovative and creative projects. From over 40 proposals, the jury selected only
ten nominees. Although great projects were selected, like the Matisse GUI builder in NetBeans, or the
Nuxeo Enterprise Content Management solution, Groovy won the first prize! It is a great honor and a
huge pleasure for us to receive such a prize, especially knowing the cool projects we were competing
with, or the past winners like the Spring framework.

Dierk Kdnig, author of the best-selling "Groovy in Action" book, received the prize in the name of the
Groovy community, after having presented several sessions on Groovy at this conference. This award
proves and reaffirms how innovative, creative and influential the Groovy project is for the Java
community.

Come and meet the Groovy and Grails developers at the Grails eXchange conference, featuring dedicated
tracks on Groovy, Grails, Java EE and Web 2.0.

oOcCT 17119
BaAasicAN

Samples
"Groovy is like a super version of Java. It can

leverage Java's enterprise capabilities but also has

Document generated by Confluence on Dec 07, 2007 12:38 Page 10

http://jax.de/konferenzen/jax07/index_eng.php
http://jax-award.de/jax_award/index_eng.php
http://jax-award.de/jax_award/proposal_ovw_eng.php
http://jax-award.de/jax_award/nominierung_eng.php
http://jax-award.de/jax_award/gewinner_eng.php
http://www.amazon.com/gp/blog/A368TUB0Q1IE3F
http://groovy.canoo.com/gina
http://farm1.static.flickr.com/188/473237227_f497cadb73.jpg?v=0

cool productivity features like closures, builders

A simple hello world script:

and dynamic typing. If you are a developer, tester
or script guru, you have to love Groovy."

def name='World'; println "Hello $nane!"

A more sophisticated version using Object
Orientation:

class Geet {
def nane
G eet (who) { nanme = who[0] .t oUpper Case()
+
who[1..-1] }
def salute() { println "Hello $nane!" }

}

g = new Geet('world) // create object
g.sal ute() /] Qutput "Hello
World!"

Leveraging existing Java libraries:

import static
or g. apache. commons. | ang. WrdUt il s. *

class Greeter extends Geet {
G eeter(who) { nane = capitalize(who) }

}

new Greeter('world').salute()

On the command line:

groovy -e "println ‘Hello ' + args[O]"
Wrld

Catch Groovy and Grails on the

NFJS 2007 North American Tour. Js

The Premier Technically Focused Java Event Series ! Mo Fluff Just Sttt com

Documentation [more]

Getting Started Guide

How to install and begin using Groovy as well as
introductory tutorials.

Developer Guide

Contains information mainly of interest to the
developers involved in creating Groovy and its
supporting modules and tools.

Document generated by Confluence on Dec 07, 2007 12:38

Page 11

e User Guide e Testing Guide

Provides information about using the Groovy Contains information of relevance to those writing
language including language facilities, libraries developer tests or systems and acceptance tests.
and programming guidelines.

Advanced Usage Guide

Cookbook Examples

Covers topics which you don't need to worry about
Illustrates larger examples of using Groovy in the initially when using Groovy but may want to dive
Wild with a focus on applications or tasks rather into to as you strive for Guru status.
than just showing off the features, APIs or
modules.

Modules [more]

The following modules and contributions are currently available:

e COM Scripting — script Windows ActiveX and COM components with Groovy

e Gant

e Google Data Support — makes using the Google Data APIs easier from within Groovy

e Gram — a simple xdoclet-like tool for processing doclet tags or Java 5 annotations

e GraphicsBuilder — GraphicsBuilder is a Groovy builder for Java 2D

e Grapplet

e Griffon — Dekstop Enhancements for Groovy

e Groosh — Provides a shell-like capability for handling external processes.

e Groovy Jabber-RPC — allows you to make XML-RPC calls using the Jabber protocol

e Groovy Monkey — is a dynamic scripting tool for the Eclipse Platform

e Groovy SOAP — create a SOAP server and make calls to remote SOAP servers using Groovy

e Groovylab — Provides a domain specific language (DSL) for math engineering (matlab-like syntax).

e GroovySWT — a wrapper around SWT, the eclipse Standard Widget Toolkit

e GroovyWS — GroovySOAP replacement that uses CXF and Java5 features

¢ GSP — means GroovyServer Pages, which is similar to JSP (JavaServer Pages)

¢ GSQL — supports easier access to databases using Groovy

¢ Native Launcher — a native program for launching groovy scripts

¢ Windows NSIS-Installer — a Windows-specific installer for Groovy

e WingSBuilder — WingsBuilder is a Groovy builder for the wingS Framework

e XMLRPC — allows you to create a local XML-RPC server and/or to make calls on remote XML-RPC
servers

¢ Grails — a Groovy-based web framework inspired by Ruby on Rails

¢ GORM — the Grails Object-Relational Mapping persistence framework
e GroovyPlugin — A Groovy plugin for JSPWiki

e Maven Plugin — Integration of Groovy with Maven

Enjoy making your code groovier 11!

Document generated by Confluence on Dec 07, 2007 12:38 Page 12

http://grails.codehaus.org
http://grails.codehaus.org/GORM
http://www.jspwiki.org/wiki/GroovyPlugin
http://maven.apache.org

Latest news

If you wish to stay up-to-date with our vibrant community, you can learn more about:

e the |atest posts from our mailing-lists
o the latest commits to our SVN trunk

e the buzz around Groovy in the blogosphere

And below, you will find the latest announcements:

| Thursday, December 6, 2007
Groovy Maven Plugin 1.0-beta-3 Released

The latest Groovy + Maven2 integration is ready for mass-consumption and overwhelming build joy.

Some of the new goodies:

e Completely rewritten core, which allows the Groovy runtime version to be changed.

e Brand new stub-generator that preserves Javadocs (so the standard maven-javadoc-plugin works
with it).

e org.codehaus. noj o: gr oovy- maven- pl ugi n has been crafted to provided a link to the
or g. codehaus. nbj 0. gr oovy: gr oovy- maven- pl ugi n, which means that nvn groovy: shel | works!

For more details see the Groovy Maven Plugin.

Posted at 06 Dec @ 10:43 PM by /', Jason Dillon | [0 comments | Edit

|z Wednesday, November 28, 2007
RC-3 is there, try it while it's hot

Groovy 1.1-RC-3 is out of the oven. You should download® it and try it to see if it works for you, and
please report any bug or problem you encounter, to make sure we release a rock-solid 1.1 release!

Posted at 28 Nov @ 5:33 PM by /| glaforge | [0 comments | Edit

Document generated by Confluence on Dec 07, 2007 12:38 Page 13

http://docs.codehaus.org/display/GROOVY/latest+posts+from+our+mailing-lists
http://docs.codehaus.org/display/GROOVY/latest+commits+to+our+SVN+trunk
http://docs.codehaus.org/display/GROOVY/buzz+around+Groovy+in+the+blogosphere
http://display/GROOVY/2007/12/06
http://display/GROOVY/2007/12/06/Groovy+Maven+Plugin+1.0-beta-3+Released
http://display/GROOVY/Groovy+Maven+Plugin
http://display/~user57
http://display/GROOVY/2007/12/06/Groovy+Maven+Plugin+1.0-beta-3+Released?showComments=true#comments
http://pages/editblogpost.action?pageId=34308117
http://display/GROOVY/2007/11/28
http://display/GROOVY/2007/11/28/RC-3+is+there%2C+try+it+while+it%27s+hot
http://groovy.codehaus.org/Download
http://display/~glaforge
http://display/GROOVY/2007/11/28/RC-3+is+there%2C+try+it+while+it%27s+hot?showComments=true#comments
http://pages/editblogpost.action?pageId=32342068

Advanced Usage Guide

This page last changed on Aug 21, 2007 by jhermann.

This guide provides information that you don't need when first starting to learn Groovy but can come in

handy when you want to push the boundaries of the language or improve your Groovy style.

Ant Task Troubleshooting
BuilderSupport
e Compiling Groovy

° Compiling With Maven?2
e Design Patterns with Groovy

° Abstract Factory Pattern

° Adapter Pattern

° Bouncer Pattern

° Chain of Responsibility Pattern

° Composite Pattern

° Decorator Pattern

° Delegation Pattern

° Flyweight Pattern

° Iterator Pattern

° Loan my Resource Pattern

° Null Object Pattern

° Pimp my Library Pattern

° Proxy Pattern

° Singleton Pattern

° State Pattern

° Strategy Pattern

° Template Method Pattern

° Visitor Pattern
e Dynamic language beans in Spring
e Embedding Groovy
¢ Influencing class loading at runtime
e Make a builder
e Mixed Java and Groovy Applications
e Optimising Groovy bytecodes with Soot
e Refactoring with Groovy
° Introduce Assertion
° Replace Inheritance with Delegation

e Security
e Writing Domain-Specific Languages

Document generated by Confluence on Dec 07, 2007 12:38

Page 14

Ant Task Troubleshooting

This page last changed on Oct 20, 2007 by paulk_asert.

Ant Task Troubleshooting

The Common Problem

Very often, the groovy or groovyc tasks fail with a ClassNotFoundException for the class
GroovySourceAst.

The Reason

If it's failing with a ClassNotFoundException for a class other than GroovySourceAst, welcome to Ant. As
the Ant manual for external tasks says, " Don't add anything to the CLASSPATH environment variable -
this is often the reason for very obscure errors. Use Ant's own mechanisms for adding libraries." And as
its library directories section says, "Ant should work perfectly well with an empty CLASSPATH
environment variable, something the the -noclasspath option actually enforces. We get many more
support calls related to classpath problems (especially quoting problems) than we like." So try running
Ant as ant -nocl asspat h, or even alias ant to that in your shell.

If the class that isn't found is GroovySourceAst and the above doesn't help, somewhere you have a
conflicting antlr in your classpath. This may be because you are using maven and one of this parts is
polluting the classpath or you have a different antlr jar in your classpath somewhere.

Solution 1: groovy-all

Use the groovy-all-VERSION.jar from the groovy distribution and not the normal groovy jar. The
groovy-all-VERSION.jar does already contain antlr and asm libs in a seperate namespace so there should
be no conflict with other libs around.

Solution 2: using loaderref

Sometimes it's not possible to use the groovy-all-VERSION.jar, for example because you want to build
groovy before creating the jar. In this case you have to add a loaderref to the task definition. But that
alone will not help. You have to add the rootLoaderRef task to set this loader reference. For example:

<t askdef nanme="r oot Loader Ref "
cl assnane="or g. codehaus. gr oovy. ant . Root Loader Ref "
cl asspat href ="t ask. cl asspat h"/ >

<r oot Loader Ref ref="tnp. groovy. groovyc">
<cl asspat h refi d="execution.classpath"/>
</ r oot Loader Ref >

<r oot Loader Ref />

Document generated by Confluence on Dec 07, 2007 12:38 Page 15

http://ant.apache.org/manual/using.html#external-tasks
http://ant.apache.org/manual/running.html#libs

<t askdef name="groovy"
cl assnane="or g. codehaus. gr oovy. ant . G- oovy"
| oaderref ="t np. groovy. groovyc"/ >

The groovy task will now be created using the tmp.groovy.groovyc class loader, which tries to avoid
loading conflicting jars like antlr. It's important to execute the rootLoaderRef task once before the taskdef
using the loaderref defined by the rootLoaderRef.

Solution 3: appropriate classpath set up

You may need to adjust your classpath setup to include the jars you are trying to use. For instance, if you
have placed the groovy jar in your Ant LIB folder, then Groovy will be in Ant's root classloader. If you

now wish to refer to an external library, e.g. a JDBC driver, you may need to place that library also in
your Ant LIB folder so that it is visible in the same classLoader as Groovy. See the loaderref discussion
above also.

Also, the Groovy distribution doesn't include the entire Ant distribution. If you are using some optional
Ant tasks, you may need to add some additional jars to your classpath to use the additional features.
Here is an incomplete list of some Ant tasks which require additional jars:

Ant Task Additional Jar(s)
junitreport ant-trax.jar, xercesImpl.jar, xml-apis.jar
mail mail.jar, activation.jar, smtp.jar (if using SMTP),

ant-javamail.jar (if sending MIME email)

sql your_JDBC_driver

All Solved?

No, both Solutions will not help if you have conflicting ant jars or common-logging jars somewhere.
Solution 2 is able to solve much more difficult jar problems as long as your classpath is as clean as
possible. if you want to be on the safe side you have to fork the javaVM which means you have to use the
task like this:

<l-- |lets fork a JVMto avoid classpath hell -->
<j ava cl assnane="or g. codehaus. groovy. ant. G oovyc" fork="yes" failonerror="true">
<cl asspath refid="project.classpath"/>
<arg value="${buil d.classes.dir}"/>
<arg val ue="${src.dir}"/>
</java>

References

e Ant Integration with Groovy
e Developing Custom Tasks

Document generated by Confluence on Dec 07, 2007 12:38 Page 16

http://ant.apache.org/manual/develop.html

BuilderSupport

This page last changed on Apr 04, 2007 by mszklano.

I was curious how the abstract BuildSupport class is working that does all those great things for e.g. the
SwingBuilder and AntBuilder.

So I wrote the following Groovy Test that exposes its behaviour:

package groovy. uti

cl ass Spoof Bui | der extends Bui | der Support{

def log =[]
protected void setParent (Object parent, Object child){
log << "sp"

| og << parent
log << child

prot ected Object createNode(Object nane){

log << 'cnl'
|l og << nane
return 'x

protected Object createNode(Object nane, Object val ue){
log << 'cn2'
| og << nane
| og << val ue
return 'x

protected Object createNode(Object nane, Map attri butes){
log << 'cn3'
| og << nane
attributes. each{entry -> log << entry.key; log << entry. val ue}
return 'x'

prot ected Object createNode(Object nane, Map attributes, bject val ue){
log << 'cn4’
| og << nane
attributes. each{entry -> log << entry. key; log << entry. val ue}
| og << val ue
return 'x

protected void nodeConpl et ed(Obj ect parent, Object node) {
log << 'nc'
| og << parent
| og << node

}

/1 sinple node
def b = new Spoof Bui | der ()

assert b.log == []
def node = b.foo()
assert b.log == ['cnl','foo',"'nc',null, node]

/1 sinple node with val ue

def b = new Spoof Bui | der ()

def node = b.foo('value')

assert b.log == ['cn2','foo0',"'value', 'nc',null, node]

/1 sinple node with one attribute
def b = new Spoof Bui | der ()
def node = b.foo(nane:"'value')
assert b.log == [
‘cn3','foo', 'nane','value', 'nc',null,"'x"]

/1 how is closure applied?
def b = new Spoof Bui | der ()
b. foo() {

Document generated by Confluence on Dec 07, 2007 12:38 Page 17

b. bar ()

assert b.log ==

‘cnl', ' foo'
‘cnl', ' bar',

"sp', 'x', 'x',
‘nc','x',"'x",

‘nc',null,"x"]

The SpoofBuilder is a sample instance of the abstract BuilderSupport class that does nothing but logging
how it was called, returning 'x' for each node.

The test sections call the SpoofBuilder in various ways and the log reveals what methods were called
during the "Build".

This test allowed me to verify my assumption on how the builder pattern works here. I used this
knowledge to write a specialized AntBuilder for

Canoo WebTest

. This "MacroStepBuilder" allows using the Canoo WebTest "steps" (that walk through a webapp for
testing) from Groovy Code. Groovy has now become a first-class citizen in the

Canoo WebTest Community

When writing the above test I stumbled over a few things, here are two of them:

¢ I was not able to write a fully fledged subclass of GroovyTestCase with separate methods for the
various tests. I couldn't find out how to make the SpoofBuilder an inner class of my TestCase. I
would very much appreciate help on this.

e Coming from Ruby I expected the << operator on Strings to operate on the String itself (like it does
on Lists) rather than giving back a modified copy. It appears to me that << on Strings and on Lists
is not consistent. Same with the "+" operator.

What I especially appreciated:

e == on Lists is clear and compact
o display of evaluated expression when assert fails saves a lot of work when writing assertions. Most
of the time you need no extra message.

keep up the good work!
mittie

Document generated by Confluence on Dec 07, 2007 12:38 Page 18

http://webtest.canoo.com
http://webtest-community.canoo.com/wiki/space/Groovy

Compiling Groovy

This page last changed on Sep 04, 2007 by biafra.

There are various options for compiling Groovy code and then either running it or using the Java objects
it creates in Java code.

Compling Groovy code to bytecode using a script

There is an Ant task called groovyc which works pretty similarly to the javac Ant task which takes a
bunch of groovy source files and compiles them into Java bytecode. Each groovy class then just becomes
a normal Java class you can use inside your Java code if you wish.

Indeed the generated Java class is indistinguishable from a normal Java class, other than it implements
the

GroovyObject interface.

Compiling Groovy code to bytecode using Ant and Maven

The groovyc Ant task is implemented by the Groovyc class. You can see an example of this in action
inside Groovy's maven.xml file (just search for 'groovyc')

There is also an excellent article on DeveloperWorks which will show you how to compile Groovy code
from within Maven, similarly to what is done with Ant.

You can also use the Ant task from within Maven2,
or the groovy-maven-plugin

Dynamically using Groovy inside Java applications

If you don't want to explicitly compile groovy code to bytecode you can just
embed groovy directly into your Java application.

Runtime dependencies

As well as Java 1.4, or above, and the Groovy jar we also depend at runtime on the ASM library (asm and
asm-tree mainly), as well as Antlr. You can also use the groovy-all-xxx.jar from your
GROOVY_HOME/embeddable directory, which embeds ASM and Antlr in its own namespace, to avoid Jar
version hell.

Document generated by Confluence on Dec 07, 2007 12:38 Page 19

http:/apidocs/groovy/lang/GroovyObject.html
http://docs.codehaus.org/display/GROOVY/Groovyc+Ant+Task
http:/apidocs/org/codehaus/groovy/ant/Groovyc.html
http://www-128.ibm.com/developerworks/java/library/j-pg11094/
http://display/GROOVY/Compiling+With+Maven2
http://mojo.codehaus.org/groovy/
http:/Embedding+Groovy

Compiling With Maven2

This page last changed on Sep 24, 2006 by paulk_asert.

Here's an example of a Maven?2 build using the Ant plugin to compile a groovy project. Note that the Ant
plugin is bound to the compile and test-compile phases of the build in the example below. It will be
invoked during these phases and the contained tasks will be carried out which runs the Groovy compiler
over the source and test directories. The resulting Java classes will coexist with and be treated like any
standard Java classes compiled from Java source and will appear no different to the JRE, or the JUnit
runtime.

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="htt p: // maven. apache. or g/ POM 4. 0. 0
http:// maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>com myconp. MyGr oovy</ gr oupl d>
<artifact!d>M/G oovy</artifactld>
<packagi ng>j ar </ packagi ng>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<nanme>Maven Exanpl e buil ding a G oovy project</nane>
<dependenci es>
<dependency>
<groupl d>j uni t </ gr oupl d>
<artifactld>junit</artifactld>
<versi on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
<dependency>
<gr oupl d>gr oovy</ gr oupl d>
<artifactld>groovy-all-1.0-jsr</artifactld>
<ver si on>05</ ver si on>
</ dependency>
</ dependenci es>
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifact!ld>maven-antrun-plugin</artifactld>
<executi ons>
<execut i on>
<i d>conpi |l e</i d>
<phase>conpi | e</ phase>
<confi guration>
<t asks>
<t askdef nanme="groovyc"
cl assnane="or g. codehaus. gr oovy. ant . G oovyc" >
<cl asspath refid="maven. conpil e. cl asspath"/ >
</t askdef >
<mkdir dir="${project.build. outputDirectory}"/>
<groovyc destdir="${project.build. outputDirectory}"
srcdir="${basedir}/src/ main/groovy/" listfiles="true">
<cl asspath refi d="nmaven. conpil e. cl asspath"/>
</ groovyc>
</t asks>
</ configuration>
<goal s>
<goal >run</ goal >
</ goal s>
</ executi on>
<execut i on>
<i d>test-conpil e</id>
<phase>t est - conpi | e</ phase>
<confi guration>
<t asks>
<t askdef name="groovyc"
cl assnane="or g. codehaus. gr oovy. ant . G oovyc" >
<cl asspat h refid="maven. conpil e. cl asspath"/>
</t askdef >
<nkdir dir="${project.build.testQutputDirectory}"/>
<groovyc destdir="${project.build.testQutputDirectory}"
srcdir="${basedir}/src/test/groovy/" listfiles="true">

Document generated by Confluence on Dec 07, 2007 12:38 Page 20

<cl asspath refid="nmaven.test.cl asspath"/>
</ groovyc>
</ tasks>
</ confi guration>
<goal s>
<goal >run</ goal >
</ goal s>
</ execut i on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

This assumes you have a Maven project setup with "groovy" subfolders as peers to the java src and test
subfolders. You can use the java/jar archetype to set this up then rename the java folders to groovy or
keep the java folders and just create groovy peer folders. There exists, also a groovy plugin which has
not been tested or used in production. After defining the build section as in the above example, you can
invoke the typical Maven build phases normally. For example, "mvn test" will execute the test phase,
compiling Groovy source and Groovy test source and finally executing the unit tests. If you run "mvn jar"
it will execute the jar phase bundling up all of your compiled production classes into a jar after all of the
unit tests pass. For more detail on Maven build phases consult the Maven2 documentation.

Document generated by Confluence on Dec 07, 2007 12:38 Page 21

Design Patterns with Groovy

This page last changed on Aug 07, 2007 by paulk_asert.

Usi

ng design patterns with Java is a well-established topic. Design patterns also apply to Groovy:

e some patterns carry over directly (and can make use of normal Groovy syntax improvements for
greater readability)

e some patterns are no longer required because they are built right into the language or because
Groovy supports a better way of achieving the intent of the pattern

e some patterns that have to be expressed at the design level in other languages can be implemented

directly in Groovy (due to the way Groovy can blur the distinction between design and
implementation)

Patterns

e Abstract Factory Pattern
e Adapter Pattern
e Bouncer Pattern

¢ Chain of Responsibility Pattern

e Composite Pattern
e Decorator Pattern
e Delegation Pattern

e Flyweight Pattern
e Tterator Pattern

e Loan my Resource Pattern
e Null Object Pattern

e Pimp my Library Pattern

e Proxy Pattern

e Singleton Pattern

e State Pattern

e Strategy Pattern

e Template Method Pattern
e Visitor Pattern

References

w

Document generated by Confluence on Dec 07, 2007 12:38

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley. ISBN 0-201-63361-2.

e The canonical reference of design patterns.
Martin Fowler (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley. ISBN
0-201-48567-2.
. Joshua Kerievsky (2004). Refactoring To Patterns. Addison-Wesley. ISBN 0-321-21335-1.
Eric Freeman, Elisabeth Freeman, Kathy Sierra, Bert Bates (2004). Head First Design Patterns.
O'Reilly. ISBN 0-596-00712-4.

e A great book to read, informative as well as amusing.
Dierk Koenig with Andrew Glover, Paul King, Guillaume Laforge and Jon Skeet (2007). Groovy in
Action. Manning. ISBN 1-932394-84-2.

e Discusses Visitor, Builder and other Patterns.
Brad Appleton (1999). Pizza Inversion - a Pattern for Efficient Resource Consumption.

Page 22

http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
http://www.cmcrossroads.com/bradapp/docs/pizza-inv.html

e One of the most frequently used patterns by many software engineers!

See also: Refactoring with Groovy

Document generated by Confluence on Dec 07, 2007 12:38 Page 23

Abstract Factory Pattern

This page last changed on May 24, 2007 by paulk_asert.

The Abstract Factory Pattern provides a way to encapsulate a group of individual factories that have a
common theme. It embodies the intent of a normal factory, i.e. remove the need for code using an
interface to know the concrete implementation behind the interface, but applies to a set of interfaces and
selects an entire family of concrete classes which implement those interfaces.

As an example, I might have interfaces Button, TextField and Scrollbar. I might have WindowsButton,
MacButton, FlashButton as concrete classes for Button. I might have WindowsScrollBar, MacScrollBar and
FlashScrollBar as concrete implementations for ScrollBar. Using the Abstract Factory Pattern should allow
me to select which windowing system (i.e. Windows, Mac, Flash) I want to use once and from then on
should be able to write code that references the interfaces but is always using the appropriate concrete
classes (all from the one windowing system) under the covers.

Example

Suppose we want to write a game system. We might note that many games have very similar features
and control.

We decide to try to split the common and game-specific code into separate classes.

First let's look at the game-specific code for a Two-up game:

cl ass TwoupMessages {
def wel come = 'Wel come to the twoup gane, you start wth $1000'
def done = 'Sorry, you have no noney |eft, goodbye'

}

cl ass Twoupl nput Converter {
def convert(input) { input.tolnteger() }
}

cl ass TwoupControl {
private noney = 1000
private random = new Randon()
private tossWasHead() {
def next = random nextlnt ()
return next %2 == 0

def noreTurns() {
if (rmoney > 0) {
println "You have $nmoney, how nuch would you |ike to bet?"
return true

return false

def play(anmount) {

def coinl = tossWasHead()

def coin2 = tossWasHead()

if (coinl & coin2) {
noney += anount
println 'You wn'

} else if (!coinl & & !coin2) {
noney -= anount
println 'You | ose'

} else println 'Draw

Document generated by Confluence on Dec 07, 2007 12:38 Page 24

http://en.wikipedia.org/wiki/Abstract_factory_pattern
http://en.wikipedia.org/wiki/Two-Up

Now, let's look at the game-specific code for a number guessing game:

cl ass GQuessGaneMessages {
def welconme ='Wl cone to the guessing gane, ny secret nunber is between 1 and 100
def done = 'Correct’

}

cl ass GuessGanel nput Converter {
def convert(input) { input.tolnteger() }
}

cl ass GuessGaneControl {

private |ower = 1
private upper = 100
private guess = new Randon{(). next|nt(upper - |ower) + |ower

def moreTurns() {

def done = (lower == guess || upper == guess)
if ('done) println "Enter a nunber between $l ower and $upper"
I done

def play(next Guess) {
i f (nextGuess <= guess) | ower
i f (nextQuess >= guess) upper

[l ower, nextGuess]. max()
[upper, next Guess].m n()

Now, let's write our factory code:

def guessFactory = [nmessages: GuessGaneMessages, control: GuessGanmeControl ,
converter: GuessGanel nput Converter]

def twoupFactory = [nessages: TwoupMessages, control: TwoupControl,

convert er: Twoupl nput Converter]

cl ass GaneFactory {
def static factory
def static getMessages() { return factory.nessages. new nstance() }
def static getControl () { return factory.control.new nstance() }
def static getConverter() { return factory.converter.new nstance() }

The important aspect of this factory is that it allows selection of an entire family of concrete classes.

Here is how we would use the factory:

GaneFactory. factory = twupFactory
def nessages = GaneFactory. nessages
def control = GameFactory. control
def converter = GaneFactory. converter
println nessages. wel cone
def reader = new BufferedReader (new | nput St r eanReader (System i n))
while (control.noreTurns()){
def input = reader.readLine().trinm()
control . play(converter.convert (input))

}

println messages. done

Note that the first line configures which family of concrete game classes we will use. It's not important
that we selected which family to use by using the factory property as shown in the first line. Other ways
would be equally valid examples of this pattern. For example, we may have asked the user which game
they wanted to play or determined which game from an environment setting.

With the code as shown, the game might look like this when run:

Document generated by Confluence on Dec 07, 2007 12:38 Page 25

Wl cone to the twoup ganme, you start with $1000
You have 1000, how nmuch would you like to bet?
300

Dr aw

You have 1000, how nuch would you like to bet?
700

You win

You have 1700, how nuch would you like to bet?
1700

You | ose

Sorry, you have no noney |eft, goodbye

If we change the first line of the script to GaneFactory. factory = guessFactory, then the sample run
might look like this:

Wel cone to the guessing gane, ny secret nunber is between 1 and 100
Enter a nunber between 1 and 100

Enter a nunber between 1 and 75
Enter a nunmber between 1 and 35
Enter a nunber between 1 and 15
Enter a nunmber between 5 and 15

Correct

Document generated by Confluence on Dec 07, 2007 12:38 Page 26

Adapter Pattern

This page last changed on May 19, 2007 by paulk_asert.

The Adapter Pattern (sometimes called the wrapper pattern) allows objects satisfying one interface to be
used where another type of interface is expected. There are two typical flavours of the pattern: the
delegation flavour and the inheritance flavour.

Delegation Example

Suppose we have the following classes (inspired by this):

cl ass Squar ePeg {

def width
}
cl ass RoundPeg {
def radius
}

cl ass RoundHol e {
def radius

def pegFits(peg) {
peg. radi us <= radi us

}
String toString() { "RoundHol e with radius $radius" }

We can ask the RoundHol e class if a RoundPeg fits in it, but if we ask the same question for a Squar ePeg,
then it will fail because the Squar ePeg class doesn't have a r adi us property (i.e. doesn't satisfy the
required interface).

To get around this problem, we can create an adapter to make it appear to have the correct interface. It
would look like this:

cl ass Squar ePegAdapt er {
def peg
def getRadius() {
Mat h. sqrt (((peg. wi dth/2) ** 2)*2)

}
String toString() {
" Squar ePegAdapter with peg wi dth $peg.wi dth (and notional radius $radius)"

We can use the adapter like this:

def hol e = new RoundHol e(radi us: 4. 0)
(4..7).each { w->
def peg = new Squar ePegAdapt er (peg: new Squar ePeg(wi dt h: w))
if (hol e.pegFits(peg))
println "peg $peg fits in hole $hol e"
el se
println "peg $peg does not fit in hole $hol e"

Which results in the following output:

Document generated by Confluence on Dec 07, 2007 12:38 Page 27

http://en.wikipedia.org/wiki/Adapter_pattern
http://www.rubygarden.org/Ruby/page/show/AdaptorPattern

peg Squar ePegAdapter with peg width 4 (and notional radius 2.8284271247461903) fits in hole
RoundHol e with radius 4.0

peg Squar ePegAdapter with peg width 5 (and notional radius 3.5355339059327378) fits in hole
RoundHol e with radius 4.0

peg Squar ePegAdapter with peg width 6 (and notional radius 4.242640687119285) does not fit in
hol e RoundHol e with radius 4.0

peg Squar ePegAdapter with peg width 7 (and notional radius 4.949747468305833) does not fit in
hol e RoundHol e with radius 4.0

Inheritance Example

Let's consider the same example again using inheritance. First, here are the original classes (unchanged):

cl ass Squar ePeg {

def width
}
cl ass RoundPeg {
def radius
}

cl ass RoundHol e {
def radius
def pegFits(peg) {
peg. radi us <= radi us

}
String toString() { "RoundHol e with radius $radius" }

An adapter using inheritance:

cl ass Squar ePegAdapt er extends SquarePeg {
def getRadius() {
Mat h. sqrt (((wi dth/2) ** 2)*2)

}
String toString() {

" Squar ePegAdapter with width $width (and notional radius $radius)"
}

Using the adapter:

def hol e = new RoundHol e(radi us: 4. 0)
(4..7).each { w->
def peg = new Squar ePegAdapt er (wi dt h: w)
if (hol e.pegFits(peg))
println "peg $peg fits in hole $hol e"
el se
println "peg $peg does not fit in hole $hol e"

The output:

peg Squar ePegAdapter with width 4 (and notional radius 2.8284271247461903) fits in hole
RoundHol e with radius 4.0

peg Squar ePegAdapter with width 5 (and notional radius 3.5355339059327378) fits in hole
RoundHol e with radius 4.0

peg Squar ePegAdapter with width 6 (and notional radius 4.242640687119285) does not fit in hole
RoundHol e with radius 4.0

Document generated by Confluence on Dec 07, 2007 12:38 Page 28

peg Squar ePegAdapter with width 7 (and notional radius 4.949747468305833) does not fit in hole
RoundHol e with radius 4.0

Adapting using Closures

As a variation of the previous examples, we could instead define the following interface:

i nterface RoundThi ng {
def get Radi us()
}

We can then define an adapter as a closure as follows:

def adapter = {
p -> [getRadius: {Math.sqrt(((p.w dth/2) ** 2)*2)}] as RoundThi ng
}

And use it like this:

def peg = new Squar ePeg(w dt h: w)
i f (hol e.pegFits(adapter(peg)))
[l ... as before

Adapting using the ExpandoMetaClass

As of Groovy 1.1, there is a built-in MetaClass which can automatically add properties and methods
dynamically.

Here is how the example would work using that feature:

def peg = new Squar ePeg(w dt h: w)
peg. net ad ass.radius = Math.sqgrt(((peg.w dth/2) ** 2)*2)

After you create a peg object, you can simply add a property to it on the fly. No need to change the
original class and no need for an adapter class.

Note that at the moment you have to be using Groovy 1.1 (currently in beta) and you have to initialise
the new MetaClass with the following code:

GroovySyst em net aCl assRegi stry. net all assCreati onHandl e = new ExpandoMet adl assCr eat i onHandl e()

The need for this last line may go away before the final release of Groovy 1.1.

Document generated by Confluence on Dec 07, 2007 12:38 Page 29

Bouncer Pattern

This page last changed on May 12, 2007 by paulk_asert.

The Bounder Pattern describes usage of a method whose sole purpose is to either throw an exception
(when particular conditions hold) or do nothing. Such methods are often used to defensively guard
pre-conditions of a method.

When writing utility methods, you should always guard against faulty input arguments. When writing
internal methods, you may be able to ensure that certain pre-conditions always hold by having sufficient
unit tests in place. Under such circumstances, you may reduce the desirability to have guards on your
methods.

Groovy differs from other languages in that you frequently use the assert method within your methods
rather than having a large number of utility checker methods or classes.

Null Checking Example

We might have a utility method such as:

cl ass Nul | Checker {
static check(name, arg) {
if (arg == null)
throw new ||| egal Argument Exception(name + " is null")

And we would use it like this:

public void doStuff(String name, Object value) {
Nul | Checker. check("nanme", nane);
Nul | Checker . check("val ue", val ue);
/1 do stuff

But a more Groovy way to do this would simply be like this:

public void doStuff(String nane, Object value) {

assert nanme != null, 'nane should not be null’
assert value != null, 'value should not be null’
/] do stuff

Validation Example

As an alternative example, we might have this utility method:

public class Nunber Checker {
static final NUVBER PATTERN = /\d+(\.\d+(E-?\d+)?)?/
static isNunmber(str) {

Document generated by Confluence on Dec 07, 2007 12:38 Page 30

http://www.c2.com/cgi/wiki?BouncerPattern

if (!str ==~ NUVBER_PATTERN)
throw new ||| egal Argunent Exception(/Argunent '$str' nust be a nunber/)

}
static isNotZero(nunber) {
if (nunber ==
throw new |11 egal Argunent Exception(' Argunent must not be 0')
}

And we would use it like this:

def stringDivide(String dividendStr, String divisorStr) {
Nunmber Checker . i sNunber (di vi dendStr)
Nunber Checker . i sNunber (di vi sor Str)
def dividend = dividendStr.toDoubl e()
def divisor = divisorStr.toDoubl e()
Nunmber Checker . i sNot Zer o(di vi sor)
di vidend / divisor

}
println stringD vide('1.2E2', '3.0")
/1 =>40.0

But with Groovy we could just as easily use:

def stringDivide(String dividendStr, String divisorStr) {
assert dividendStr =~ Nunmber Checker. NUMBER_PATTERN
assert divisorStr =~ Nunber Checker. NUVBER PATTERN
def dividend = dividendStr.toDoubl e()
def divisor = divisorStr.toDoubl e()
assert divisor != 0, 'Divisor nust not be 0
di vidend / divisor

Document generated by Confluence on Dec 07, 2007 12:38 Page 31

Chain of Responsibility Pattern

This page last changed on May 14, 2007 by paulk_asert.

In the Chain of Responsibility Pattern, objects using and implementing an interface (one or more
methods) are intentionally loosely coupled. A set of objects that implement the interface are organised in
a list (or in rare cases a tree). Objects using the interface make requests from the first implementor
object. It will decide whether to perform any action itself and whether to pass the request further down
the line in the list (or tree). Sometimes a default implementation for some request is also coded into the
pattern if none of the implementors respond to the request.

Example

In this example, the script sends requests to the | i st er object. The | i st er points to a Uni xLi st er
object. If it can't handle the request, it sends the request to the W ndowsLi st er. If it can't handle the
request, it sends the request to the Def aul t Li ster.

cl ass Uni xLister {
private nextlnLine
Uni xLi ster(next) { nextlnLine = next }
def listFiles(dir) {
if (System getProperty('os.nanme') == 'Linux")
println "lIs $dir". execute().text
el se
nextlnLine.listFiles(dir)

}

cl ass W ndowsLi ster {
private nextlnLine
W ndowsLi ster(next) { nextlnLine = next }
def listFiles(dir) {
if (System getProperty('os.nanme') == 'Wndows XP')
println "cnd.exe /c dir $dir".execute().text
el se
nextlnLine.listFiles(dir)

}
class Defaul tLister {
def listFiles(dir) {
new File(dir).eachFile{ f -> println f }
}
}

def lister = new UnixLi ster(new W ndowsLi ster(new DefaultLister()))

lister.listFiles(' Downl oads')

The output will be a list of files (with slightly different format depending on the operating system).

Here is a UML representation:

Document generated by Confluence on Dec 07, 2007 12:38 Page 32

http://en.wikipedia.org/wiki/Chain_of_responsibility_pattern

Script UnixLister

............ == - nextinline: Object

+ listFiles{dir} : void

]
forward fRequired

WindowsLister

- nextinLine: Object

+ listFiles{dir} : void

N

forward fRequired

y

DefaultLister

+ listFiles{dir} : void

Variations to this pattern:

¢ we could have an explicit interface, e.g. Li st er, to statically type the implementations but because
of duck-typing this is optional

e we could use a chain tree instead of a list, e.g. i f (ani mal . hasBackbone()) delegate to
Vert ebr at eHandl er else delegate to | nvert ebr at eHand! er

e we could always pass down the chain even if we processed a request

e we could decide at some point to not respond and not pass down the chain

e we could use Groovy's meta-programming capabilities to pass unknown methods down the chain

Document generated by Confluence on Dec 07, 2007 12:38 Page 33

Composite Pattern

This page last changed on May 07, 2007 by paulk_asert.

The Composite Pattern allows you to treat single instances of an object the same way as a group of
objects. The pattern is often used with hierarchies of objects. Typically, one or more methods should be
callable in the same way for either leaf or composite nodes within the hierarchy. In such a case,
composite nodes typically invoke the same named method for each of their children nodes.

An Example

Consider this usage of the composite pattern where we want to call t oStri ng() on either Leaf or
Conposi t e objects.

ComponentClient Component
"""""""" R = + toString{) : void
children
1
Leaf Composite
sComponent sComponent
+ toString() : void + toString() : void

In Java, the Conponent class is essential as it provides the type used for both leaf and composite nodes.
In Groovy, because of duck-typing, we don't need it for that purpose, however, it can still server as a
useful place to place common behaviour between the leaf and composite nodes.

For our purposes, we will assemble the following hierarchy of components.

Document generated by Confluence on Dec 07, 2007 12:38 Page 34

http://en.wikipedia.org/wiki/Composite_pattern

leaf A comp B

leaf B1 leaf B2

Here is the code:

abstract class Conponent {

def nane
def toString(indent) {

("-" * indent) + nane
}

}

cl ass Conposite extends Conponent {
private children =[]
def toString(indent) {
def s = super.toString(indent)
children.each{ child ->

}

return s

s += "\n" + child.toString(indent+1)

}

def | eftShift(conmponent) {
children << conponent

}

}
cl ass Leaf extends Conponent {}

def root = new Conposite(name:"root")
root << new Leaf (nane: "l eaf A")

def conp = new Conposite(nane:"conp B")
root << conp

root << new Leaf (nane:"leaf C')

conmp << new Leaf (nane:"|eaf B1")

conmp << new Leaf (nane:"|eaf B2")
println root.toString(0)

Here is the resulting output:

root
-leaf A
-conp B
--leaf Bl

Document generated by Confluence on Dec 07, 2007 12:38

Page 35

--leaf B2
-leaf C

Document generated by Confluence on Dec 07, 2007 12:38 Page 36

Decorator Pattern

This page last changed on May 22, 2007 by paulk_asert.

The Decorator Pattern provides a mechanism to embellish the behaviour of an object without changing its
essential interface. A decorated object should be able to be substituted wherever the original
(non-decorated) object was expected. Decoration typically does not involve modifying the source code of
the original object and decorators should be able to be combined in flexible ways to produce objects with
several embellishments.

Traditional Example

Suppose we have the following Logger class.

cl ass Logger {
def log(String nmessage) {
println message
}

There might be times when it is useful to timestamp a log message, or times when we might want to
change the case of the message. We could try to build all of this functionality into our Logger class. If we
did that, the Logger class would start to be very complex. Also, everyone would obtain all of features
even when they might not want a small subset of the features. Finally, feature interaction would become
quite difficult to control.

To overcome these drawbacks, we instead define two decorator classes. Uses of the Logger class are free
to embellish their base logger with zero or more decorator classes in whatever order they desire. The
classes look like this:

cl ass Ti meSt anpi ngLogger extends Logger {
private Logger | ogger
Ti meSt anpi ngLogger (1 ogger) {
this. |l ogger = | ogger

}
def log(String nessage) ({
def now = Cal endar. i nst ance
| ogger .| og("$now. time: $message")

}

cl ass UpperLogger extends Logger {
private Logger | ogger

Upper Logger (1 ogger) {
this.logger = | ogger

}
def log(String nessage) {

| ogger . | og(nessage. t oUpper Case())
}

We can use the decorators like so:

def | ogger = new Upper Logger (new Ti meSt anpi ngLogger (new Logger ()))
| ogger. |l og("G day Mate")
/1 => Tue May 22 07:13:50 EST 2007: G DAY MATE

Document generated by Confluence on Dec 07, 2007 12:38 Page 37

http://en.wikipedia.org/wiki/Decorator_pattern

You can see that we embellish the logger behaviour with both decorators. Because of the order we chose
to apply the decorators, our log message comes out capitalised and the timestamp is in normal case. If
we swap the order around, let's see what happens:

| ogger = new Ti meSt anpi ngLogger (new Upper Logger (new Logger()))
| ogger.log('H There')
/1 => TUE MAY 22 07:13:50 EST 2007: H THERE

Now the timestamp itself has also been changed to be uppercase.

A touch of dynamic behaviour

Our previous decorators were specific to Logger objects. We can use Groovy's Meta-Object Programming
capabilities to create a decorator which is far more general purpose in nature. Consider this class:

cl ass GenericLower Decorator {
private del egate
Ceneri cLower Decor at or (del egate) {
this. del egate = del egate

}
def invokeMethod(String name, args) ({
def newargs = args.collect{ arg ->
if (arg instanceof String) return arg.tolLowerCase()
el se return arg

del egat e. i nvokeMet hod(nane, newar gs)

It takes any class and decorates it so that any St ri ng method parameter will automatically be changed
to lower case.

| ogger = new Generi cLower Decor at or (new Ti meSt anpi ngLogger (new Logger ()))
| ogger. |l og(' | MPORTANT Message')
[/l => Tue May 22 07:27:18 EST 2007: inportant nmessage

Just be careful with ordering here. The original decorators were restricted to decorating Logger objects.
This decorator work with any object type, so we can't swap the ordering around, i.e. this won't work:

/] Can't mx and match Interface-Oiented and Generic decorators
/1 1 ogger = new Ti meSt anpi ngLogger (new Generi cLower Decor at or (new Logger ()))

We could overcome this limitation be generating an appropriate Proxy type at runtime but we won't
complicate the example here.

Runtime behaviour embellishment

You can also consider using the ExpandoMet ad ass from Groovy 1.1 to dynamically embellish a class with
behaviour. This isn't the normal style of usage of the decorator pattern (it certainly isn't nearly as
flexible) but may help you to achieve similar results in some cases without creating a new class.

Document generated by Confluence on Dec 07, 2007 12:38 Page 38

Here's what the code looks like:

/'l current mechani smto enabl e ExpandoMet ad ass
GroovySystem net aCl assRegi stry. net all assCreati onHandl e = new ExpandoMet aCl assCr eat i onHandl e()

def | ogger = new Logger ()

| ogger.netaC ass.log = { String m-> println 'nessage: ' + mtoUpperCase() }
| ogger.log('x")

/1l => message: X

This achieves a similar result to applying a single decorator but we have no way to easily apply and
remove embellishments on the fly.

More dynamic decorating

Suppose we have a calculator class. (Actually any class would do.)

class Calc {
def add(a, b) { a + b}
}

We might be interested in observing usage of the class over time. If it is buried deep within our
codebase, it might be hard to determine when it is being called and with what parameters. Also, it might
be hard to know if it is performing well. We can easily make a generic tracing decorator that prints out
tracing information whenever any method on the Cal ¢ class is called and also provide timing information
about how long it took to execute. Here is the code for the tracing decorator:

cl ass Traci ngDecorator {
private del egate
Tr aci ngDecor at or (del egate) {
this. del egate = del egate
}

def invokeMethod(String name, args) ({
println "Calling $name$args"
def before = SystemcurrentTimeMI1is()
def result = del egate.invokeMet hod(nane, args)
println "Got $result in ${SystemcurrentTineMI|I|is()-before} ns"
resul t

Here is how to use the class in a script:

def tracedCal c = new Traci ngDecorator (new Cal c())
assert 15 == tracedCal c. add(3, 12)

And here is what you would see after running this script:

Cal | ing add{3, 12}
Got 15 in 31 ns

Decorating with an Interceptor

Document generated by Confluence on Dec 07, 2007 12:38 Page 39

The above timing example hooks into the lifecycle of Groovy objects (via i nvokeMet hod). This is such an
important style performing meta-programming that Groovy has special support for this style of
decorating using interceptors.

Groovy even comes with a built-in Traci ngl nt er cept or . We can extend the built-in class like this:

cl ass Ti m ngl nterceptor extends Tracinglnterceptor {
private beforeTi me
def beforel nvoke(object, String nethodNane, Cbject[] argunents) {
super . bef or el nvoke(obj ect, net hodNane, argunents)
beforeTine = SystemcurrentTimeM | lis()

}
public bject afterlnvoke(Object object, String nmethodName, Cbject[] argunments, Object
result) {
super . afterl nvoke(obj ect, met hodName, arguments, result)
def duration = SystemcurrentTineMIIlis() - beforeTime
witer.wite("Duration: $duration nms\n")
witer.flush()
return result

Here is an example of using this new class:

def proxy = ProxyMetaC ass. getlnstance(util. Calclnpl.class)
proxy.interceptor = new Ti m ngl nterceptor()
proxy. use {
assert 7 == new util.Calclnpl().add(1, 6)
}

And here is the output:

before util.Calclnpl.ctor()

after wutil.Calclnpl.ctor()

Duration: 0 ns

before util.Cal cl npl.add(java.lang.|nteger, java.lang.!|nteger)
after util.Calclnpl.add(java.lang.!|nteger, java.lang.!|nteger)
Duration: 16 ns

Decorating with Spring

The Spring Framework allows decorators to be applied with interceptors (you may have heard the terms
advice or aspect). You can leverage this mechanism from Groovy as well.

First define a class that you want to decorate (we'll also use an interface as is normal Spring practice):

Here's the interface:

package util

interface Calc {
def add(a, b)
}

Here's the class:

Document generated by Confluence on Dec 07, 2007 12:38 Page 40

http://www.springframework.org/

package util

class Calclnpl inplenents Calc {
def add(a, b) { a + b}
}

Now, we define our wiring in a file called beans. xm as follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance"
xm ns: [ang="htt p: // ww. spri ngfranewor k. or g/ schena/ | ang"
xsi : schemalLocat i on="
http: //ww. spri ngframewor k. or g/ schena/ beans
http://ww. spri ngframework. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springfranework. org/ schema/ | ang
http: //ww. spri ngframewor k. or g/ schena/ | ang/ spri ng-1| ang. xsd" >
<bean i d="performancel nterceptor" autow re="no"
cl ass="org. spri ngframewor k. aop. i nt er cept or. Per f or manceMoni t or | nt er cept or ">
<property nanme="| ogger Nane" val ue="perfornmance"/>
</ bean>
<bean id="cal c" class="util.Calclnpl"/>
<bean cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. BeanNaneAut oPr oxyCr eat or " >
<property name="beanNanes" val ue="cal c"/>
<property nane="interceptorNanmes" val ue="perfornmancel nterceptor"/>
</ bean>
</ beans>

Now, our script looks like this:

i mport org. springframework. cont ext. support. C assPat hXm Appl i cati onCont ext

def ctx = new C assPat hXm Appl i cati onCont ext ("beans. xm ")
def calc = ctx.getBean('calc')
println calc.add(3, 25)

And when we run it, we see the results:

21/ 05/ 2007 23:02: 35 org. springframewor k. aop. i ntercept or. PerfornmanceMnitorlnterceptor
i nvokeUnder Tr ace
FI NEST: StopWatch 'util.Calc.add': running tinme (mllis) = 16

Document generated by Confluence on Dec 07, 2007 12:38

You may have to adjust your | oggi ng. properti es file for messages at log level FI NEST to be displayed.

Page 41

Delegation Pattern

This page last changed on Jul 19, 2007 by paulk_asert.

The Delegation Pattern is a technique where an object's behavior (public methods) is implemented by
delegating responsibility to one or more associated objects.

Groovy allows the traditional style of applying the delegation pattern, e.g. see Replace Inheritance with
Delegation.

In addition, the ExpandoMetaClass allows usage of this pattern to be encapsulated in a library. This
allows Groovy to emulate similar libraries available for the Ruby language.

Consider the following library class:

cl ass Del egator {
private targetC ass
private del egate
Del egat or (target C ass, del egate) {
this.targetC ass = targetd ass
thi s. del egate = del egate

def del egate(String met hodNane) {
del egat e(met hodNane, net hodNane)

def del egate(String nethodName, String asMet hodNane) {
target Cl ass. net aCl ass. "$asMet hodNane" = del egat e. & $net hodNane"

def delegateAl |l (String[] nanes) {
nanmes. each { delegate(it) }

def del egateAl | (Map nanes) ({
nanmes. each { k, v -> delegate(k, v) }

def delegateAll () {
del egat e. cl ass. met hods*. nane. each { del egate(it) }

With this in your classpath, you can now apply the delegation pattern dynamically as shown in the
following examples. First, consider we have the following classes:

cl ass Person {
String nane
}

cl ass Mortgagelender {
def borrowAnmount (anount) {
"borrow \ $$anount "

}

def borrowFor (thing) {
"buy $t hi ng"

}

}
def | ender = new Mortgagelender ()

def del egator = new Del egat or (Person, |ender)

We can now use the delegator to automatically borrow methods from the /ender object to extend the
Person class. We can borrow the methods as is or with a rename:

Document generated by Confluence on Dec 07, 2007 12:38 Page 42

http://en.wikipedia.org/wiki/Delegation_pattern

del egat or . del egat e ' borr owFor'
del egat or. del egat e ' borrowAnount', ' get Money'

def p = new Person()

println p.borrowor (' present') /1 => buy present
println p.get Mney(50) /] => borrow $50

The first line above, adds the borrowFor method to the Person class by delegating to the /ender object.
The second line adds a getMoney method to the Person class by delegating to the /ender object's
borrowAmount method.

Alternatively, we could borrow multiple methods like this:

del egat or . del egateAl | ' borrowFor', 'borrowAmount'

Which adds these two methods to the Person class.

Or if we want all the methods, like this:

del egat or. del egateAl | ()

Which will make all the methods in the delegate object available in the Person class.

Alternatively, we can use a map notation to rename multiple methods:

del egat or . del egat eAl | borr owAmount : ' get Money', borrowFor: ' get Thi ng'

Document generated by Confluence on Dec 07, 2007 12:38 Page 43

Flyweight Pattern

This page last changed on May 13, 2007 by paulk_asert.

The Flyweight Pattern is a pattern for greatly reducing memory requirements by not requiring that
heavy-weight objects be created in large humbers when dealing with systems that contain many things
that are mostly the same. If for instance, a document was modeled using a complex character class that
knew about unicode, fonts, positioning, etc., then the memory requirements could be quite large for large
documents if each physical character in the document required its own character class instance. Instead,
characters themselves might be kept within Strings and we might have one character class (or a small
number such as one character class for each font type) that knew the specifics of how to deal with
characters.

In such circumstances, we call the state that is shared with many other things (e.g. the character type)
instrinsic state. It is captured within the heavy-weight class. The state which distinguishes the physical
character (maybe just its ASCII code or Unicode) is called its extrinsic state.

Example

First we are going to model some complex aircraft (the first being a hoax competitor of the second - not
that is relevant to the example).

cl ass Boei ng797 {
def w ngspan
def capacity
def speed = '1046 kn h'
def range = '14400 kni
...

'80.8 m
1000

cl ass Airbus380 {
def w ngspan '79.8 i
def capacity 555
def speed = '912 knm h'
def range = '10370 kni
...

If we want to model our fleet, our first attempt might involve using many instances of these
heavy-weight objects. It turns out though that only a few small pieces of state (our extrinsic state)
change for each aircraft, so we will have singletons for the heavy-weight objects and capture the extrinsic
state (bought date and asset number in the code below) separately.

cl ass Fl ywei ght Factory {
static instances = [797: new Boei ng797(), 380: new Airbus380()]

}

class Aircraft {
private type Il instrinsic state
private assetNumber // extrinsic state
private bought /] extrinsic state

Aircraft(typeCode, assetNunmber, bought) {

Document generated by Confluence on Dec 07, 2007 12:38 Page 44

http://en.wikipedia.org/wiki/Flyweight_pattern

type = Fl ywei ght Factory. i nstances[typeCode]

t hi s. asset Nunber = asset Nunber
t hi s. bought = bought
}
def describe() {
println """
Asset Nunber: $asset Nunber
Capacity: $type.capacity people
Speed: $type. speed
Range: $type.range
Bought : $bought

}
}

def fleet = [
new Aircraft (380, 1001, '10- May-2007"
new Aircraft (380, 1002, ' 10-Nov-2007'
new Aircraft (797, 1003, '10- May-2008'
new Aircraft (797, 1004, '10-Nov-2008'
]

fleet.each{ p -> p.describe() }

)
)
).
)

So here, even if our fleet contained hundreds of planes, we would only have one heavy-weight object for

each type of aircraft.

As a further efficiency measure, we might use lazy creation of the flyweight objects rather than create the

initial map up front as in the above example.

Running this script results in:

Asset Nunber: 1001
Capacity: 555 people
Speed: 912 kni h
Range: 10370 km
Bought: 10- May- 2007

Asset Nunber: 1002
Capacity: 555 people
Speed: 912 kni h
Range: 10370 km
Bought : 10- Nov- 2007

Asset Nunber: 1003
Capacity: 1000 people
Speed: 1046 knih
Range: 14400 km
Bought: 10- May- 2008

Asset Nunber: 1004
Capacity: 1000 people
Speed: 1046 km h
Range: 14400 km
Bought: 10- Nov- 2008

Document generated by Confluence on Dec 07, 2007 12:38

Page 45

Iterator Pattern

This page last changed on May 07, 2007 by paulk_asert.

The Iterator Pattern allows sequential access to the elements of an aggregate object without exposing its
underlying representation.

Groovy has the iterator pattern built right in to many of its closure operators, e.g. each and
eachWt hl ndex as well as thefor .. in loop.

For example:

def printAll(container) {
for (itemin container) { println item}
}

def nunbers = [1, 2, 3, 4]

def nmonths = [Mar: 31, Apr:30, My: 31]

def colors = [java.awt. Col or. BLACK, java.aw . Col or.WH TE]
printA |l nunbers

printAl nonths

printAl colors

Results in the output:

1
2
3
4
May=31

Mar =31

Apr =30

j ava. aw . Col or [r =0, g=0, b=0]

java. aw . Col or [r =255, g=255, b=255]

Another example:

col ors. eachWthlndex{ item pos ->
println "Position $pos contains '$item"
}

Results in:

Position 0 contains 'java.aw. Col or[r=0, g=0, b=0]"'
Position 1 contains 'java.aw. Col or[r=255, g=255, b=255] "

The iterator pattern is also built in to other special operators such as the eachByt e, eachFi | e, eachDir,
eachLi ne, eachQbj ect, eachMat ch operators for working with streams, URLs, files, directories and
regular expressions matches.

Document generated by Confluence on Dec 07, 2007 12:38 Page 46

http://en.wikipedia.org/wiki/Iterator_pattern

Loan my Resource Pattern

This page last changed on Jun 18, 2007 by paulk_asert.

The Loan my Resource pattern ensures that a resource is deterministically disposed of once it goes out of
scope.

This pattern is built in to many Groovy helper methods. You should consider using it yourself if you need
to work with resources in ways beyond what Groovy supports.

Example

Consider the following code which works with a file. First we might write some line to the file and then
print its size:

def f = new File('junk.txt"')
f.withPrintWiter { pw ->

pw. println(new Date())

pw. println(this.class. nane)

println f.size()
[l => 42

We could also read back the contents of the file a line at a time and print each line out:

f.eachLine { line ->
println line
}

I =>
// Mon Jun 18 22:38:17 EST 2007
/! RunPattern

Note that normal Java Reader and Print Wi ter objects were used under the covers by Groovy but the
code writer did not have to worry about explicitly creating or closing those resources. The built-in Groovy
methods /oan the respective reader or writer to the closure code and then tidy up after themselves. So,
you are using this pattern without having to do any work.

Sometimes however, you wish to do things slightly differently to what you can get for free using Groovy's
built-in mechanisms. You should consider utilising this pattern within your own resource-handling
operations.

Consider how you might process the list of words on each line within the file. We could actually do this
one too using Groovy's built-in functions, but bear with us and assume we have to do some resource
handling ourselves. Here is how we might write the code without using this pattern:

def reader = f.newReader ()
reader.splitEachLine(' ') { wordList ->
println wordLi st

reader. cl ose()

I =

/[l [*MOn", "Jun", "18", "22:38:17", "EST", "2007"]
/1 ["RunPattern"]

Document generated by Confluence on Dec 07, 2007 12:38 Page 47

http://scala.sygneca.com/patterns/loan

Notice that we now have an explicit call to cl ose() in our code. If we didn't code it just right (here we

didn't surround the code inatry ...

finally block, we run the risk of leaving the file handle open.

Let's now apply the loan pattern. First, we'll write a helper method:

def withList O WrdsFor EachLine(File f, Cosure c) {

def r = f.newReader ()

try {

r.splitEachLine(' ', c)
} finally {

r?.close()
}

Now, we can re-write our code as follows:

wi t hLi st Of Wor dsFor EachLi ne(f) { wordList ->
println wordLi st
}

[=>
/[l [*Mon", "Jun", "18", "22:38:17", "EST", "2007"]
/1 ["RunPattern"]

This is much simpler and has removed the explicit cl ose() . This is now catered for in one spot so we can
apply the appropriate level of testing or reviewing in just one spot to be sure we have no problems.

Document generated by Confluence on Dec 07, 2007 12:38

Page 48

Null Object Pattern

This page last changed on May 25, 2007 by paulk_asert.

The Null Object Pattern involves using a special object place-marker object representing null. Typically, if
you have a reference to null, you can't invoke ref erence. fi el d or ref erence. met hod() . You receive the
dreaded Nul | Poi nt er Except i on. The null object pattern uses a special object representing null, instead
of using an actual nul | . This allows you to invoke field and method references on the null object. The
result of using the null object should semantically be equivalent to doing nothing.

Simple Example

Suppose we have the following system:

class Job {
def salary

}

cl ass Person {
def nane
def Job job

}

def people = [
new Person(nane:' Tom , job:new Job(sal ary: 1000))
new Person(nane: ' Di ck', job:new Job(sal ary: 1200))

]

def biggestSalary = people.collect{ p -> p.job.salary }. max()
println biggestSal ary

When run, this prints out 1200. Suppose now that we now invoke:

peopl e << new Person(nane:' Harry')

If we now try to calculate bi ggest Sal ary again, we receive a null pointer exception.

To overcome this problem, we can introduce a Nul | Job class and change the above statement to
become:

class NullJob extends Job { def salary = 0 }

peopl e << new Person(nane:'Harry', job:new NullJob())

bi ggest Sal ary = people.collect{ p -> p.job.salary }. max()
println biggestSal ary

This works as we require but it's not always the best way to do this with Groovy. Groovy's
safe-dereference operator (?.) operator and null aware closures often allow Groovy to avoid the need to

create a special null object or null class. This is illustrated by examining a groovier way to write the above
example:

peopl e << new Person(nane: ' Harry')
bi ggest Sal ary = people.collect{ p -> p.job?.salary }.nmax()

Document generated by Confluence on Dec 07, 2007 12:38 Page 49

http://en.wikipedia.org/wiki/Null_Object_pattern

println biggestSalary

Two things are going on here to allow this to work. First of all, max() is 'null aware' so that [300, null,

400] . max() == 400. Secondly, with the ?. operator, an expression like p?.j ob?. sal ary will be equal to
null if sal ary is equal to null, or if j ob is equal to null or if p is equal to null. You don't need to code a
complex nestedif ... then ... el se to avoid a Nul | Poi nt er Excepti on.

Tree Example

Consider the following example (inspired by this) where we want to calculate size, cumulative sum and
cumulative product of all the values in a tree structure.

Our first attempt has special logic within the calculation methods to handle null values.

cl ass Nul | Handl i ngTree {
def left, right, value

def size() {

1+ (left ? left.size() : 0) + (right ? right.size() : 0)
}
def sun() {

value + (left ? left.sum() : 0) + (right ? right.sum() : 0)
}

def product () {
value * (left ? left.product() : 1) * (right ? right.product() : 1)

}
}
def root = new Null Handl i ngTree(
val ue: 2,
I eft: new Nul | Handl i ngTr ee(
val ue: 3,
right: new Nul | Handl i ngTr ee(val ue: 4),
left: new Nul |l Handl i ngTree(val ue: 5)
)
)

println root.size()
println root.sum()
println root.product()

If we introduce the null object pattern (here by defining the Nul | Tr ee class), we can now simplify the
logic in the si ze(), sum() and product () methods. These methods now much more clearly represent the
logic for the normal (and now universal) case. Each of the methods within Nul | Tr ee returns a value
which represents doing nothing.

class Tree {
def left = new Null Tree(), right = new Null Tree(), value

def size() {

1 + left.size() + right.size()
}
def sum() {

value + left.sun() + right.sum()
}

def product () {
t.

value * left.product() * right.product()

Document generated by Confluence on Dec 07, 2007 12:38 Page 50

http://wiki.rubygarden.org/Ruby/page/show/NullObjectPattern

}

class Null Tree {
def size() { 0}
def sunm() { 0}
def product() { 1}

}
def root = new Tree(
val ue: 2,
left: new Tree(
val ue: 3,

right: new Tree(val ue: 4),
left: new Tree(val ue:5)

)

println root.size()
println root.sum)
println root.product()

The result of running either of these examples is:

120

Note: a slight variation with the null object pattern is to combine it with the singleton pattern. So, we
wouldn't write new Nul | Tree() wherever we needed a null object as shown above. Instead we would
have a single null object instance which we would place within our data structures as needed.

Document generated by Confluence on Dec 07, 2007 12:38 Page 51

Pimp my Library Pattern

This page last changed on May 23, 2007 by paulk_asert.

The Pimp my Library Pattern suggests an approach for extending a library that nearly does everything
that you need but just needs a little more. It assumes that you do not have source code for the library of
interest.

Example

Suppose we want to make use of the built-in Integer facilities in Groovy (which build upon the features
already in Java). Those libraries have nearly all of the features we want but not quite everything. We may
not have all of the source code to the Groovy and Java libraries so we can't just change the library.
Instead we augment the library. Groovy has a number of ways to do this. One way is to use a Category.

First, we'll define a suitable category.

cl ass Enhancedl nt eger {
static bool ean greaterThanAll (I nteger self, Cbject[] others) {
greaterThanAl | (sel f, others)

static bool ean greaterThanAll (I nteger self, others) {
others.every{ self > it }
}

We have added two methods which augment the Integer methods by providing the gr eat er ThanAl |
method. Categories follow conventions where they are defined as static methods with a special first
parameter representing the class we which to extend. The great er ThanAl | (I nteger self, others)
static method becomes the gr eat er ThanAl | (ot her) instance method.

We defined two versions of gr eat er ThanAl | . One which works for collections, ranges etc. The other
which works with a variable number of I nt eger arguments.

Here is how you would use the category.

use(Enhancedl nt eger) {
assert 4.greaterThanAll (1, 2, 3)
assert !5.greaterThanAll (2, 4, 6)
assert 5.greaterThanAll (-4..4)
assert 5.greaterThanAll ([])
assert !5.greaterThanAll ([4, 5])

As you can see, using this technique you can effectively enrich an original class without having access to
its source code. Moreover, you can apply different enrichments in different parts of the system as well as
work with un-enriched objects if we need to.

Document generated by Confluence on Dec 07, 2007 12:38 Page 52

http://www.artima.com/weblogs/viewpost.jsp?thread=179766

Proxy Pattern

This page last changed on May 12, 2007 by paulk_asert.

The Proxy Pattern allows one object to act as a pretend replacement for some other object. In general,
whoever is using the proxy, doesn't realise that they are not using the real thing. The pattern is useful
when the real object is hard to create or use: it may exist over a network connection, or be a large object
in memory, or be a file, database or some other resource that is expensive or impossible to duplicate.

Example

One common use of the proxy pattern is when talking to remote objects in a different JVM. Here is the
client code for creating a proxy that talks via sockets to a server object as well as an example usage:

cl ass Accumul at or Proxy {
def accunul ate(args) {
def result
def s = new Socket ("l ocal host", 54321)
s.w t hObj ect Streans{ ois, o00s ->
00s << args
result = ois.readject()

s. cl ose()
return result

}

println new Accunul ator Proxy().accunul ate([1, 2, 3, 4, 5, 6, 7, 8 9, 10])
[/l => 55

Here is what your server code might look like (start this first):

class Accunmul at or {
def accunul ate(args) {
args.inject(0){ total, arg -> total += arg }
}

}

def port = 54321
def accunul ator = new Accunul at or ()
def server = new Server Socket (port)
println "Starting server on port $port"
whil e(true) {
server.accept () { socket ->
socket.w t hObj ect Streans { ois, oos ->
def args = ois.readObject()
00s << accunul at or. accunul at e(args)

This example was inspired by this Ruby example.

Document generated by Confluence on Dec 07, 2007 12:38 Page 53

http://en.wikipedia.org/wiki/Proxy_pattern
http://wiki.rubygarden.org/Ruby/page/show/ProxyPattern

Singleton Pattern

This page last changed on Jul 02, 2007 by paulk_asert.

The Singleton Pattern is used to make sure only one object of a particular class is ever created. This can
be useful when when exactly one object is needed to coordinate actions across a system; perhaps for
efficiency where creating lots of identical objects would be wasteful, perhaps because a particular

algorithm needing a single point of control is required or perhaps when an object is used to interact with
a non-shareable resource.

Weaknesses of the Singleton pattern include:

e It can reduce reuse. For instance, there are issues if you want to use inheritance with Singletons. If
Si ngl et onB extends Si ngl et onA, should there be exactly (at most) one instance of each or should
the creation of an object from one of the classes prohibit creation from the other. Also, if you decide
both classes can have an instance, how do you override the get I nst ance() method which is static?

e It is also hard to test singletons in general because of the static methods but Groovy can support
that if required.

Example: The Classic Java Singleton

Suppose we wish to create a class for collecting votes. Because getting the right number of votes may be
very important, we decide to use the singleton pattern. There will only ever be one Vot eCol | ect or
object, so it makes it easier for us to reason about that objects creation and use.

cl ass VoteCol |l ector {

def votes = 0

private static final | NSTANCE = new Vot eCol | ector()

static getlnstance(){ return | NSTANCE }

private VoteCol lector() {}

def display() { println "Collector: ${hashCode()}, Votes: $votes" }

Some points of interest about this code:

e it has a private constructor, so no Vot eCol | ect or objects can be created in our system (except for
the | NSTANCE we create)

e the | NSTANCE is also private, so it can't be changed once set
e we haven't made the updating of votes thread-safe at this point (it doesn't add to this example)
e the vote collector instance is not lazyily created (if we never reference the class, the instance won't

be created; however, as soon as we reference the class, the instance will be created even if not
needed initially)

We can use this singleton class in some script code as follows:

def collector = VoteCol |l ector.instance
col I ector.display()

col | ector. vot es++

collector = null

Thread. start{
def collector2 = VoteColl ector.instance

Document generated by Confluence on Dec 07, 2007 12:38 Page 54

http://en.wikipedia.org/wiki/Singleton_pattern

col | ector2.display()
col | ector?2. vot es++
collector2 = null

}.join()

def collector3 = VoteColl ector.instance
col | ector 3. di spl ay()

Here we used the instance 3 times. The second usage was even in a different thread (but don't try this in
a scenario with a new class loader).

Running this script yields (your hashcode value will vary):

Col | ect or: 15959960, Votes: 0
Col | ect or: 15959960, Votes: 1
Col | ect or: 15959960, Votes: 2

Variations to this pattern:

e To support lazy-loading and multi-threading, we could just use the synchr oni zed keyword with the
get I nst ance() method. This has a performance hit but will work.

e We can consider variations involving double-checked locking and the vol ati | e keyword (for Java 5
and above), but see the limitations of this approach here.

Example: Singleton via MetaProgramming

Groovy's meta-programming capabilities allow concepts like the singleton pattern to be enacted in a far
more fundamental way. This example illustrates a simple way to use Groovy's meta-programming
capabilities to achieve the singleton pattern but not necessarily the most efficient way.

Suppose we want to keep track of the total number of calculations that a calculator performs. One way to
do that is to use a singleton for the calculator class and keep a variable in the class with the count.

First we define some base classes. A Cal cul at or class which performs calculations and records how
many such calculations it performs and a d i ent class which acts as a facade to the calculator.

class Cal cul ator {

private total = 0
def add(a, b) { total++ a + b}
def getTotal Cal culations() { 'Total Calculations: ' + total }

String toString() { 'Calc: ' + hashCode()}
}

class dient {
def calc = new Cal cul ator ()
def executeCalc(a, b) { calc.add(a, b) }
String toString() { 'dient: ' + hashCode()}

Now we can define and register a MetaClass which intercepts all attempts to create a Cal cul at or object
and always provides a pre-created instance instead. We also register this MetaClass with the Groovy
system:

Document generated by Confluence on Dec 07, 2007 12:38 Page 55

http://www-128.ibm.com/developerworks/java/library/j-dcl.html?loc=j

cl ass Cal cul at or Met ad ass extends Metad assl npl {

private final static |INSTANCE = new Cal cul ator ()

Cal cul at or Met adl ass() { super(Calculator) }

def invokeConstructor(Object[] argunents) { return | NSTANCE }
}

def registry = GroovySystem netad assRegi stry
regi stry. set Met ad ass(Cal cul at or, new Cal cul at or Met aCl ass())

Now we use instances of our d i ent class from within a script. The client class will attempt to create new
instances of the calculator but will always get the singleton.

def client = new dient()
assert 3 == client.executeCalc(1l, 2)
println "$client, $client.calc, $client.calc.total Cal cul ations"

client = new dient()
assert 4 == client.executeCalc(2, 2)
println "$client, $client.calc, $client.calc.total Cal cul ations"

Here is the result of running this script (your hashcode values may vary):

Cient: 7306473, Calc: 24230857, Total Calculations: 1
Client: 31436753, Calc: 24230857, Total Calculations: 2

Guice Example

We can also implement the Singleton Pattern using Guice. This example relies on annotations.
Annotations are a Groovy 1.1 feature and will need to be run on a Java 5 or above JVM.

Consider the Calculator example again.

Guice is a Java-oriented framework that supports Interface-Oriented design. Hence we create a

Cal cul at or interface first. We can then create our Cal cul at or I npl implementation and a C i ent object
which our script will interact with. The C i ent class isn't strictly needed for this example but allows us to
show that non-singleton instances are the default. Here is the code:

/1 require(groupld:'aopalliance', artifactld:"'aopalliance', version:'1.0")
/1 require(groupld:'comgoogle.code.guice', artifactld:'guice', version:'1.0")

i mport com googl e. i nject.*

interface Cal cul ator {
def add(a, b)

}
class Cal culatorlnpl inplenments Cal cul ator {
private total = 0
def add(a, b) { total++; a + b }
def getTotal Cal cul ations() { 'Total Calculations: ' + total }
String toString() { 'Calc: ' + hashCode()}
}

class dient {
@nject Calculator calc
def executeCalc(a, b) { calc.add(a, b) }
String toString() { "Cient: ' + hashCode()}

Document generated by Confluence on Dec 07, 2007 12:38 Page 56

http://code.google.com/p/google-guice/

def injector = Cuice.createlnjector (
[configure: { binding ->
bi ndi ng. bi nd(Cal cul at or)
.to(Cal cul atorlnpl)
.asEagerSingleton() }] as Mdul e

)
client = injector.getlnstance(dient)
assert 3 == client.executeCalc(l, 2)

println "$client, $client.calc, $client.calc.total Cal cul ations"”

client = injector.getlnstance(dient)
assert 4 == client.executeCal c(2, 2)
println "$client, $client.calc, $client.calc.total Cal cul ations"

Note the @ nj ect annotation in the C i ent class. We can always tell right in the source code which fields
will be injected.

In this example we chose to use an explicit binding. All of our dependencies (ok, only one in this example
at the moment) are configured in the binding. The Guide injector knows about the binding and injects the
dependencies as required when we create objects. For the singleton pattern to hold, you must always use
Guice to create your instances. Nothing shown so far would stop you creating another instance of the
calculator manually using new Cal cul at or I npl () which would of course violate the desired singleton
behaviour.

In other scenarios (though probably not in large systems), we could choose to express dependencies
using annotations, such as the following example shows:

i mport com googl e.inject.*
@ npl ement edBy(Cal cul at or | npl)

interface Cal cul ator {
/| as before ...
}

@i ngl et on

class Cal culatorlnpl inplenments Cal cul ator {
/] as before ...

}

class dient {
/Il as before ...
}

def injector = Cuice.createlnjector()

/1

Note the @i ngl et on annotation on the Cal cul at or I npl class and the @ npl enent edBy annotation in the
Cal cul at or interface.

When run, the above example (using either approach) yields (your hashcode values will vary):

Client: 8897128, Calc: 17431955, Total Calculations: 1
Cient: 21145613, Calc: 17431955, Total Calcul ations: 2

You can see that we obtained a new client object whenever we asked for an instance but it was injected
with the same calculator object.

Document generated by Confluence on Dec 07, 2007 12:38 Page 57

Spring Example

We can do the Calculator example again using Spring as follows:

/'l require(groupld:'org.springframework', artifactld:'spring-core', version:'2.1ml")
/1 require(groupld:'org.springframework', artifactld:'spring-beans', version:'2.1nl')

i mport org.springframework. beans. factory. support.*

interface Cal cul ator {
def add(a, b)

class Cal culatorlnmpl inplenments Cal cul ator {

private total = 0
def add(a, b) { total++ a + b}
def getTotal Cal culations() { 'Total Calculations: ' + total }

String toString() { 'Calc: ' + hashCode()}
}

class dient {
Cient(Calculator calc) { this.calc = calc }
def calc
def executeCalc(a, b) { calc.add(a, b)
String toString() { '"Cient: ' + hashCode()}

/] Here we 'wire' up our dependencies through the API. Alternatively,

/1 we could use XM.-based configuration or the Gails Bean Buil der DSL.

def factory = new Defaul tListabl eBeanFact ory()

factory. regi sterBeanDefinition('calc', new RootBeanDefinition(Calculatorlnpl))
def beanDef = new Root BeanDefinition(Cient, false)

beanDef . set Aut owi r eMbde(Abst ract BeanDefi ni ti on. AUTON RE_AUTCDETECT)
factory.regi sterBeanDefinition('client', beanDef)

client = factory.getBean('client')
assert 3 == client.executeCalc(1, 2)
println "$client, $client.calc, $client.calc.total Cal cul ations"

client = factory.getBean('client')
assert 4 == client.executeCal c(2, 2)
println "$client, $client.calc, $client.calc.total Cal cul ations"

And here is the result (your hashcode values will vary):

Cient: 29418586, Calc: 10580099, Total Calculations: 1
Client: 14800362, Calc: 10580099, Total Calculations: 2

Further information

e Simply Singleton
e Use your singletons wisely
e Double-checked locking and the Singleton pattern

e lLazy Loading Singletons
e Implementing the Singleton Pattern in C#

Document generated by Confluence on Dec 07, 2007 12:38

Page 58

http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html?page=1
http://www-128.ibm.com/developerworks/webservices/library/co-single.html
http://www-128.ibm.com/developerworks/java/library/j-dcl.html?loc=j
http://crazybob.org/2007/01/lazy-loading-singletons.html
http://www.yoda.arachsys.com/csharp/singleton.html

State Pattern

This page last changed on May 10, 2007 by salientl

The State Pattern provides a structured approach to partitioning the behaviour within complex systems.

The overall behaviour of a system is partitioned into well-defined states. Typically, each state is

implemented by a class. The overall system behaviour can be determined firstly by knowing the current
state of the system; secondly, by understanding the behaviour possible while in that state (as embodied

in the methods of the class corresponding to that state).

Example

Here is an example:

class dient {
def context = new Context ()
def connect () {
cont ext . st at e. connect ()

def di sconnect() {
cont ext . st at e. di sconnect ()

def send_nessage(nessage) {
cont ext . st at e. send_nessage(message)

def receive_message() {
context.state.recei ve_nessage()

}

cl ass Context {
def state = new O fline(this)
}

class CientState {
def context
CientState(context) {
thi s. context = context

inform()
}

class O fline extends ClientState {
O fline(context) {
super (cont ext)

}
def inform() {
println "of fline"

def connect () {
context.state = new Online(context)

def disconnect() {
println "error: not connected"

def send_nessage(nessage) {
println "error: not connected"

def receive_nessage() {
println "error: not connected"

}

class Online extends CientState {
Onli ne(context) {
super (cont ext)
}

Document generated by Confluence on Dec 07, 2007 12:38

Page 59

http://en.wikipedia.org/wiki/State_pattern

def inform() {
println "connected"

def connect () {
println "error: already connected"

def disconnect() {
context.state = new O fline(context)

def send_nessage(nessage) {
println "\"$message\" sent"

def receive_nessage() {
println "nessage received"

client = new Cient()
client.send_nessage("Hello")
client.connect()
client.send_nessage("Hello")
client.connect()
client.receive_nessage()
client.disconnect ()

Here is the output:

of fline

error: not connected
connect ed

"Hel | 0" sent

error: already connected
message received

of fline

This example was inspired from a similar Ruby Example. One of the great things about a dynamic
language like Groovy though is that we can take this example and express it in many different ways
depending on our particular needs. Some potential variations for this example are shown below.

Variation 1: Leveraging Interface-Oriented Design

One approach we could take is to leverage Interface-Oriented Design. To do this, we could introduce the
following interface:

interface State {
def connect ()
def di sconnect ()
def send_nessage(nessage)
def receive_nessage()

Then our dient, Online and O fli ne classes could be modified to implement that interface, e.g.:

class Client implements State {
// ... as before ...

Document generated by Confluence on Dec 07, 2007 12:38 Page 60

http://wiki.rubygarden.org/Ruby/page/show/StatePattern
http://www.pragmaticprogrammer.com/titles/kpiod/index.html

class Online implements State {
// ... as before ...

You might ask: Haven't we just introduced additional boilerplate code? Can't we rely on duck-typing for
this? The answer is 'yes' and 'no'. We can get away with duck-typing but one of the key intentions of the
state pattern is to partition complexity. If we know that the client class and each state class all satisfy
one interface, then we have placed some key boundaries around the complexity. We can look at any
state class in isolation and know the bounds of behaviour possible for that state.

We don't have to use interfaces for this, but it helps express the intent of this particular style of
partitioning and it helps reduce the size of our unit tests (we would have to have additional tests in place
to express this intent in languages which have less support for interface-oriented design).

Variation 2: Extract State Pattern Logic

Alternatively, or in combination with other variations, we might decide to extract some of our State
Pattern logic into helper classes. For example, we could define the following classes in a state pattern
package/jar/script:

abstract class |InstanceProvider {
static def registry = GoovySystem netaCl assRegi stry
static def create(objectC ass, param {
regi stry. get Met ad ass(obj ect d ass) . i nvokeConstructor ([parami as Object[])
}

}

abstract class Context {
private context
protected set Cont ext (context) {
t hi s. context = context

}
def invokeMethod(String name, bject arg) {
cont ext . i nvokeMet hod(nanme, arg)

}
def startFrom(initial State) ({

set Cont ext (| nst anceProvi der.create(initial State, this))
}

}

abstract class State {
private client

State(client) { this.client = client }

def transitionTo(nextState) {
client.setContext(lnstanceProvider.create(nextState, client))
}

This is all quite generic and can be used wherever we want to introduce the state pattern. Here is what
our code would look like now:

class dient extends Context {
Aient() {
start Fron{ O fline)
}

Document generated by Confluence on Dec 07, 2007 12:38 Page 61

class O fline extends State {
Ofline(client) {
super (client)
println "of fline"

def connect () {
transitionTo(Online)

def disconnect() {
println "error: not connected"

def send_nessage(nessage) {
println "error: not connected"

def receive_nessage() {
println "error: not connected"

}

class Online extends State {
Online(client) {
super (client)

println "connected"

def connect (){
println "error: already connected"

def di sconnect (){
transitionTo(COf fline)

def send_nessage(nessage) {
println "\"$nmessage\" sent"

def receive_nessage(){
println "nessage received"

client = new dient()
client.send_nessage("Hello")
client.connect()
client.send_nessage("Hello")
client.connect ()
client.receive_nessage()
client.disconnect ()

You can see here the start Fromand t ransi ti onTo methods begin to give our example code a DSL feel.

Variation 3: Bring on the DSL

Alternatively, or in combination with other variations, we might decide to fully embrace a Domain Specific

Language (DSL) approach to this example.

We can define the following generic helper functions (first discussed here):

class Gammar {
def fsm

def event

def fronttate

def toState

Gammar (a_fsm {
fsm= a fsm

}

def on(a_event) {

Document generated by Confluence on Dec 07, 2007 12:38

Page 62

http://www.bytemycode.com/snippets/snippet/640/

event = a_event
this

def on(a_event, a transitioner) {
on(a_event)
a_transitioner.delegate = this
a_transitioner.call()
this

def fron(a_frontState) {
fronState = a_fronfState

this

}

def to(a_toState) {
assert a_toState, "Invalid toState: $a_toState"
toState = a_toState
fsmregisterTransition(this)
this

}

def isvalid() {
event && fronState && toState

public String toString() {
"$event: $fronttat e=>%t oSt at e"

cl ass FiniteStateMachine {
def transitions = [:]

def initial State
def currentState

FiniteStateMachine(a_initial State) {
assert a_initial State, "You need to provide an initial state"
initialState = a_initial State

currentState = a_initial State

def record() {
G ammar . new nst ance(t hi s)

def reset() {
currentState = initial State

def isState(a_state) {
currentState == a_state

def registerTransition(a_grammar) {
assert a_grammar.isValid(), "Invalid transition ($a_grammr)"
def transition
def event = a_granmar. event
def fronState = a_granmar.fronttate
def toState = a_granmmar.toState

) |
=[:]

if (!transitions[event]
transitions[event]
}

transition = transitions[event]
assert !transition[fronState], "Duplicate fronState $fronState for transition
$a_granmmar"
transition[fronfState] = toState
}

def fire(a_event) {

Document generated by Confluence on Dec 07, 2007 12:38

Page 63

assert currentState, "Invalid current state '$currentState': passed into constructor"

assert transitions.containsKey(a_event), "lnvalid event '$a_event', should be one of
${transitions. keySet()}"

def transition = transitions[a_event]

def nextState = transition[currentState]

assert nextState, "There is no transition from'$currentState' to any other state"

currentState = nextState

current St ate

Now we can define and test our state machine like this:

cl ass StatePatternDsl Test extends G oovyTest Case {
private fsm

protected void setUp() {
fsm = FiniteStateMachi ne. newl nstance(' of fline')
def recorder = fsmrecord()
recorder.on(' connect').fron{'offline').to('online")
recorder.on('disconnect').fron('online').to('offline")
recorder.on(' send_nessage').from('online').to(' online")
recorder.on('receive_nessage').fronm('online').to(' online")

}

void testlnitial State() {
assert fsmisState('offline')
}

void testOflineState() {
shoul dFai | {
fsmfire(' send_nessage')

}
shoul dFai | {
fsmfire('receive_nessage')

}

shoul dFai | {
fsmfire('disconnect')

}

assert '‘online' == fsmfire('connect')

}

void testOnlineState() {
fsmfire('connect')
fsmfire('send_nessage')
fsmfire('receive_nessage')
shoul dFai | {
fsmfire(' connect')
}

assert 'offline' == fsmfire('disconnect')

This example isn't an exact equivalent of the others. It doesn't use predefined Onl i ne and O fl i ne
classes. Instead it defines the entire state machine on the fly as needed. See the previous reference for
more elaborate examples of this style.

Document generated by Confluence on Dec 07, 2007 12:38 Page 64

http://www.bytemycode.com/snippets/snippet/640/

Strategy Pattern

This page last changed on May 07, 2007 by paulk_asert.

The Strategy Pattern allows you to abstract away particular algorithms from their usage. This allows you
to easily swap the algorithm being used without having to change the calling code. The general form of
the pattern is:

Context Strategy
+ getStrategy() : Strategy + slgorthmidethod() - Ohject
Concrete Strategy Concrete Strateqy2 Concrete Strategyl
+ algorithmMethod() | Object + algorithmiethod() : Object - + algorithmMethod() : Object

In Groovy, because of its ability to treat code as a first class object using anonymous methods (which we
loosely call Closures), the need for the strategy pattern is greatly reduced. You can simply place
algorithms inside Closures.

Example

First let's look at the traditional way of encapsulating the Strategy Pattern.

interface Calc {
def execute(n, m
}

class CalcByMult inplenents Calc {
def execute(n, m { n* m}
}

cl ass Cal cByManyAdds i npl ements Calc {
def execute(n, m {
def result =0
n.tinmes{
result += m

}
return result
}
}
def sanplebData = |
[3, 4, 12],
[5, -5, -25]

]

Calc[] multiplicationStrategies = |
new Cal cByMul t (),
new Cal cByManyAdds()

Document generated by Confluence on Dec 07, 2007 12:38 Page 65

http://en.wikipedia.org/wiki/Strategy_pattern

sanpl eDat a. each{ data ->
mul tiplicationStrategies.each{ calc ->
assert data[2] == calc.execute(data[0], data[1l])
}

Here we have defined an interface Cal ¢ which our concrete strategy classes will implement (we could also
have used an abstract class). We then defined two algorithms for doing simple multiplication: Cal cByMl t
the normal way, and Cal cByManyAdds using only addition (don't try this one using negative numbers -
yes we could fix this but it would just make the example longer). We then use normal polymorphism to
invoke the algorithms.

Here is the Groovier way to achieve the same thing using Closures:

def nultiplicationStrategies = [
{n m->n*m},
{ n, m->def result = 0; n.tines{ result += m}; result }

]

def sanpleData = [
[3, 4, 12],
[5, -5, -25]
]
sanpl eDat a. each{ data ->

mul tiplicationStrategies.each{ calc ->
assert data[2] == calc(data[0], data[1l])
}

Document generated by Confluence on Dec 07, 2007 12:38 Page 66

http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming

Template Method Pattern

This page last changed on May 07, 2007 by paulk_asert.

The Template Method Pattern abstracts away the details of several algorithms. The generic part of an
algorithm is contained within a base class. Particular implementation details are captured within base
classes. The generic pattern of classes involved looks like this:

AbstractClass
TemplateMethodUser
_____________________ gt + algorithm() : Object
aUSEwn + algorithmz2() . Object
+ prmitiveDperationd(] : Object
+ prmitiveOperationB(] : Object
ConcreteClass1 ConcreteClass2
+ primitiveOperationAf) | Object + primitiveOperationAf) : Object
+ primitiveOperationB() : Object + primitiveOperationB() : Object
Example

In this example, Accunul at or captures the essence of the accumulation algorithm. The base classes Sum
and Product provide particular customised ways to use the generic accumulation algorithm.

abstract class Accunul ator {
protected initial
abstract doAccurul ate(total, v)
def accunul at e(val ues) {

def total = initial
val ues. each { v -> total = doAccunul ate(total, v) }
total

}

cl ass Sum extends Accumul ator {
def Sunm() { initial =0}
def doAccumul ate(total, v) { total + v }

}

cl ass Product extends Accumul ator {
def Product() { initial =1}
def doAccumul ate(total, v) { total * v }

}

println new Sun().accunul ate([1, 2, 3,4])
println new Product().accumul ate([1, 2, 3,4])

1

The resulting output is:

10

Document generated by Confluence on Dec 07, 2007 12:38 Page 67

http://en.wikipedia.org/wiki/Template_method_pattern

24

In this particular case, you could use Groovy's inject method to achieve a similar result using Closures:

Closure addAll = { total, item-> total +=item}
def accunulated = [1, 2, 3, 4].inject(0, addAll)
println accunul at ed /[l => 10

Thanks to duck-typing, this would also work with other objects which support an add (pl us() in Groovy)
method, e.g.:

accunul ated = ["1", "2", "3", "4"].inject("", addAll)
println accunul at ed [l => "1234"

We could also do the multiplication case as follows:

Closure mnultAll = { total, item-> total *=item}
accunul ated = [1, 2, 3, 4].inject(1l, miltAl)
println accunul at ed [l => 24

Using closures this way looks more like the Strategy Pattern but if we realise that the built-in i nj ect
method is the generic part of the algorithm for our template method, then the Closures become the
customised parts of the template method pattern.

Document generated by Confluence on Dec 07, 2007 12:38 Page 68

Visitor Pattern

This page last changed on Jul 03, 2007 by jamel.

The Visitor Pattern is one of those well-known but not often used patterns. I think this is strange, as it is
really a nice thing.

The goal of the pattern is to separate an algorithm from an object structure. A practical result of this
separation is the ability to add new operations to existing object structures without modifying those
structures.

Simple Example

This example (inspired by this) considers how to calculate the bounds of shapes (or collections of
shapes). Our first attempt uses the traditional visitor pattern. We will see a more Groovy way to do this
shortly.

abstract class Shape { }

cl ass Rectangl e extends Shape {
def x, y, width, height

Rectangl e(x, y, width, height) {
this.x = x; this.y =y; this.width = width; this.height = height
}

def union(rect) {
if ('rect) return this
def minx = [rect.x, Xx].mn()

def maxx = [rect.x + width, x + wi dth]. max()
def miny = [rect.y, y].min()
def maxy = [rect.y + height, y + height]. max()

new Rectangl e(m nx, mny, maxx - mnx, maxy - mny)

}

def accept(visitor) {
visitor.visit_rectangl e(this)
}

}

cl ass Line extends Shape {
def x1, y1, x2, y2

Li ne(x1, y1, x2, y2) {
this.x1 = x1; this.yl = yl; this.x2 = x2; this.y2 =y2
}

def accept (visitor){
visitor.visit_line(this)
}

}

cl ass Group extends Shape {
def shapes = []
def add(shape) { shapes += shape }
def renove(shape) { shapes -= shape }
def accept(visitor) {
visitor.visit_group(this)

}
}
cl ass Boundi ngRect angl eVi sitor {
def bounds

def visit_rectangle(rectangle) {

Document generated by Confluence on Dec 07, 2007 12:38 Page 69

http://en.wikipedia.org/wiki/Visitor_pattern
http://wiki.rubygarden.org/Ruby/page/show/VisitorPattern

i f (bounds)

bounds = bounds. uni on(rect angl e)
el se

bounds = rectangl e

}
def visit_line(line) {
def |ine_bounds = new Rectangl e(line.x1, line.yl, line.x2-line.yl, line.x2-line.y2)
i f (bounds)
bounds = bounds. uni on(!l i ne_bounds)
el se
bounds = |i ne_bounds
}

def visit_group(group) {
group. shapes. each { shape -> shape. accept(this) }

}

def group = new Group()

group. add(new Rect angl e(100, 40, 10, 5))
group. add(new Rect angl e(100, 70, 10, 5
group. add(new Li ne(90, 30, 60, 5))

def visitor = new Boundi ngRect angl eVi sitor()
group. accept (visitor)

boundi ng_box = vi sitor. bounds

println boundi ng_box. dunp()

That took quite a bit of code.

We can improve the clarity of our code (and make it about half the size) by making use of Groovy
Closures as follows:

abstract class Shape {
def accept(Closure yield) { yield(this) }
}

cl ass Rectangl e extends Shape {
def x, y, w, h
def bounds() { this }
def union(rect) {
if (!rect) return this
def minx = [rect.x, x].mn()

def maxx = [rect.x + w, x + w.nmax()
def miny = [rect.y, y].mn()
def maxy = [rect.y + h, y + h].nmax()

new Rectangl e(x: m nx, y:mny, w mxx - mnx, h:maxy - mny)

}

cl ass Line extends Shape {
def x1, yl, x2, y2
def bounds() {
new Rectangl e(x: x1, y:yl, w x2-yl, h:x2-y2)
}

}

class Goup {

def shapes = []

def |eftShift(shape) { shapes += shape }

def accept(Cl osure yield) { shapes.each{it.accept(yield)} }
}

def group = new Group()

group << new Rectangl e(x: 100, y:40, w 10, h:5)
group << new Rect angl e(x: 100, y:70, w 10, h:5)
group << new Line(x1:90, y1:30, x2:60, y2:5)

def bounds

group. accept{ bounds = it.bounds().union(bounds) }
println bounds. dunp()

Document generated by Confluence on Dec 07, 2007 12:38 Page 70

Advanced Example

interface Visitor {
public void visit(NodeTypel nl);
public void visit(NodeType2 n2);

}

interface Visitable {
public void accept(Visitor visitor);
}

cl ass NodeTypel inplenents Visitable {
Visitable[] children = new Visitabl e[O0];
public void accept(Visitor visitor) {
visitor.visit(this);
for(int i = 0; i < children.length; ++i) {
children[i].accept(visitor);
}

}
}

cl ass NodeType2 inplenents Visitable {
Visitable[] children = new Visitabl e[0];
public void accept(Visitor visitor) {
visitor.visit(this);
for(int i =0; i <children.length; ++i) {
children[i].accept(visitor);
}

}
}

public class NodeTypelCounter inplements Visitor {
int count = O;
public void visit(NodeTypel nl) {
count ++;

}
public void visit(NodeType2 n2){}
}

If we now use NodeTypelCounter on a tree like this:

NodeTypel root = new NodeTypel()
root.children = new Visitable[2];
root. children[0] = new NodeTypel();
root.children[1] = new NodeType2();

Then we have one NodeTypel object as root and one of the children is also a NodeTypel instance. The
other child is a NodeType?2 instance. That means using NodeTypelCounter here should count 2
NodeTypel objects.

Why to use this

As you can see here very good we have a visitor that has a state while the tree of objects is not changed.
That's pretty useful in different areas, for example you could have a visitor counting all node types, or
how many different types are used, or you could use methods special to the node to gather information
about the tree and much more.

What happens if we add a new type?

Document generated by Confluence on Dec 07, 2007 12:38 Page 71

In this case we have to do much work.. we have to change Visitor to accept the new type, we have to
write the new type itself of course and we have to change every Visitor we have already implemented.
After very few changes you will modify all your Visitors to extend a default implementation of the visitor,
so you don't need to change every Visitor each time you add a new type.

What if we want to have different iteration patterns?

Then you have a problem. since the node describes how to iterate, you have no influence and stop
iteration at a point or change the order. so maybe we should change this a little to this:

interface Visitor {
public void visit(NodeTypel nl);
public void visit(NodeType2 n2);
}

class DefaultVisitor inplenments Visitor{
public void visit(NodeTypel nl) {
for(int i =0; i < nl.children.length; ++i) {
nl.children[i].accept(visitor);

}
}
public void visit(NodeType2 n2) {
for(int i =0; i <n2. children.length; ++i) {
n2.children[i].accept(visitor);
}

}
}

interface Visitable {
public void accept(Visitor visitor);
}

cl ass NodeTypel inplenents Visitable {
Visitable[] children = new Visitable[0];
public void accept(Visitor visitor) {
visitor.visit(this);
}

}

cl ass NodeType2 inplenments Visitable {
Visitable[] children = new Visitabl e[0];
public void accept(Visitor visitor) {
visitor.visit(this);
}

}

public class NodeTypelCounter extends DefaultVisitor {
int count = O;
public void visit(NodeTypel nl1) {