
The ECL Scheduler
Boca Raton Documentation Team

ECL Scheduler

© 2015 HPCC Systems®. All rights reserved
2

ECL Scheduler
Boca Raton Documentation Team
Copyright © 2015 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version Number in
the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2015 Version 5.4.2-1

ECL Scheduler

© 2015 HPCC Systems®. All rights reserved
3

The Ecl Scheduler ... 4
Introduction .. 4

ECL Scheduler Component ... 5
Installation and configuration .. 5
Using the ECL Scheduler ... 6
Interface in ECL Watch ... 7

ECL Scheduler Admin ... 10
Command Line Interface: scheduleadmin .. 10

ECL Usage ... 13
WHEN ... 14
NOTIFY .. 15
EVENT .. 16
CRON ... 17
WAIT .. 18

DFU Monitoring and Events ... 19
MonitorFile ... 20
MonitorLogicalFileName .. 22

ECL Scheduler
The Ecl Scheduler

© 2015 HPCC Systems®. All rights reserved
4

The Ecl Scheduler

Introduction
The ECL Scheduler is a component process installed with the HPCC system platform. It typically starts with the
platform.

An interface to the scheduler is available through ECL Watch. The ECL Scheduler interface allows you to see a list of
scheduled workunits. It can also trigger an event. An Event is a case-insensitive string constant naming the event to trap.

A command line tool, scheduleadmin is available on the server installed in /opt/HPCCSystems/bin.

ECL Scheduling
ECL Scheduling provides a means of automating processes within ECL code or to chain processes together to work
in sequence. For example, you can write ECL code that watches a landing zone for the arrival of a file, and when it
arrives, sprays it to Thor, processes it, builds an index, and then adds it to a superfile.

How it Works
ECL Scheduling is event-based. The ECL Scheduler monitors a Schedule list containing registered Workunits and
Events and executes any Workunits associated with an Event when that Event is triggered.

Your ECL Code can execute when an Event is triggered, or can trigger an Event. If you submit code containing a
WHEN clause, the Event and Workunit registers in the Schedule list. When that Event triggers, the Workunit compiles
and executes. When the Workunit completes, ECL Scheduler removes it from the Schedule list.

For example, if you submit a Workunit using WHEN(‘Event1’,’MyEvent’, COUNT(2)) in the appropriate place,
it will execute twice (the value of COUNT) before the ECL Scheduler removes it from the Schedule list and the
Workunit is marked as completed.

ECL Scheduler
ECL Scheduler Component

© 2015 HPCC Systems®. All rights reserved
5

ECL Scheduler Component

Installation and configuration
The ECL Scheduler installs when you install the HPCC platform. It starts and stops using hpcc-init, just as all other
HPCC components.

ECL Scheduler
ECL Scheduler Component

© 2015 HPCC Systems®. All rights reserved
6

Using the ECL Scheduler
ECL Language Statements Used
The Following ECL Language Statements are used:

WHEN

The WHEN service executes the action whenever the event is triggered. The optional COUNT option specifies the
number of events to trigger instances of the action.

NOTIFY

The NOTIFY action triggers the event so that the WHEN workflow service can proceed with operations they are
assigned to execute.

EVENT

The EVENT function returns a trigger event, which may be used within the WHEN workflow service or the NOTIFY
action. EVENT is not really a statement, rather a parameter to WHEN/NOTIFY to describe what kind of event it is
used for.

CRON

The CRON function defines a timer event for use within the WHEN workflow service. This is synonymous with
EVENT(‘CRON’, time). CRON itself is not a statement, rather a parameter to WHEN/NOTIFY to describe what
kind of event it is used for.

WAIT

The WAIT function is a string constant containing the name of the event to wait for. It is used much like the WHEN
workflow service, but may be used within conditional code.

Monitoring Functions in the Standard Library (STD.File)

MonitorFile

The MonitorFile function creates a file monitor job in the DFU Server for a physical file.

MonitorLogicalFileName

The MonitorLogicalFileName function creates a file monitor job in the DFU Server for a logical file.

DFUPlus: Monitor Option
 dfuplus action=monitor event=MyEvent

Note: DFUServer file monitoring (either using the Standard Library or DFUPlus) creates a DFU Workunit. While
monitoring, the Workunit’s state is monitoring and once it triggers the event, it is set to finished. You can
Abort a “monitoring” DFU Workunit to stop monitoring from ECL Watch.

ECL Scheduler
ECL Scheduler Component

© 2015 HPCC Systems®. All rights reserved
7

Interface in ECL Watch
To access the ECL Scheduler interface in ECL Watch, click on the Event Scheduler link in the navigation sub-menu.
The Scheduler interface displays and you can see the scheduled workunits, if any.

The list of scheduled workunits has two significant columns, the EventName and the EventText.

Figure 1. ECL Scheduler Interface

The EventName is a created when scheduling a workunit. The EventText is an accompanying sub event.

You can trigger an event by entering the EventName and Event Text in the entry boxes and then pressing the PushEvent
button. This is the same as triggering an event using NOTIFY.

Scheduler Workunit List
You can search scheduled workunits by cluster or event name. To filter by cluster or event name, click on the Filter
Action button. The Filter sub-menu displays. Fill in values for the filter criteria, Eventname or Cluster, then press the
Apply button.

Figure 2. Workunits in the Scheduler Interface

ECL Scheduler
ECL Scheduler Component

© 2015 HPCC Systems®. All rights reserved
8

You can sort the workunits by clicking on the column header.

To view the workunit details, click on the workunit ID (WUID) link for the workunit.

ECL Scheduler
ECL Scheduler Component

© 2015 HPCC Systems®. All rights reserved
9

Pushing Events
The Event Scheduler allow you to trigger or "push" an event to help manage and test your scheduled jobs.

1. Press the PushEvent action button.

The Push Event dialog opens.

2. Enter the EventName:

The EventName is a case-insensitive string constant naming the event to trap.

See Also: EVENT

3. Enter the EventText:

The EventText is case-insensitive string constant naming the specific type of event to trap. It may contain * and ?
to wildcard-match.

See Also: EVENT

4. Press the Apply button

This is the equivalent of

 NOTIFY(EVENT(EventName,EventText));

See Also: NOTIFY, EVENT

Figure 3. PushEvent

ECL Scheduler
ECL Scheduler Admin

© 2015 HPCC Systems®. All rights reserved
10

ECL Scheduler Admin

Command Line Interface: schedulead-
min
The scheduleadmin is the command line interface to the ECL Scheduler. The scheduleadmin is located by default in
/opt/HPCCSystems/bin/ on your HPCC system.

scheduleadmin daliserver operation [options]

daliserver The URL (http:// or https://) and/or IP address of the Dali server. The port may also
be included.

operation One of the following actions:

 servers
 add
 remove
 removeall
 list
 monitor
 cleanup
 push

options Optional. A space-delimited list of optional items (listed below) appropriate to the
operation being executed.

The scheduleadmin application accepts command line parameters to maintain the list of workunits the ECL Scheduler
monitors.

Support Operations
The following operations are supported.

Servers

The server operation returns a list of the ECL Server queues attached to the specifed daliserver that have events being
monitored.

Example:

 scheduleadmin 10.150.50.11:7070 servers

 //returns data that looks like this:
 eclserver_training

Add wuid

The add operation allows you to re-add the specified wuid after having removed it from the monitor list.

These options are used by the add operation:

ECL Scheduler
ECL Scheduler Admin

© 2015 HPCC Systems®. All rights reserved
11

wuid A workunit identifier that contains an action with a WHEN workflow service.

Example:

 scheduleadmin 10.150.50.11 add W20120303-100635

Remove wuid

The remove operation allows you to remove the specified wuid from the monitor list.

These options are used by the remove operation:

wuid A workunit identifier that contains an action with a WHEN workflow service.

Example:

 scheduleadmin 10.150.50.11 remove W20120303-100635

Removeall

The removeall operation allows you to remove all workunits that contain actions with WHEN workflow services from
the monitor list.

Example:

 scheduleadmin 10.150.50.11 removeall

List [eclserver | event]

The list operation displays the list of monitored workunits and the events that they are waiting to occur.

These options are used by the List operation.

eclserver The name of an ECL Server queue attached to the daliserver.

event Optional. The name of an event. If omitted, all events are displayed.

Example:

 scheduleadmin 10.150.50.11 list eclserver_training

 //returns data that looks like this:
 2012-03-16T19:18:40

 CRON
 10 19 * * *
 W20120316-130812

 MyEvent
 *
 W20120316-133145

Monitor[eclserver| event]

The monitor operation blocks and updates the display of the list of monitored workunits as changes occur. Press the
ENTER key to return to the command prompt.

ECL Scheduler
ECL Scheduler Admin

© 2015 HPCC Systems®. All rights reserved
12

These options are used by the monitor operation.

eclserver The name of an ECL Server queue attached to the daliserver.

event Optional. The name of an event. If omitted, all events are displayed.

Example:

 scheduleadmin 10.150.50.11 monitor eclserver_training

 //returns data that looks like this:
 2012-03-16T19:07:22

 CRON
 40 18 * * *
 W20120316-124216
 10 19 * * *
 W20120316-130812
 monitoring...

Cleanup

The cleanup operation trims unused branches from the tree list of monitored workunits.

Example:

 scheduleadmin 10.150.50.11 cleanup

Push [eclserver| event]

The push operation posts the specified event as having occurred. This allows you to "fake" an event occurrence for
testing purposes.

These options are used by the push operation.

event The name of a user-defined event (this must NOT be "CRON").

subtype The string value to match the second parameter to the EVENT function.

Example:

 scheduleadmin 10.150.50.11 push MyFileEvent MyFile.d00

ECL Scheduler
ECL Usage

© 2015 HPCC Systems®. All rights reserved
13

ECL Usage
The ECL Scheduler is a tool that can perform a specific action based on a specific event. The following functions can
be viewed or manipulated in the scheduler.

ECL Scheduler
ECL Usage

© 2015 HPCC Systems®. All rights reserved
14

WHEN
WHEN(trigger, action [BEFORE | SUCCESS | FAILURE])

trigger A dataset or action that launches the action.

action The action to execute.

BEFORE Optional. Specifies an action that should be executed before the input is read.

SUCCESS Optional. Specifies an action that should only be executed on SUCCESS of the trigger
(e.g., no LIMITs exceeded).

FAILURE Optional. Specifies an action that should only be executed on FAILURE of the trigger
(e.g., a LIMIT was exceeded).

The WHEN function associates an action with a trigger (dataset or action) so that when the trigger is executed the
action is also executed. This allows

Example:

//a FUNCTION with side-effect Action
namesTable := FUNCTION
 namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
 END;
 o := OUTPUT('namesTable used by user <x>');
 ds := DATASET([{'x','y',22}],namesRecord);
 RETURN WHEN(ds,O);
END;

z := namesTable : PERSIST('z');
 //the PERSIST causes the side-effect action to execute only when the PERSIST is re-built
OUTPUT(z);

ECL Scheduler
ECL Usage

© 2015 HPCC Systems®. All rights reserved
15

NOTIFY
[attributename :=] NOTIFY(event [, parm] [, expression])

attributename Optional. The identifier for this action.

event The EVENT function, or a case-insensitive string constant naming the event to generate.

parm Optional. A case-insensitive string constant containing the event's parameter.

expression Optional. A case-insensitive string constant allowing simple message passing, to restrict the
event to a specific workunit.

The NOTIFY action fires the event so that the WAIT function or WHEN workflow service can proceed with operations
they are defined to perform.

The expression parameter allows you to define a service in ECL that is initiated by an event, and only responds to
the workunit that initiated it.

Example:

NOTIFY('testevent', 'foobar');

receivedFileEvent(STRING name) := EVENT('ReceivedFile', name);
NOTIFY(receivedFileEvent('myfile'));

//as a service
doMyService := FUNCTION
OUTPUT('Did a Service for: ' + 'EVENTNAME=' + EVENTNAME);
NOTIFY(EVENT('MyServiceComplete',
'<Event><returnTo>FRED</returnTo></Event>'),
EVENTEXTRA('returnTo'));
RETURN EVENTEXTRA('returnTo');
END;

doMyService : WHEN('MyService');
// and a call to the service
NOTIFY('MyService',
'<Event><returnTo>'+WORKUNIT+'</returnTo>....</Event>');
WAIT('MyServiceComplete');
OUTPUT('WORKUNIT DONE')

ECL Scheduler
ECL Usage

© 2015 HPCC Systems®. All rights reserved
16

EVENT
EVENT(event , subtype)

event A case-insensitive string constant naming the event to trap.

subtype A case-insensitive string constant naming the specific type of event to trap. This may contain *
and ? to wildcard-match the event's sub-type.

Return: EVENT returns a single event.

The EVENT function returns a trigger event, which may be used within the WHEN workflow service or the WAIT
and NOTIFY actions.

Example:

IMPORT STD;
MyEventName := 'MyFileEvent';
MyFileName := 'test::myfile';

IF (STD.File.FileExists(MyFileName),
 STD.File.DeleteLogicalFile(MyFileName));
 //deletes the file if it already exists

STD.File.MonitorLogicalFileName(MyEventName,MyFileName);
 //sets up monitoring and the event name
 //to fire when the file is found

OUTPUT('File Created') : WHEN(EVENT(MyEventName,'*'),COUNT(1));
 //this OUTPUT occurs only after the event has fired

afile := DATASET([{ 'A', '0'}], {STRING10 key,STRING10 val});
OUTPUT(afile,,MyFileName);
 //this creates a file that the DFU file monitor will find
 //when it periodically polls

//**********************************
EXPORT events := MODULE
 EXPORT dailyAtMidnight := CRON('0 0 * * *');
 EXPORT dailyAt(INTEGER hour,
 INTEGER minute=0) :=
 EVENT('CRON',
 (STRING)minute + ' ' + (STRING)hour + ' * * *');
 EXPORT dailyAtMidday := dailyAt(12, 0);
END;
BUILD(teenagers): WHEN(events.dailyAtMidnight);
BUILD(oldies) : WHEN(events.dailyAt(6));

ECL Scheduler
ECL Usage

© 2015 HPCC Systems®. All rights reserved
17

CRON
CRON(time)

time A string expression containing a unix-standard cron time.

Return: CRON defines a single timer event.

The CRON function defines a timer event for use within the WHEN workflow service or WAIT function. This is
synonymous with EVENT(‘CRON’, time).

The time parameter is unix-standard cron time, expressed in UTC (aka Greenwich Mean Time) as a string containing
the following, space-delimited components:

minute hour dom month dow

minute An integer value for the minute of the hour. Valid values are from 0 to 59.

hour An integer value for the hour. Valid values are from 0 to 23 (using the 24 hour clock).

dom An integer value for the day of the month. Valid values are from 0 to 31.

month An integer value for the month. Valid values are from 0 to 12.

dow An integer value for the day of the week. Valid values are from 0 to 7 (where both 0 and 7 represent
Sunday).

Any time component that you do not want to pass is replaced by an asterisk (*). You may define ranges of times
using a dash (-), lists using a comma (,), and ‘once every n’ using a slash (/). For example, 6-18/3 in the hour field
will fire the timer every three hours between 6am and 6pm, and 0-6/3,18-23/3 will fire the timer every three hours
between 6pm and 6am.

Example:

EXPORT events := MODULE
 EXPORT dailyAtMidnight := CRON('0 0 * * *');
 EXPORT dailyAt(INTEGER hour,
 INTEGER minute=0) :=
 EVENT('CRON',
 (STRING)minute + ' ' + (STRING)hour + ' * * *');
 EXPORT dailyAtMidday := dailyAt(12, 0);
 EXPORT EveryThreeHours := CRON('0 0-23/3 * * *');
END;

BUILD(teenagers) : WHEN(events.dailyAtMidnight);
BUILD(oldies) : WHEN(events.dailyAt(6));
BUILD(NewStuff) : WHEN(events.EveryThreeHours);

ECL Scheduler
ECL Usage

© 2015 HPCC Systems®. All rights reserved
18

WAIT
WAIT(event)

event A string constant containing the name of the event to wait for.

The WAIT action is similar to the WHEN workflow service, but may be used within conditional code.

Example:

 //You can either do this:
 action1;
 action2 : WHEN('expectedEvent');

 //can also be written as:
 SEQUENTIAL(action1,WAIT('expectedEvent'),action2);

ECL Scheduler
DFU Monitoring and Events

© 2015 HPCC Systems®. All rights reserved
19

DFU Monitoring and Events
The following are supported methods for the ECL Scheduler included in the ECL Standard Library Reference.

ECL Scheduler
DFU Monitoring and Events

© 2015 HPCC Systems®. All rights reserved
20

MonitorFile
STD.File.MonitorFile(event, [ip] , filename, [,subdirs] [,shotcount] [,espserverIPport])

dfuwuid := STD.File.fMonitorFile(event, [ip] , filename, [,subdirs] [,shotcount] [,espserverIPport]);

event A null-terminated string containing the user-defined name of the event to fire when the file-
nameappears. This value is used as the first parameter to the EVENT function.

ip Optional. A null-terminated string containing the ip address for the file to monitor. This is typ-
ically a landing zone. This may be omitted only if the filenameparameter contains a complete
URL.

filename A null-terminated string containing the full path to the file to monitor. This may contain wildcard
characters (* and ?).

subdirs Optional. A boolean value indicating whether to include files in sub-directories that match the
wildcard mask when the filename contains wildcards. If omitted, the default is false.

shotcount Optional. An integer value indicating the number of times to generate the event before the mon-
itoring job completes. A negative one (-1) value indicates the monitoring job continues until
manually aborted. If omitted, the default is 1.

espserverIPport Optional. A null-terminated string containing the protocol, IP, port, and directory, or the DNS
equivalent, of the ESP server program. This is usually the same IP and port as ECL Watch, with “/
FileSpray” appended. If omitted, the default is the value contained in the lib_system.ws_fs_server
attribute.

dfuwuid The attribute name to recieve the null-terminated string containing the DFU workunit ID
(DFUWUID) generated for the monitoring job.

Return: fMonitorFile returns a null-terminated string containing the DFU workunit ID (DFUWUID).

The MonitorFile function creates a file monitor job in the DFU Server. Once the job is received it goes into a 'moni-
toring' mode (which can be seen in the eclwatch DFU Workunit display), which polls at a fixed interval (default 15
mins). If an appropriately named file arrives in this interval it will fire the event with the name of the triggering object
as the event subtype (see the EVENT function).

This process continues until either:

1) The shotcount number of events have been generated.

2) The user aborts the DFU workunit.

The STD.File.AbortDfuWorkunit and STD.File.WaitDfuWorkunit functions can be used to abort or wait for the DFU
job by passing them the returned dfuwuid.

Note the following caveats and restrictions:

1) Events are only generated when the monitor job starts or subsequently on the polling interval.

2) Note that the event is generated if the file has been created since the last polling interval. Therefore, the event may
occur before the file is closed and the data all written. To ensure the file is not subsequently read before it is complete
you should use a technique that will preclude this possibility, such as using a separate 'flag' file instead of the file,
itself or renaming the file once it has been created and completely written.

3) The EVENT function's subtype parameter (its 2nd parameter) when monitoring physical files is the full URL of
the file, with an absolute IP rather than DNS/netbios name of the file. This parameter cannot be retrieved but can only
be used for matching a particular value.

ECL Scheduler
DFU Monitoring and Events

© 2015 HPCC Systems®. All rights reserved
21

Example:

EventName := 'MyFileEvent';
FileName := 'c:\\test\\myfile';
LZ := '10.150.50.14';
STD.File.MonitorFile(EventName,LZ,FileName);
OUTPUT('File Found') : WHEN(EVENT(EventName,'*'),COUNT(1));

ECL Scheduler
DFU Monitoring and Events

© 2015 HPCC Systems®. All rights reserved
22

MonitorLogicalFileName
STD.File.MonitorLogicalFileName(event, filename, [, shotcount] [, espserverIPport])

dfuwuid := STD.File.fMonitorLogicalFileName(event, filename, [, shotcount] [, espserverIPport]);

event A null-terminated string containing the user-defined name of the event to fire when the filename
appears. This value is used as the first parameter to the EVENT function.

filename A null-terminated string containing the name of the logical file in the DFU to monitor.

shotcount Optional. An integer value indicating the number of times to generate the event before the mon-
itoring job completes. A negative one (-1) value indicates the monitoring job continues until
manually aborted. If omitted, the default is 1.

espserverIPport Optional. A null-terminated string containing the protocol, IP, port, and directory, or the DNS
equivalent, of the ESP server program. This is usually the same IP and port as ECL Watch, with “/
FileSpray” appended. If omitted, the default is the value contained in the lib_system.ws_fs_server
attribute.

dfuwuid The attribute name to recieve the null-terminated string containing the DFU workunit ID
(DFUWUID) generated for the monitoring job.

Return: fMonitorLogicalFileName returns a null-terminated string containing the DFU workunit ID
(DFUWUID).

The MonitorLogicalFileName function creates a file monitor job in the DFU Server. Once the job is received it goes
into a 'monitoring' mode (which can be seen in the eclwatch DFU Workunit display), which polls at a fixed interval
(default 15 mins). If an appropriately named file arrives in this interval it will fire the event with the name of the
triggering object as the event subtype (see the EVENT function).

This function does not support wildcard characters. To monitor physical files or directories using wildcards, use the
MonitorFile function.

This process continues until either:

1) The shotcount number of events have been generated.

2) The user aborts the DFU workunit.

The STD.File.AbortDfuWorkunit and STD.File.WaitDfuWorkunit functions can be used to abort or wait for the DFU
job by passing them the returned dfuwuid.

Note the following caveats and restrictions:

1) If a matching file already exists when the DFU Monitoring job is started, that file will not generate an event. It will
only generate an event once the file has been deleted and recreated.

2) If a file is created and then deleted (or deleted then re-created) between polling intervals, it will not be seen by the
monitor and will not trigger an event.

3) Events are only generated on the polling interval.

Example:

EventName := 'MyFileEvent';
FileName := 'test::myfile';
IF (STD.File.FileExists(FileName),

ECL Scheduler
DFU Monitoring and Events

© 2015 HPCC Systems®. All rights reserved
23

 STD.File.DeleteLogicalFile(FileName));
STD.File.MonitorLogicalFileName(EventName,FileName);
OUTPUT('File Created') : WHEN(EVENT(EventName,'*'),COUNT(1));

rec := RECORD
 STRING10 key;
 STRING10 val;
END;
afile := DATASET([{ 'A', '0'}], rec);
OUTPUT(afile,,FileName);

	The ECL Scheduler
	Table of Contents
	The Ecl Scheduler
	Introduction
	ECL Scheduling
	How it Works

	ECL Scheduler Component
	Installation and configuration
	Using the ECL Scheduler
	ECL Language Statements Used
	WHEN
	NOTIFY
	EVENT
	CRON
	WAIT

	Monitoring Functions in the Standard Library (STD.File)
	MonitorFile
	MonitorLogicalFileName

	DFUPlus: Monitor Option

	Interface in ECL Watch
	Scheduler Workunit List
	Pushing Events

	ECL Scheduler Admin
	Command Line Interface: scheduleadmin
	Support Operations
	Servers
	Add wuid
	Remove wuid
	Removeall
	List [eclserver | event]
	Monitor[eclserver| event]
	Cleanup
	Push [eclserver| event]

	ECL Usage
	WHEN
	NOTIFY
	EVENT
	CRON
	WAIT

	DFU Monitoring and Events
	MonitorFile
	MonitorLogicalFileName

