
Six Degrees of Kevin Bacon
Boca Raton Documentation Team

Six Degrees of Kevin Bacon: ECL Programming Example

© 2016 HPCC Systems®. All rights reserved
2

Six Degrees of Kevin Bacon: ECL Programming Example
Boca Raton Documentation Team
Copyright © 2016 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version Number in
the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2016 Version 6.2.0-1

Six Degrees of Kevin Bacon: ECL Programming Example

© 2016 HPCC Systems®. All rights reserved
3

Working with Data .. 4
Introduction .. 4
Processing the Data ... 5
Getting Useful Information from Data ... 16

Next Steps ... 20

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
4

Working with Data

Introduction
This exercise shows the methodology to extract useful information from data. Finding interesting links and relation-
ships from large or massive datasets is a typical use of the HPCCSystems High Performance Computing Cluster
(HPCC) platform.

In this example, we will download the data files from the Internet Movie Database (IMDB) and see one technique to
extract links and find relationships.

Since the concept of actors and movies is conceptually simple; everyone should understand the data and relationships
intuitively. However, the data is comprehensive enough to provide a solid example and inspiration for new users to
gain skills to attack their own real-world problems with an HPCC.

In this example, we will:

• Download raw data files and supporting documentation about the data

• Analyze the data file to understand its format and contents

• Spray the file to a Data Refinery (Thor) cluster

• Examine the data and determine the pre-processing needed

• Pre-process the data to produce a new data file

While this example will run on a single-node HPCC, you will see a dramatic difference in performance
on a multi-node system. The true power of an HPCC is its ability to work on different portions of the
data file in parallel. This is known as Massively Parallel Processing (MPP).

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
5

Processing the Data
We get a data file
The Internet Movie Database (IMDB) database is a freely downloadable set of data files about Movies.

It can be downloaded in many formats, including text file format. The set includes approximately 48 files about Actors,
Actresses, Directors, Producers, and other aspects of motions pictures.

It is manageable in size (~400MB) and is sufficient in size to exercise an HPCC platform but not too big to download.

The plain text data files are available from the following ftp sites:

• ftp://ftp.fu-berlin.de/pub/misc/movies/database/ (Germany)

• ftp://ftp.funet.fi/pub/mirrors/ftp.imdb.com/pub/ (Finland)

• ftp://ftp.sunet.se/pub/tv+movies/imdb/ (Sweden)

The files are compressed using GNUzip to save space and bandwidth.

We will focus initially on two of the larger data sets in the IMDB database

• The Actors Dataset (Approximately 4 million Records)

• The Actresses Dataset (Approximately 2 million Records)

• Download the plain text data files (actors.list.gz and actresses.list.gz)to your local drive using any ftp interface
you choose.

• Extract the two data files (actors.list and actresses.list) using any GNUzip interface.

Analyze the data file to understand its format and its
contents
Here is the sample of the data in the Actors.list file from IMDB

Koolout' Starks, Johnny Nothing Like the Holidays (2008) [Alexis' Thug] <35>
Subtle Seduction (2008) [Officer Ward]
The Godfather of Green Bay (2005) (as Johnny Starks) [Marcus] <18>

La Chispa', Tony Caceria de judiciales (1997) <11>
Violencia en la sierra (1995) [Victoriano] <4>

Notice the actors text file is structured as follows

Blankline
Actorname_i Moviename (year) [role] <listing position>
 Moviename (year) [role] <listing position>
 Moviename (year) [role] <listing position>
 :
Blankline
Actorname_j \t Moviename (year) [role] <listing position>
 :
Blankline

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
6

Load the Incoming Data File to your Landing Zone

In this step, you will copy the data files to a location from which it can be sprayed to your HPCC cluster. A Landing
Zone is a storage location attached to your HPCC. It has a utility running to facilitate file spraying to a cluster.

For smaller data files, maximum of 2GB, you can use the upload/download file utility in ECL Watch. The sample
data files are ~400 mb.

Next you will distribute (or Spray) the dataset to all the nodes in the HPCC cluster. The power of the HPCC comes
from its ability to assign multiple processors to work on different portions of the data file in parallel.

1. Download the sample data files from the ftp sites as described in the previous section, if you have not done so
already.

2. Extract them to a folder on your local machine.

3. In your browser, go to the ECL Watch URL. For example, http://nnn.nnn.nnn.nnn:8010, where nnn.nnn.nnn.nnn
is your ESP Server's IP address.

Your IP address could be different from the ones provided in the example images. Please use the IP
address provided by your installation.

4. From ECL Watch page, click on the Files icon, then on the Landing Zones link.

Figure 1. Upload/download

Once you click on the Upload file link, a file dialog displays.

5. Browse the files on your local machine, then use multi-select to choose the files to upload and then press the Open
button.

The files you selected should appear . The data files are named: actors.list and actresses.list

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
7

Figure 2. Dropzones and Files

6. Press the Start button to upload the files.

You can monitor priogress as it uploads.

Figure 3. Upload Progress

Spray the Data File to your Data Refinery (Thor) Cluster
To use the data file in our HPCC system, we must "spray" it to all the nodes. A spray or import is the relocation of a
data file from one location (such as a Landing Zone) to multiple file parts on nodes in a cluster.

The distributed or sprayed file is given a logical-file-name as follows: ~thor::in::IMDB::actors.list The system
maintains a list of logical files and the corresponding physical file locations of the file parts.

• Open ECL Watch using the following URL:

http://nnn.nnn.nnn.nnn:pppp(where nnn.nnn.nnn.nnn is your ESP Server's IP Address and pppp is the port.
The default port is 8010)

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
8

• Click on the Files icon, then click the Landing Zones link from the navigation.

• Select the two files (actors.list and actresses.list) then press the Delimited button.

The Spray Delimited dialog displays.

Figure 4. Spray Delimited

• Select mythor in the Group drop-list.

The IP Address is automatically filled and the Local Path is partially filled with the default folder on your landing
zone. Note: The VM and Community Edition typically only has one landing zone defined.

• Complete the Target Scope ~thor::in::IMDB

• Fill in the rest of the parameters (if they are not filled in already).

• Max Record Length 8192

• Separator \,

• Line Terminator \n,\r\n

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
9

• Quote: '

• Make sure the Overwrite box is checked.

If available, make sure the Replicate box is checked. (The Replicate option is only available on systems where
replication has been enabled.)

• Press the Spray button.

A tab opens for each file. On these tabs, you can monitor the progress of each DFU Spray.

Figure 5. View Progress

• After both sprays are complete, we can query the logical files on the HPCC to see the files we sprayed.

• Click on the Logical Files link

The files display in the Logical Files list:

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
10

Figure 6. Display Logical Files

Working With the Data
In this portion of the example, we will write ECL code to make sure we can read the sprayed data file .We will define
and execute simple queries on it so we can evaluate it and determine any necessary pre-processing.

• Start the ECL IDE (Start >> All Programs >> HPCC Systems >> ECL IDE)

• Log in to your environment.

• Expand the examples ECL folder in the Repository toolbox.

• Expand the IMDB folder inside.

All the ECL files needed to complete this tutorial are located in the IMDB folder.

Figure 7. IMDB ECL Files

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
11

• Open the CleanActor ECL file and examine the code.

This code reads and processes the raw text file. The comments below describe the processing:

IMPORT Std;

EXPORT STRING CleanActor(STRING infld) := FUNCTION
 //this can be refined later
 s1 := Std.Str.FindReplace(infld, '\'',''); // replace apostrophe
 s2 := Std.Str.FindReplace(s1, '\t',''); //replace tabs
 s3 := Std.Str.FindReplace(s2, '----',''); // replace multiple -----
 return TRIM(s3, LEFT, RIGHT);
END;

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
12

Examine the Data

In this section, we will look at the data and determine if there is any pre-processing we want to perform. This is the
step in the development process where we convert the raw data into a form we can actually use.

Note: The IMDB.FileActors.ecl file specifies the size of the header in the files (actors.list and actresses.list.) The
HEADING() value in the example code was accurate at the time we downloaded the IMDB data, but could
change at any time. We suggest opening in a text editor and checking the line number where the header ends
and actual data begins (as shown below).

Figure 8. actors.list in text editor

• Open a new Builder window (CTRL+N) and write the following code:

IMPORT IMDB;

OUTPUT(IMDB.FileActors);

• Press the syntax check button on the main toolbar (or press F7).

It is always a good idea to check syntax before submitting.

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
13

• Make sure the selected cluster is your thor cluster, then press the Submit button.

Figure 9. Submit to Thor

• When the Workunit completes it displays a green checkmark.

Note: Depending on the size of your cluster and the speed of your server(s), this process could take several minutes.
If you are running this on a virtual machine, it could take as long as 45 minutes to complete.

• Select the Workunit tab (the one with the number and the checkmark next to it) and select the Result 1 tab.

Figure 10. Select Workunit

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
14

• Scroll down to see more records.

Figure 11. See more records

• Close the Builder Window.

Processing the Data : Extract, Transform, and Load
In this section, we will write code to transform the original actor data as follows:

• From the raw actors data, we will do an ETL operation (Extract, Transform, Load) to build an actor_movie relation
set.

• We will also construct a Kevin Bacon degrees of separation lookup set. This is the structure we will query to answer
the question:

How many degrees of separation exist between Actor X and Kevin Bacon?

For example: Using Jon Lovitz as the actor, we want information as follows:

Jon Lovitz ((was in) Movie X ((with) Actor2 ((who was in) Movie Y ((with) Kevin Bacon

We will then write this new file to our Thor cluster so it can be used in parameterized queries.

• In the ECL IDE , go to the Repository panel and expand the IMDB folder.

• Open the ECL File ActorsInMovies.

The code in this ECL file looks like this:

/* **
Copyright 2011 HPCC Systems®. All rights reserved.
*** */

/**

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
15

 * Produce a slimmed down version of the IMDB actor AND actress files to
 * permit more efficient join operations.
 * Filter out the movie records we do not want in building our KBacon Number sets.
 *
 */

IMPORT $ AS IMDB;
IMPORT Std;

// Filter out TV movies, Videos AND some documentary type collections
ds_IMDB := IMDB.FileActors(actorname!='' AND moviename != '' AND
 Std.Str.Find(moviename,'Boffo',1) = 0 AND
 Std.Str.Find(moviename,'Slasher Film',1) = 0 AND
 movie_type != 'Video' AND isTVseries = 'N' AND
 movie_type != 'For TV');

//Slim the records down to bare essentials for searching AND joining
slim_IMDB_rec := RECORD
 STRING50 actor;
 STRING150 movie;
END;

slim_IMDB_rec slim_it(ds_IMDB L):= TRANSFORM
 SELF.actor := Std.Str.FindReplace(L.actorname,'(I)','');
 SELF.movie := L.moviename;;
END;

IMDB_names := PROJECT(ds_IMDB, slim_it(LEFT));

export ActorsInMovies := IMDB_Names : persist('~temp::IMDB::ActorsInMovies');;

This defines a relational data set:-- actor:movie. We will use this definition later.

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
16

Getting Useful Information from Data
Links and Degrees of Separation
Now that we have our data in a useful format, have a relation defined, and the file is in place, we can write code to
use the new data file.

We want to know how many actors are a distance N from Kevin Bacon. To accomplish this, we will construct sets of
Kevin Bacon's costars that are KBacon number apart.

• Open the KevinBaconNumberSets ECL file.

This ECL code counts the number of actors with "bacon numbers" starting from 1 thru 7, that is up to 7 Levels of
separation. We will use this later to do searches by building an index.

/* **
ATTRIBUTE PURPOSE:
 Produce a series of sets for Actors and Movies that are : distance-0
 away (KBacons Direct movies), distance-2 Away KBacon's Costars Movies ,
 distance-3 away - Movies of Costars of Costars etc all the way upto level 7

 The nested attributes below are shown here together for the benefit of the reader.

 Notes on variable naming convention used for costars and movies
 KBMovies : Movies Kevin Bacon Worked in (distance 0)
 KBCoStars : Stars who worked in KBMovies (distance 1)
 KBCoStarMovies : Movies worked in by KBCoStars
 except KBMovies (distance 1)
 KBCo2Stars : Stars(Actors) who worked in KBCoStarMovies (distance 2)
 KBCo2StarMovies : Movies worked in by KBCo2Stars
 except KBCoStarMovies (distance 2)
 KBCo3Stars : Stars(Actors) who worked in KBCo2StarMovies (distance 3)
 KBCo3StarMovies : Movies worked in by KBCo3Stars
 except KBCo2StarMovies (distance 3)
etc..
*** */

IMPORT Std;
IMPORT IMDB;

EXPORT KevinBaconNumberSets := MODULE
 // Constructing a proper name match function is an art within itself
 // For simplicity we will define a name as matching if both first and last name
 //are found within the string

 NameMatch(string full_name, string fname,string lname) :=
 Std.Str.Find(full_name,fname,1) > 0 AND
 Std.Str.Find(full_name,lname,1) > 0;

 //------ Get KBacon Movies
 AllKBEntries := IMDB.ActorsInMovies(NameMatch(actor,'Kevin','Bacon'));
 EXPORT KBMovies := DEDUP(AllKBEntries, movie, ALL); // Each movie should ONLY occur once

 //------ Get KBacon CoStars
 CoStars := IMDB.ActorsInMovies(Movie IN SET(KBMovies,Movie));
 EXPORT KBCoStars := DEDUP(CoStars(actor<>'Kevin Bacon'), actor, ALL);

 //------ Get KBacon Costars' Movies
 // CSM = First find all of the movies that a KBCoStar has been in

 CSM := DEDUP(JOIN(IMDB.ActorsInMovies,KBCoStars, LEFT.actor=RIGHT.actor,

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
17

 TRANSFORM(LEFT), LOOKUP),
 movie,ALL);

 // Now we need to remove all of those that KB was in himself
 // We can use a set; KB has not been in (quite!) that many movies

 EXPORT KBCoStarMovies := CSM(movie NOT IN SET(KBMovies,movie));

 //------ Bacon # 2 Actors
 // To be a Co2Star of Kevin Bacon you must have appeared in a movie with a
 //CoStar of Kevin Bacon
 // This corresponds to having a Bacon number of 2
 // We are now getting towards the expensive part of the process
 KBCo2S := DEDUP(JOIN(IMDB.ActorsInMovies, KBCoStarMovies, LEFT.movie=RIGHT.movie,
 TRANSFORM(LEFT), LOOKUP),
 actor, ALL);

 // KCCo2S = ALL Actors appearing in Movies of KBacon's CoActors
 // The above is all the people in the movies; but some will have been co-stars of KB
 //directly - these must be removed
 // The LEFT ONLY join removes items in one list from another

 EXPORT KBCo2Stars := JOIN(KBCo2S, KBCoStars, LEFT.actor=RIGHT.actor,
 TRANSFORM(LEFT), LEFT ONLY);

 //------- bacon # 2 Movies
 // Co2SM = what movies have all the Co2Stars been in?
 Co2SM := DEDUP(JOIN(IMDB.ActorsInMovies, KBCo2Stars, LEFT.actor=RIGHT.actor,
 TRANSFORM(LEFT), LOOKUP),
 movie, ALL);
 // Co2SM = ALL Movies KBCo2Stars have been in
 // Of course some of these movies will have CoStars in too and thus will already have
 //been listed. Note this list will not contain any Kevin Bacon movies OR the movie would
 //have been reached earlier!

 Export KBCo2StarMovies := JOIN(Co2SM, KBCoStarMovies, LEFT.movie=RIGHT.movie,
 TRANSFORM(LEFT),LEFT ONLY);

 //------ bacon #3 Actors
 // Find people with a Bacon number of 3
 // This code is very similar to KBCo2Stars; one might be tempted to common up into a
 // function or macro. However it is worth looking at the attribute counts first; we may be
 // down to a small enough set that we can start using in-memory functions (e.g.,SET) again.

 KBCo3S := DEDUP(JOIN(IMDB.ActorsInMovies, KBCo2StarMovies, LEFT.movie=RIGHT.movie,
 TRANSFORM(LEFT), LOOKUP),
 actor, ALL);

 // KBCo3S = ALL CoStars in KBCo2Star Movies
 // The above is all the people in the movies; but some will have been co2stars of KB
 // directly - these must be removed. The LEFT ONLY join removes items in one list from
 // another. There should not be any direct CoStars in this list (or the movie would have
 // been a CoStarMovie not a CoCoStarMovie)

 EXPORT KBCo3Stars := JOIN(KBCo3S, KBCo2Stars, LEFT.actor=RIGHT.actor,
 TRANSFORM(LEFT),LEFT ONLY);

 //----- bacon #3 Movies
 // So what movies have all the KBCo3Stars been in?

 Co3SM := DEDUP(JOIN(IMDB.ActorsInMovies, KBCo3Stars, LEFT.actor=RIGHT.actor,
 TRANSFORM(LEFT), LOOKUP),
 movie, ALL);

 // Co3SM = ALL Movies KBCo3Stars have been in

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
18

 // Of course some of these movies will have KBCo2Stars in too and thus will already have
 // been listed. Note We ONLY have to remove one level back from the list; previous levels
 // cannot be reached by definition

 EXPORT KBCo3StarMovies := JOIN(Co3SM, KBCo2StarMovies, LEFT.movie=RIGHT.movie,
 TRANSFORM(LEFT),LEFT ONLY);

 //------bacon #4 Actors
 KBCo4S := DEDUP(JOIN(IMDB.ActorsInMovies, KBCo3StarMovies, LEFT.movie=RIGHT.movie,
 TRANSFORM(LEFT), LOOKUP),
 actor, ALL);

 EXPORT KBCo4Stars := JOIN(KBCo4S, KBCo3Stars, LEFT.actor=RIGHT.actor,
 TRANSFORM(LEFT),LEFT ONLY);

 //----- bacon #4 Movies
 // So what movies have all the Co4Stars been in?

 Co4SM := DEDUP(JOIN(IMDB.ActorsInMovies, KBCo4Stars, LEFT.actor=RIGHT.actor,
 TRANSFORM(LEFT), LOOKUP),
 movie, ALL);

 // Co4SM = ALL Movies KBCo4Stars have been in
 // Of course some of these movies will have Co3Stars in too and thus will already have
 // been listed. Note We ONLY have to remove one level back from the list; previous levels
 // cannot be reached by definition

 EXPORT KBCo4StarMovies := JOIN(Co4SM, KBCo3StarMovies, LEFT.movie=RIGHT.movie,
 TRANSFORM(LEFT),LEFT ONLY);

 //----- bacon #5 Stars
 KBCo5S := DEDUP(JOIN(IMDB.ActorsInMovies, KBCo4StarMovies, LEFT.movie=RIGHT.movie,
 TRANSFORM(LEFT), LOOKUP),
 actor, ALL);

 EXPORT KBCo5Stars := JOIN(KBCo5S, KBCo4Stars, LEFT.actor=RIGHT.actor,
 TRANSFORM(LEFT),LEFT ONLY);

//----- bacon #5 Movies
 Co5SM := DEDUP(JOIN(IMDB.ActorsInMovies, KBCo5Stars, LEFT.actor=RIGHT.actor,
 TRANSFORM(LEFT), LOOKUP),
 movie,ALL);

 EXPORT KBCo5StarMovies := JOIN(Co5SM, KBCo4StarMovies, LEFT.movie=RIGHT.movie,
 TRANSFORM(LEFT),LEFT ONLY);

 //----- bacon #6 Stars
 // Find people with a Bacon number of 6
 // KBCo5 is getting small again - can move back down to the SET?

 KBCo6S := DEDUP(IMDB.ActorsInMovies(movie IN SET(KBCo5StarMovies, movie)),
 actor, ALL);

 EXPORT KBCo6Stars := JOIN(KBCo6S, KBCo5Stars, LEFT.actor=RIGHT.actor,
 TRANSFORM(LEFT),LEFT ONLY);

 //----- bacon #6 Movies
 Co6SM := DEDUP(IMDB.ActorsInMovies(actor IN SET(KBCo6Stars, actor)), movie, ALL);

 EXPORT KBCo6StarMovies := Co6SM(movie NOT IN SET(KBCo5StarMovies, movie));

 //----- bacon #7 Movies
 // Find people with a Bacon number of 7
 KBCo7S := DEDUP(IMDB.ActorsInMovies(movie IN SET(KBCo6StarMovies,movie)), actor, ALL);
 EXPORT KBCo7Stars := KBCo7S(actor NOT IN SET(KBCo6Stars, actor));

Six Degrees of Kevin Bacon: ECL Programming Example
Working with Data

© 2016 HPCC Systems®. All rights reserved
19

 //----- We just have to count them all !! (How many holes in Albert Hall?)
 EXPORT doCounts := PARALLEL(
 OUTPUT(COUNT(KBMovies), NAMED('KBMovies')),
 OUTPUT(COUNT(KBCoStars), NAMED('KBCoStars')),
 OUTPUT(COUNT(KBCoStarMovies), NAMED('KBCoStarMovies')),
 OUTPUT(COUNT(KBCo2Stars), NAMED('KBCo2Stars')),
 OUTPUT(COUNT(KBCo2StarMovies), NAMED('KBCo2StarMovies')),
 OUTPUT(COUNT(KBCo3Stars), NAMED('KBCo3Stars')),
 OUTPUT(COUNT(KBCo3StarMovies), NAMED('KBCo3StarMovies')),
 OUTPUT(COUNT(KBCo4Stars), NAMED('KBCo4Stars')),
 OUTPUT(COUNT(KBCo4StarMovies), NAMED('KBCo4StarMovies')),
 OUTPUT(COUNT(KBCo5Stars), NAMED('KBCo5Stars')),
 OUTPUT(COUNT(KBCo5StarMovies), NAMED('KBCo5StarMovies')),
 OUTPUT(COUNT(KBCo6Stars), NAMED('KBCo6Stars')),
 OUTPUT(COUNT(KBCo6StarMovies), NAMED('KBCo6StarMovies')),
 OUTPUT(COUNT(KBCo7Stars), NAMED('KBCo7Stars')),
 OUTPUT(KBCo7Stars)
);

END;

• Open a new Builder Window and type:

IMPORT IMDB;
IMDB.KevinBaconNumberSets.doCounts;

• Check the syntax then press the Submit button.

Note: Depending on the size of your cluster and the speed of your server(s), this process could take several minutes.
If you are running this on a virtual machine, it could take as long as an hour to complete.

• When the process completes, each row shown below becomes it's own result tab. You will get a sample of the
output as follows:

Note: The data files for this tutorial change frequently, your results may vary from those shown in this document.

KB Movies 71

KB Co Stars 3520

KB Co Star Movies 33504

KB Co 2 Stars 430145

KB Co 2 Star Movies 251867

KB Co 3 Stars 896009

KB Co 3 Star Movies 51650

KB Co 4 Stars 102729

KB Co 4 Star Movies 2634

KB Co 5 Stars 6080

KB Co 5 Star Movies 190

KB Co 6 Stars 450

KB Co 6 Star Movies 14

KB Co 7 Stars 22

Six Degrees of Kevin Bacon: ECL Programming Example
Next Steps

© 2016 HPCC Systems®. All rights reserved
20

Next Steps
Now that you have successfully processed the data and established links, what's next?

Two more ECL files are included in the IMDB folder that you can use in conjunction with the examples you have
already worked through in this tutorial:

• KeysKevinBacon -- Builds an index of actors/actresses and the movies they have starred in.

You must build this index before you can run queries to find the degree of separation between Kevin Bacon and an
actor of your choice.

To build the index, open a builder window and type the following code:

IMPORT IMDB;
IMDB.KeysKevinBacon.BuildAll;

Press the Submit button to run the ECL code and build the index.

SearchKevinBaconLinks -- Searches the index you built to give you the degree of separation between an actor and
Kevin Bacon.

For example, to find the degree of separation between Kevin Bacon and Andi Everingham, open a builder window
and type the following code:

IMPORT IMDB;
IMDB.SearchKevinBaconLinks('Everingham, Andi');

Make sure the selected cluster is your hThor cluster, then press the Submit button to run the query.

When it has completed, click on the Workunit ID tab.

Two results are shown.

Result1 shows the degree of separation between the actor and Kevin Bacon.

Interpret the results as follows:

Actor is at level 1 - The actor you chose and Kevin Bacon starred in a movie together.

Actor is at level 2 - The actor you chose starred in a movie with an actor who starred in a movie with Kevin Bacon.

The higher the level, the greater the degree of separation between the actor you chose and Kevin Bacon.

In this example, the actor is at level 6, indicating that there are 6 degrees of separation between Andi Everingham
and Kevin Bacon.

Result2 shows the level (degree of separation), the name of the actor and the movie they starred in.

Each line shows an actor and the movie they starred in which links them to each other and eventually to Kevin Bacon.

Have fun finding the degrees of separation between any actor and Kevin Bacon.

Remember to build the index first.

	Six Degrees of Kevin Bacon
	Table of Contents
	Working with Data
	Introduction
	Processing the Data
	We get a data file
	Analyze the data file to understand its format and its contents
	Load the Incoming Data File to your Landing Zone
	Spray the Data File to your Data Refinery (Thor) Cluster
	Working With the Data
	Examine the Data

	Processing the Data : Extract, Transform, and Load

	Getting Useful Information from Data
	Links and Degrees of Separation

	Next Steps

