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Executive Summary
As a result of the continuing information explosion, many organizations now have the need to process and analyze 
massive volumes of data.  These data-intensive computing requirements can be addressed by scalable systems 
based on hardware clusters of commodity servers coupled with system software to provide a distributed file 
storage system, job execution environment, online query capability, parallel application processing, and parallel 
programming development tools.  The LexisNexis HPCC platform provides all of these capabilities in an integrated, 
easy to implement and use, commercially-available high-performance computing environment.  This paper provides 
an introduction to the LexisNexis HPCC system architecture also referred to (in the government space) as the 
LexisNexis Data Analytics Supercomputer (DAS).

LexisNexis Risk Solutions, an industry leader in data content,  data aggregation, and information services, 
independently developed and implemented the HPCC platform as a solution for its own data-intensive computing 
requirements.  In a similar manner to Hadoop (the open source implementation of MapReduce), the LexisNexis 
approach also uses commodity clusters of hardware running the Linux operating system and includes additional 
system software and middleware components to provide a complete and comprehensive job execution 
environment and distributed query and filesystem support needed for data-intensive computing.

The HPCC platform includes a powerful high-level, heavily-optimized, data-centric declarative language for parallel 
data processing called ECL (Enterprise Data Control Language) which is also described in this paper.  The power, 
flexibility, advanced capabilities, speed of development, maturity, and ease of use of the ECL programming language 
is a primary distinguishing factor between the LexisNexis HPCC platform and other data-intensive computing 
solutions.

Advantages of selecting the LexisNexis HPCC platform for data-intensive computing include: (1) a highly integrated 
system environment with capabilities from raw data processing to high-performance queries and data analysis using 
a common language; (2) an optimized cluster approach which provides high performance at a much lower system 
cost than other system alternatives resulting in significantly lower total cost of ownership (TCO);  (3) a stable and 
reliable processing environment proven in production applications for varied organizations over a 10-year period;  
(4) an innovative data-centric programming language (ECL) with extensive built-in capabilities for data-parallel 
processing, significantly increasing programmer productivity for application development, which automatically 
optimizes execution graphs with hundreds of processing steps into single efficient workunits;  (5) a high-level of fault 
resilience and capabilities which reduce the need for re-processing in case of system failures; (6) suitability for a wide 
range of data-intensive applications from large volume ETL processing to support databases, data warehouses, and 
high volume online applications to network security analysis of massive amounts of log information; and (7) available 
from and supported by a well-known leader in information services and “large data” solutions (LexisNexis) which is 
part of one of the world’s largest publishers of information – ReedElsevier.
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Introduction
Many organizations have large amounts of data which has been collected and stored in massive datasets which 
needs be processed and analyzed to provide business intelligence, improve products and services for customers, 
or to meet other internal data processing requirements.  For example, Internet companies need to process data 
collected by Web crawlers as well as logs, click data, and other information generated by Web services.  Parallel 
relational database technology has not proven to be cost-effective or provide the high-performance needed to 
analyze massive amounts of data in a timely manner [1-3].  As a result several organizations developed technology 
to utilize large clusters of commodity servers to provide high-performance computing capabilities for processing 
and analysis of massive datasets.  Clusters can consist of hundreds or even thousands of commodity machines 
connected using high-bandwidth networks. Examples of this type of cluster technology include Google’s MapReduce 
[1, 4], Hadoop [5, 6], SCOPE [2], Sector/Sphere [7], and LexisNexis HPCC platform described in this paper.

This paper will introduce high-performance computing utilizing clusters of commodity hardware, describe 
the characteristics and requirements of data-intensive applications, and also briefly discuss the MapReduce 
programming model and Hadoop system as an example of a basic cluster system architecture for comparison.  
This is followed by an overview of LexisNexis HPCC platform and the ECL Programming language describing its 
advantages over other approaches.

High-Performance Computing

High-Performance Computing (HPC) is used to describe computing environments which utilize supercomputers 
and computer clusters to address complex computational requirements, support applications with significant 
processing time requirements, or require processing of significant amounts of data.  Supercomputers have 
generally been associated with scientific research and compute-intensive types of problems, but more and 
more supercomputer technology is appropriate for both compute-intensive and data-intensive applications.  
Supercomputers utilize a high-degree of internal parallelism and typically use specialized multi-processors with 
custom memory architectures which have been highly-optimized for numerical calculations [8].  Supercomputers 
also require special parallel programming techniques to take advantage of its performance potential.

Today a higher-end desktop workstation has more computing power than the supercomputers which existed 
during the early 1990’s.  This has led to a new trend in supercomputer design for high-performance computing: 
using clusters of independent processors connected in parallel [9].  Many computing problems are suitable for 
parallelization, often problems can be divided in a manner so that each independent processing node can work 
on a portion of the problem in parallel by simply dividing the data to be processed, and then combining the final 
processing results for each portion.   This type of parallelism is often referred to as data-parallellism, and data-
parallel applications are a potential solution to petabyte scale data processing requirements [10, 11].

Data-parallelism can be defined as a computation applied independently to each data item of a set of data which 
allows the degree of parallelism to be scaled with the volume of data.  The most important reason for developing 
data-parallel applications is the potential for scalable performance in high-performance computing, and may result 
in several orders of magnitude performance improvement.  The key issues with developing applications using data-
parallelism are the choice of the algorithm, the strategy for data decomposition, load balancing on processing nodes, 
communications between processing nodes, and the overall accuracy of the results [10].  Nyland et al. [10] also note 
that the development of a data-parallel application can involve substantial programming complexity to define the 
problem in the context of available programming tools, and to address limitations of the target architecture.
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Commodity Computing Clusters

The resulting economies of scale in using multiple independent processing nodes for supercomputer design to 
address high-performance computing requirements led directly to the implementation of commodity computing 
clusters.  A computer cluster is a group of shared individual computers, linked by high-speed communications in 
a local area network topology using technology such as gigabit network switches or InfiniBand, and incorporating 
system software which provides an integrated parallel processing environment for applications with the capability 
to divide processing among the nodes in the cluster.  Cluster configurations can not only improve the performance 
of applications which use a single computer, but provide higher availability and reliability, and are typically much 
more cost-effective than single supercomputer systems with equivalent performance.  The key to the capability, 
performance, and throughput of a computing cluster is the system software and tools used to provide the parallel 
job execution environment.  Programming languages with implicit parallel processing features and a high-degree of 
optimization are also needed to insure high-performance results as well as high programmer productivity.

Clusters allow the data used by an application to be partitioned among the available computing resources and 
processed independently to achieve performance and scalability based on the amount of data.  This approach to 
parallel processing is often referred to as a “shared nothing” approach since each node consisting of processor, 
local memory, and disk resources shares nothing with other nodes in the cluster (Figure 1).  Clusters are extremely 
effective when it is relatively easy to separate the problem into a number of parallel tasks and there is no dependency 
or communication required between the tasks other than overall management of the tasks.  

Figure 1
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High-performance clusters are usually configured using commercial off-the-shelf (COTS) PC components. Rack-
mounted servers or blade servers each with local memory and disk storage are often used as processing nodes 
to allow high-density small footprint configurations which facilitate the use of very high-speed communications 
equipment to connect the nodes.  Linux is widely used as the operating system for computer clusters [13, 14].  
According to Sloan [14], cluster configurations can be symmetric (each node can also function as a separate 
individual computer) or asymmetric (one computer functions as the master node providing a gateway to users 
and managing the activity of other nodes) which is the most common architecture.  Cluster management, security, 
and workload distribution are less problematic and optimum performance is usually more easily achieved in 
asymmetric clusters.   The hardware utilized in high-performance computing clusters is typically homogeneous, with 
each processing node consisting of the same processor, memory, and disk components.  This enables the system 
software to better optimize workloads and deliver more consistent performance for parallel processing applications.  
In a parallel processing application on a cluster where the workload has been divided evenly, a node which has 
a slower processor or less memory will lag other nodes in completing its part of an application affecting overall 
performance.

Data-Intensive Computing Applications

Data-intensive is used to describe computing applications that are I/O bound or with a need to process large 
volumes of data [15-17].  Such applications devote most of their processing time to I/O and movement of data.  
Parallel processing of data-intensive applications typically involves partitioning or subdividing the data into multiple 
segments which can be processed independently using the same executable application program in parallel on an 
appropriate computing platform, then reassembling the results to produce the completed output data [10].  The 
greater the aggregate distribution of the data, the more benefit there is in parallel processing of the data.  Data-
intensive processing requirements normally scale linearly according to the size of the data and are very amenable to 
straightforward parallelization.  

There are several important common characteristics of data-intensive computing systems that distinguish them 
from other forms of computing.  First is the principle of collocation of the data and programs or algorithms to 
perform the computation.  To achieve high performance in data-intensive computing, it is important to minimize the 
movement of data.  Most other types of computing and supercomputing utilize data stored in a separate repository 
or servers and transfer the data to the processing system for computation. Data-intensive computing typically 
uses distributed data and distributed file systems in which data is located across a cluster of processing nodes, 
and instead of moving the data, the program or algorithm is transferred to the nodes with the data that needs to be 
processed.  This principle – “Move the code to the data” – is extremely effective since program size is usually small 
in comparison to the large datasets processed by data-intensive systems and results in much less network traffic 
since data can be read locally instead of across the network.  This characteristic allows processing algorithms to 
execute on the nodes where the data resides reducing system overhead and increasing performance [15].  The 
use of high-bandwidth network switching capabilities also allows file system clusters and processing clusters to be 
interconnected to provide even more processing flexibility.

A second important characteristic of data-intensive computing systems is the programming model utilized.  Data-
intensive computing systems typically utilize a machine-independent approach in which applications are expressed 
in terms of high-level operations on data, and the runtime system transparently controls the scheduling, execution, 
load balancing, communications, and movement of programs and data across the distributed computing cluster 
[18].  The programming abstraction and language tools allow the processing to be expressed in terms of data flows 
and transformations incorporating new data-centric programming languages and shared libraries of common data 
manipulation algorithms such as sorting.  Conventional supercomputing and distributed computing systems typically 
utilize machine dependent programming models which can require low-level programmer control of processing 
and node communications using conventional imperative programming languages and specialized software 
packages which adds complexity to the parallel programming task and reduces programmer productivity.  A machine 
dependent programming model also requires significant tuning and is more susceptible to single points of failure.
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A third important characteristic of data-intensive computing systems is the focus on reliability and availability.  
Large-scale systems with hundreds or thousands of processing nodes are inherently more susceptible to hardware 
failures, communications errors, and software bugs.  Data-intensive computing systems are typically designed to 
be fault resilient.  This includes redundant copies of all data files on disk, storage of intermediate processing results 
on disk, automatic detection of node or processing failures, and selective re-computation of results.  A processing 
cluster configured for data-intensive computing is typically able to continue operation with a reduced number of 
nodes following a node failure with automatic and transparent recovery of incomplete processing.

A final important characteristic of data-intensive computing systems is the inherent scalability of the underlying 
hardware and software architecture.  Data-intensive computing systems can typically be scaled in a linear fashion 
to accommodate virtually any amount of data, or to meet time-critical performance requirements by simply 
adding additional processing nodes to a system configuration in order to achieve billions of records per second 
processing rates (BORPS1).  The number of nodes and processing tasks assigned for a specific application can be 
variable or fixed depending on the hardware, software, communications, and distributed file system architecture.  
This scalability allows computing problems once considered to be intractable due to the amount of data required 
or amount of processing time required to now be feasible and affords opportunities for new breakthroughs in data 
analysis and information processing.

MapReduce

A variety of system architectures have been implemented for data-intensive and large-scale data analysis 
applications including parallel and distributed relational database management systems which have been available 
to run on shared nothing clusters of processing nodes for more than two decades [19].  Although this approach offers 
benefits when the data utilized is primarily structured in nature and fits easily into the constraints of a relational 
database, and often excels for transaction processing applications, most data growth is with data in unstructured 
form [20] and new processing paradigms with more flexible data models were needed.  Internet companies such 
as Google, Yahoo, Facebook, and others required a new processing approach to effectively deal with the enormous 
amount of Web data for applications such as search engines and social networking.  In addition, many government 
and business organizations were overwhelmed with data that could not be effectively processed, linked, and 
analyzed with traditional computing approaches.

Several solutions have emerged including the MapReduce architecture pioneered by Google and now available 
in an open-source implementation called Hadoop used by Yahoo, Facebook, and others.  Google MapReduce is 
an example of a basic system architecture designed for processing and analyzing large datasets on commodity 
computing clusters and is being used successfully by Google in many applications to process massive amounts 
of raw Web data [1, 4].  LexisNexis, an acknowledged industry leader in information services and “large data” 
solutions, also developed and implemented a scalable platform for data-intensive computing called HPCC which 
offers significantly more capability than MapReduce and has been used for several years by LexisNexis and other 
commercial and government organizations to process very large volumes of structured and unstructured data.

The MapReduce programming model allows group aggregations in parallel over a cluster of machines.  Programmers 
provide a Map function that processes input data and groups the data according to a key-value pair, and a Reduce 
function that performs aggregation by key-value on the output of the Map function.  According to Dean and 
Ghemawat in [1, 4], the processing is automatically parallelized by the system on the cluster,  and takes care of 
details like partitioning the input data, scheduling and executing tasks across a processing cluster, and managing the 
communications between  nodes, allowing programmers with no experience in parallel programming to use a large 
parallel processing environment.  The overall model for this process is shown in Figure 2.  For more complex data 
processing procedures, multiple MapReduce calls must be linked together in sequence.

1)  BORPS an acronym for Billions Of Records Per Second first introduced by Seisint, Inc. in 2001.
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Figure 2

Underlying and overlayed on the same computing cluster with the MapReduce architecture is the Google File System 
(GFS).  GFS was designed to be a high-performance, scalable distributed file system for very large data files and data-
intensive applications providing fault tolerance and running on clusters of commodity hardware [21].  GFS is oriented 
to very large files dividing and storing them in fixed-size chunks of 64 Mb by default.  Each GFS consists of a single 
master node acting as a nameserver and multiple nodes in the cluster acting as chunkservers using a commodity 
Linux-based machine (node in a cluster) running a user-level server process.

Google has also implemented a high-level language for performing parallel data analysis and data mining using the 
MapReduce and GFS architecture called Sawzall and a workflow management and scheduling  infrastructure for 
Sawzall jobs called Workqueue [22].  For most applications implemented using Sawzall, the code is much simpler 
and smaller than the equivalent C++ by a factor of 10 or more.  Pike et al. in [22] cite several reasons why a new 
language is beneficial for data analysis and data mining applications: (1) a programming language customized for a 
specific problem domain makes resulting programs “clearer, more compact, and more expressive”; (2) aggregations 
are specified in the Sawzall language so that the programmer does not have to provide one in the Reduce task of a 
standard MapReduce program; (3) a programming language oriented to data analysis provides a more natural way 
to think about data processing problems for large distributed datasets; and (4) Sawzall programs are significantly 
smaller that equivalent C++ MapReduce programs and significantly easier to program.

Hadoop.

Hadoop is an open source software project sponsored by The Apache Software Foundation (http://www.
apache.org) initiated to create an open source implementation of the MapReduce architecture [6].  The Hadoop 
MapReduce architecture shown in Figure 3 is functionally similar to the Google implementation except that the base 
programming language for Hadoop is Java instead of C++.  The implementation is intended to execute on clusters of 
commodity processors utilizing Linux as the operating system environment.
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Figure 3

Hadoop implements a distributed data processing scheduling and execution environment and framework for 
MapReduce jobs.  A MapReduce job is a unit of work that consists of the input data, the associated Map and Reduce 
programs, and user-specified configuration information [6]. The Hadoop framework utilizes a master/slave architecture 
with a single master server called a jobtracker and slave servers called tasktrackers, one per node in the cluster.  Hadoop 
includes a distributed file system called HDFS which is analogous to GFS in the Google MapReduce implementation.   
HDFS also follows a master/slave architecture which consists of a single master server that manages the distributed 
filesystem namespace and regulates access to files by clients called the Namenode.  In addition, there are multiple 
Datanodes, one per node in the cluster, which manage the disk storage attached to the nodes and assigned to Hadoop.

The Hadoop job execution environment supports additional distributed data processing capabilities which are designed 
to run using the Hadoop MapReduce architecture including the Pig system.  Pig includes a high-level dataflow-oriented 
language and execution environment originally developed at Yahoo! ostensibly for the same reasons that Google 
developed the Sawzall language for its MapReduce implementation – to provide a specific language notation for data 
analysis applications and to improve programmer productivity and reduce development cycles when using the Hadoop 
MapReduce environment. 
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Figure 4

Working out how to fit many data analysis and processing applications into the MapReduce paradigm can be a 
challenge, and often requires multiple MapReduce jobs [6].  Pig programs are automatically translated into sequences of 
MapReduce programs if needed in the execution environment.  An example program is shown in Figure 4 which requires 
execution of 3 separate MapReduce jobs.

Current Limitations of MapReduce.

Although the MapReduce model and programming abstraction provides basic functionality for many data processing 
operations, users are limited by its rigid structure and forced to adapt their applications to the model in order to 
achieve parallelism.  This can require implementation of multiple MapReduce sequences for more complex processing 
requirements that may need to perform multiple sequenced operations or operations such as joining multiple input files 
which can add substantial job management overhead to the overall processing time, as well as limit opportunities for 
optimization of the processing with different execution strategies.  In addition many data processing operations do not fit 
naturally into the group-by-aggregation model using single key-value pairs required by the model.  Even simple operations 
such as projection and selection must be fit into this model and users must provide custom Map and Reduce functions 
for all applications which is more error-prone and limits reusability [2].  Since custom Map and Reduce functions must be 
provided for each step, the inability to globally optimize the execution of complex data processing sequences can result 
in significantly degraded performance.

Both Google with its Sawzall language and Yahoo with its Pig system and language for Hadoop address some of the 
limitations of the MapReduce model by providing an external dataflow-oriented programming language which translates 
language statements into MapReduce processing sequences[22, 26, 27].  These languages provide many standard data 
processing operators so users do not have to implement custom Map and Reduce functions, improve reusability, and 
provide some optimization for job execution.  However, these languages are externally implemented executing on client 
systems and not integral to the MapReduce architecture, but still rely on the on the same infrastructure and limited 
execution model provided by MapReduce.

The MapReduce model is designed to operate in a parallel batch processing environment which is useful for performing 
ETL (Extract, Transform, Load) work on large datasets which must be transformed for some other use such as building 
inverted indexes.  The system is also useful for batch queries performing aggregation operations or complex analytical 
tasks on large datasets and particularly unstructured data without the need for building indices or loading into a 
relational DBMS [1].  However, for online efficient querying of large datasets which must support large numbers of users 
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or provide fast response times with random access to structured data and support data warehouse applications such 
as that provided by parallel DBMS systems [3], other platforms are required in a MapReduce environment.  Google has 
addressed this requirement by adding BigTable [28], and Hadoop with Hbase and Hive [6].   These operate essentially 
as bolt-ons to the MapReduce architecture utilizing the underlying file storage systems and MapReduce processing but 
otherwise operating as independent non-integrated applications.  A better approach would be an integrated system 
environment which excels at both ETL tasks and complex analytics, and at efficient querying of large datasets using a 
common data-centric parallel processing language.  The LexisNexis HPCC system platform was designed exactly for this 
purpose.

3) In such a situation, the main strength of the analysis will have been performed during the record selection process.
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HPCC Platform Overview
LexisNexis, an industry leader in data content,  data aggregation, and information services independently developed and 
implemented a solution for data-intensive computing called HPCC (High-Performance Computing Cluster) which is also 
referred to as the Data Analytics Supercomputer (DAS).  The LexisNexis vision for this computing platform is depicted in 
Figure 5.

Figure 5  LexisNexis Vision for a Data Analytics Supercomputer.

The development of this computing platform by the Seisint, Inc. (acquired by LexisNexis in 2004) began in 1999 and 
applications were in production by late 2000.  The LexisNexis approach also utilizes commodity clusters of hardware 
running the Linux operating system similar to the cluster depicted in Figure 1.  Custom system software and middleware 
components were developed and layered on the base Linux operating system to provide the execution environment 
and distributed filesystem support required for data-intensive computing.  Because LexisNexis recognized the need for 
a new computing paradigm to address its growing volumes of data, the design approach included the definition of a new 
high-level language for parallel data processing called ECL (Enterprise Data Control Language).  The power, flexibility, 
advanced capabilities, speed of development, maturity, and ease of use of the ECL programming language is a primary 
distinguishing factor between the LexisNexis HPCC platform and other data-intensive computing solutions.

4) Entity extraction being a good example.
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Cluster Types

LexisNexis developers recognized that to meet all the requirements of data-intensive computing applications in an 
optimum manner required the design and implementation of two distinct cluster processing environments, each of 
which could be optimized independently for its parallel data processing purpose.  The first of these platforms is called 
a Data Refinery whose overall purpose is the general processing of massive volumes of raw data of any type for any 
purpose but typically used for data cleansing and hygiene, ETL processing of the raw data, record linking and entity 
resolution, large-scale ad-hoc complex analytics, and creation of keyed data and indexes to support high-performance 
structured queries and data warehouse applications.  The Data Refinery is also referred to as Thor, a reference to 
the mythical Norse god of thunder with the large hammer symbolic of crushing large amounts of raw data into useful 
information.  A Thor cluster is similar in its function, execution environment, filesystem, and capabilities to the Google and 
Hadoop MapReduce platforms, but offers significantly higher performance in equivalent configurations.

Figure 6  Thor Processing Cluster.

Figure 6 shows a representation of a physical Thor processing cluster which functions as a batch job execution engine 
for scalable data-intensive computing applications.  In addition to the Thor master and slave nodes, additional auxiliary 
and common components are needed to implement a complete HPCC processing environment.  The actual number of 
physical nodes required for the auxiliary components is determined during the configurations process.

The second of the parallel data processing platforms designed and implemented by LexisNexis is called the Rapid 
Data Delivery Engine.  This platform is designed as an online high-performance structured query and analysis platform 
or data warehouse delivering the parallel data access processing requirements of online applications through Web 
services interfaces supporting thousands of simultaneous queries and users with sub-second response times.  Online 
applications developed by LexisNexis such as Accurint® utilize both Thor and Roxie platforms.  The Rapid Data Delivery 
Engine is also referred to as Roxie, which is an acronym for Rapid Online XML Inquiry Engine.  Roxie uses a special 
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distributed indexed filesystem to provide parallel processing of queries.  A Roxie cluster is similar in its function and 
capabilities to Hadoop with HBase and Hive capabilities added, but provides significantly higher throughput since it uses a 
more optimized execution environment and filesystem for high-performance online processing.  Most importantly, both 
Thor and Roxie clusters utilize the same ECL programming language for implementing applications, increasing continuity 
and programmer productivity.

Figure7 Roxie Processing Cluster.

Figure 7 shows a representation of a physical Roxie processing cluster which functions as a online query execution 
engine for high-performance query and data warehousing applications.  A Roxie cluster includes multiple nodes with 
server and worker processes for processing queries; an additional auxiliary component called an ESP server which 
provides interfaces for external client access to the cluster; and additional common components which are shared with 
a Thor cluster in an HPCC environment.  Although a Thor processing cluster can be implemented and used without a 
Roxie cluster, an HPCC environment which includes a Roxie cluster must also include a Thor cluster.  The Thor cluster is 
required to build the distributed  index files used by the Roxie cluster and to develop online queries which will be deployed 
with the index files to the Roxie cluster.  The specific function of the auxiliary and common HPCC components are 
discussed later in this paper.  

The implementation of two types of parallel data processing platforms (Thor and Roxie) in the HPCC processing 
environment serving different data processing needs allows these platforms to be optimized and tuned for their specific 
purposes to provide the highest level of system performance possible to users.  This is a distinct advantage when 
compared to Hadoop where the MapReduce architecture must be overlayed with additional systems such as HBase, 
Hive, and Pig which have different processing goals and requirements, and don’t always map readily into the MapReduce 
paradigm.  In addition, the LexisNexis HPCC approach incorporates the notion of a processing environment which can 
integrate Thor and Roxie clusters as needed to meet the complete processing needs of an organization.  As a result, 
scalability can be defined not only in terms of the number of nodes in a cluster, but in terms of how many clusters and 
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of what type are needed to meet system performance goals and user requirements.  This provides significant flexibility 
when compared to Hadoop clusters which tend to be independent islands of processing.   For additional information and 
a detailed comparison of the HPCC system platform to Hadoop, see [29].

The HPCC system architecture incorporates the Thor and Roxie clusters as well as common middleware components, an 
external communications layer, client interfaces which provide both end-user services and system management tools, 
and auxiliary components to support monitoring and to facilitate loading and storing of filesystem data from external 
sources.  An HPCC environment can include only Thor clusters, or both Thor and Roxie clusters.  Each of these cluster 
types is described in more detail in the following sections.  The overall HPCC system architecture is shown in Figure 8.

Figure8
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Data Refinery (Thor)

The Thor system cluster is implemented using a master/slave approach with a single master node and multiple slave 
nodes which provides a parallel job execution environment for programs coded in ECL.  Each of the slave nodes is 
also a data node within the distributed file system for the cluster.  Multiple Thor clusters can exist in an HPCC system 
environment, and job queues can span multiple clusters in an environment if needed.  Jobs executing on a Thor cluster 
in a multi-cluster environment can also read files from the distributed file system on foreign clusters if needed.  The 
middleware layer provides additional server processes to support the execution environment including ECL Agents and 
ECL Servers.  A client process submits an ECL job to the ECL Agent which coordinates the overall job execution on behalf 
of the client process.

An ECL program is compiled by the ECL server which interacts with an additional server called the ECL Repository which 
is a source code repository and contains shared, reusable ECL code.  ECL programs are compiled into optimized C++ 
source code, which is subsequently linked into executable code and distributed to the slave nodes of a Thor cluster 
by the Thor master node.  The Thor master monitors and coordinates the processing activities of the slave nodes and 
communicates status information monitored by the ECL Agent processes.  When the job completes, the ECL Agent and 
client process are notified, and the output of the process is available for viewing or subsequent processing.  Output can 
be stored in the distributed filesystem for the cluster or returned to the client process.

The distributed filesystem (DFS) used in a Thor cluster is record-oriented which is somewhat different from the block 
format used in MapReduce clusters.  Records can be fixed or variable length, and support a variety of standard (fixed 
record size, CSV,  XML) and custom formats including nested child datasets.  Record I/O is buffered in large blocks to 
reduce latency and improve data transfer rates to and from disk  Files to be loaded to a Thor cluster are typically first 
transferred to a landing zone from some external location, then a process called “spraying” is used to partition the file and 
load it to the nodes of a Thor cluster.  The initial spraying process divides the file on user-specified record boundaries and 
distributes the data as evenly as possible with records in sequential order across the available nodes in the cluster.  Files 
can also be “desprayed” when needed to transfer output files to another system or can be directly copied between Thor 
clusters in the same environment.   Index files generated on Thor clusters can also be directly copied to Roxie clusters to 
support online queries.

Nameservices and storage of metadata about files including record format information in the Thor DFS are maintained 
in a special server called the Dali server.  Thor users have complete control over distribution of data in a Thor cluster, 
and can re-distribute the data as needed in an ECL job by specific keys, fields, or combinations of fields to facilitate the 
locality characteristics of parallel processing.  The Dali nameserver uses a dynamic datastore for filesystem metadata 
organized in a hierarchical structure corresponding to the scope of files in the system.  The Thor DFS utilizes the local 
Linux filesystem for physical file storage, and file scopes are created using file directory structures of the local file system.  
Parts of a distributed file are named according to the node number in a cluster, such that a file in a 400-node cluster will 
always have 400 parts regardless of the file size.  Each node contains an integral number of records (individual records 
are not split across nodes), and I/O is completely localized to the processing node for local processing operations.  The 
ability to easily redistribute the data evenly to nodes based on processing requirements and the characteristics of the 
data during a Thor job can provide a significant performance improvement over the blocked data and input splits used in 
the MapReduce approach.

The Thor DFS also supports the concept of “superfiles” which are processed as a single logical file when accessed, but 
consist of multiple Thor DFS files.  Each file which makes up a superfile must have the same record structure.  New files 
can be added and old files deleted from a superfile dynamically facilitating update processes without the need to rewrite 
a new file.  Thor clusters are fault resilient and a minimum of one replica of each file part in a Thor DFS file is stored on a 
different node within the cluster.

Rapid Data Delivery Engine (Roxie)

Roxie clusters consist of a configurable number of peer-coupled nodes functioning as a high-performance, high 
availability parallel processing query platform.  ECL source code for structured queries is pre-compiled and deployed 
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to the cluster.   The Roxie distributed filesystem is a distributed indexed-based filesystem which uses a custom B+Tree 
structure for data storage.  Indexes and data supporting queries are pre-built on Thor clusters and deployed to the 
Roxie DFS with portions of the index and data stored on each node.   Typically the data associated with index logical 
keys is embedded in the index structure as a payload.  Index keys can be multi-field and multivariate, and payloads can 
contain any type of structured or unstructured data supported by the ECL language.  Queries can use as many indexes 
as required for a query and contain joins and other complex transformations on the data with the full expression and 
processing capabilities of the ECL language.  For example, the LexisNexis Accurint® comprehensive person report which 
produces many pages of output is generated by a single Roxie query.

A Roxie cluster uses the concept of Servers and Agents.  Each node in a Roxie cluster runs Server and Agent processes 
which are configurable by a System Administrator depending on the processing requirements for the cluster.  A Server 
process waits for a query request from a Web services interface then determines the nodes and associated Agent 
processes that have the data locally that is needed for a query, or portion of the query. Roxie query requests can be 
submitted from a client application as a SOAP call, HTTP or HTTPS protocol request from a Web application,  or through 
a direct socket connection.  Each Roxie query request is associated with a specific deployed ECL query program.  
Roxie queries can also be executed from programs running on Thor clusters.  The Roxie Server process that receives 
the request owns the processing of the ECL program for the query until it is completed.  The Server sends portions of 
the query job to the nodes in the cluster and Agent processes which have data needed for the query stored locally as 
needed, and waits for results. When a Server receives all the results needed from all nodes, it collates them, performs any 
additional processing, and then returns the result set to the client requestor.

The performance of query processing on a Roxie cluster varies depending on factors such as machine speed, data 
complexity, number of nodes, and the nature of the query, but production results have shown throughput of 5000 
transactions per second on a 100-node cluster.  Roxie clusters have flexible data storage options with indexes and data 
stored locally on the cluster, as well as being able to use indexes stored remotely in the same environment on a Thor 
cluster.  Nameservices for Roxie clusters are also provided by the Dali server.  Roxie clusters are fault-resilient and data 
redundancy is built-in using a peer system where replicas of data are stored on two or more nodes, all data including 
replicas are available to be used in the processing of queries by Agent processes.  The Roxie cluster provides automatic 
failover in case of node failure, and the cluster will continue to perform even if one or more nodes are down.  Additional 
redundancy can be provided by including multiple Roxie clusters in an environment.

Load balancing of query requests across Roxie clusters is typically implemented using external load balancing 
communications devices.  Roxie clusters can be sized as needed to meet query processing throughput and response 
time requirements, but are typically smaller that Thor clusters.  

The ECL Programming Language

The ECL programming language is a key factor in the flexibility and capabilities of the HPCC processing environment.  
ECL was designed to be a transparent and implicitly parallel programming language for data-intensive applications.  It 
is a high-level, highly-optimized, data-centric declarative language that allows the programmer to define what the data 
processing result should be and the dataflows and transformations that are necessary to achieve the result.  Execution 
is not determined by the order of the language statements, but from the sequence of dataflows and transformations 
represented by the language statements.  It combines data representation with algorithm implementation, and is the 
fusion of both a query language and a parallel data processing language.

ECL uses an intuitive syntax which has taken cues from other familiar languages, supports modular code organization 
with a high degree of reusability and extensibility, and supports high-productivity for programmers in terms of the amount 
of code required for typical applications compared to traditional languages like Java and C++,  a 20 times increase in 
programmer productivity is typical.

ECL is compiled into optimized C++ code for execution on the HPCC system platform, and can be used for complex 
data processing and analysis jobs on a Thor cluster or for comprehensive query and report processing on a Roxie cluster.  
ECL allows inline C++ functions to be incorporated into ECL programs, and external programs in other languages can be 
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incorporated and parallelized through a PIPE facility.  External services written in C++ and other languages which generate 
DLLs can also be incorporated in the ECL system library, and ECL programs can access external Web services through a 
standard SOAPCALL interface.

The basic unit of code for ECL is called an attribute.  An attribute can contain a complete executable query or program, or 
a shareable  and reusable code fragment such as a function, record definition, dataset definition, macro, filter definition, 
etc.  Attributes can reference other attributes which in turn can reference other attributes so that ECL code can be 
nested and combined as needed in a reusable manner.  Attributes are stored in ECL code repository which is subdivided 
into modules typically associated with a project or process.  Each ECL attribute added to the repository effectively 
extends the ECL language like adding a new word to a dictionary, and attributes can be reused as part of multiple ECL 
queries and programs.  With ECL a rich set of programming tools is provided including an IDE called QueryBuilder similar 
to Visual C++, Eclipse and other interactive code development environments.

Figure 9  ECL Sample Syntax for JOIN operation.

The ECL language includes extensive capabilities for data definition, filtering, data management, and data 
transformation, and provides an extensive set of built-in functions to operate on records in datasets which can include 
user-defined transformation functions.  Transform functions operate on a single record or a pair of records at a time 
depending on the operation.  Built-in transform operations in the ECL language which process through entire datasets 
include PROJECT, ITERATE, ROLLUP, JOIN, COMBINE, FETCH, NORMALIZE, DENORMALIZE, and PROCESS.  The 
transform function defined for a JOIN operation for example receives two records, one from each dataset being joined, 
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and can perform any operations on the fields in the pair of records, and returns an output record which can be completely 
different from either of the input records.  Example syntax for the JOIN operation from the ECL Language Reference 
Manual is shown in Figure 9.

The Thor system allows data transformation operations to be performed either locally on each node independently in 
the cluster, or globally across all the nodes in a cluster, which can be user-specified in the ECL language.  Some operations 
such as PROJECT for example are inherently local operations on the part of a distributed file stored locally on a node.  
Others such as SORT can be performed either locally or globally if needed.  This is a significant difference from the 
MapReduce architecture in which Map and Reduce operations are only performed locally on the input split assigned to 
the task.  A local SORT operation in an HPCC cluster would sort the records by the specified keys in the file part on the 
local node, resulting in the records being in sorted order on the local node, but not in full file order spanning all nodes.  
In contrast, a global SORT operation would result in the full distributed file being in sorted order by the specified key 
spanning all nodes.   This requires node to node data movement during the SORT operation.  Figure 10 shows a sample 
ECL program using the LOCAL mode of operation which is the equivalent of  the sample PIG program for Hadoop shown 
in Figure 4.  Note the explicit programmer control over distribution of data across nodes.  The colon-equals “:=”operator 
in an ECL program is read as “is defined as”.  The only action in this program is the OUTPUT statement, the other 
statements are declarative definitions.

Figure 10 ECL Code Example.

An additional important capability provided in the ECL programming language is support for natural language processing 
(NLP) with PATTERN statements and the built-in PARSE operation.  PATTERN statements allow matching patterns 
including regular expressions to be defined and used to parse information from unstructured data such as raw text.  
PATTERN statements can be combined to implement complex parsing operations or complete grammars from BNF 
definitions.  The PARSE operation operates across a dataset of records on a specific field within a record, this field could 
be an entire line in a text file for example.  Using this capability of the ECL language is possible to implement parallel 
processing form information extraction applications across document files including XML-based documents or Web 
pages.
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Key Benefits of ECL

The key benefits of ECL can be summarized as follows:

1.	ECL incorporates transparent and implicit data parallelism regardless of the size of the computing cluster and reduces 
the complexity of parallel programming increasing the productivity of application developers.

2.	 ECL enables implementation of data-intensive applications with huge volumes of data previously thought to be 
intractable or infeasible.  ECL was specifically designed for manipulation of data and query processing. Orders of 
magnitude performance increases over other approaches are possible.

3.	 ECL provides a more than 20 times productivity improvement for programmers over languages such as Java and C++.  
The ECL compiler generates highly optimized C++ for execution.

4.	 ECL is a powerful, high-level, parallel programming language ideal for implementation of ETL, information retrieval, 
information extraction, record linking and entity resolution, and many other data-intensive applications.

5.	 ECL is a mature and proven language but still evolving as new advancements in parallel processing and data-intensive 
computing occur.

ECL also provides a comprehensive IDE and programming tools that provide a highly-interactive environment for rapid 
development and implementation of ECL applications.

ECL Programming Example

Analysis of log data collected by Web servers, system servers, and other network devices such as routers and firewalls 
is an important application for generating statistical information and reports on system and network utilization and 
other types of analysis such as intrusion detection and misuse of network resources.  Log data is usually collected in 
unstructured text files which must be parsed using NLP to extract key information for reporting and analysis.  This is 
typical of many data processing applications which must process data in a raw form, extracting, transforming, and loading 
the data for subsequent processing and is commonly referred to as ETL processing.  The volume of log data generated 
by a large network of system and network servers can be enormous and is representative of applications which require a 
data-intensive computing solution like the LexisNexis HPCC platform.

Since log files from various system servers and networks devices can have varying formats, but a network generally 
includes multiples of the same types of devices which use common log formats, a useful design approach is to generate 
a function or macro for each type of device.  The ECL programming language includes both functions and macros, and 
a macro format was selected for this example.  A macro in a programming language accepts parameters similar to a 
function, and substitutes the parameter values to replace parts of the code generated by the macro, generating new 
inline code each time it is referenced.
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Figure 11 ECL Programming Example – Log File Analysis Macro

	
  

	
  



23 HPCC Systems: Introduction to HPCC 

The example log file data contains lines of text which include a date, time, log source, message type, and additional log 
information formatted as key value pairs.  An ECL macro ( MAC_Parse_DTSM_Keyval_Format) was implemented for this 
specific type of log file format and is shown in Figure 11.  The macro accepts parameters defining the input raw log file, the 
output formatted log file, and an output error file which will contain lines from the raw log file data which had an invalid 
format.

The steps used by the ECL macro shown in Figure 11 to process the raw log file data transforming the data to a formatted 
output file are as follows:

1.	 The raw input log file (inlogfile) is projected to a new format which adds a sequential line number in a separate field to 
each log line for reference in macro lines 5-13.  Individual ECL statements are terminated by a semicolon character, 
and whitespace can be used freely to improve readability of the code.

2.	 NLP patterns are defined using the ECL PATTERN statement to represent the data to be extracted from the raw log 
lines in macro lines 15-20.  Note references to other patterns such as Text.Date and Text.ISO_Time which are shared 
pattern definitions stored in the Text module in the ECL repsository.

3.	 The output record format for parsed log lines is shown in macro lines 22-30 and include separate fields for the date, 
time, log source, message type, and additional log information.

4.	 Parsing of the raw log data into the format described in step 3 is shown in macro line 33.  This parse statement as well 
as other ECL statements operate on the entire file.  Each node in a Thor processing cluster operates on the part of 
the file locally stored on the node.

5.	 The log_info field parsed in the operation described in step 4 includes additional key-value pairs.  This information is 
then parsed into a separate dataset in macro line 46, using pattern statements defined in macro lines 35-38, and the 
output record definition defined in macro lines 40-44.

6.	 The final formatted output from the log file is designed to include the fields data, time, log source, and message type, 
and a child dataset for each log line containing the key-value pairs extracted from the log_info field.  This output 
record format is defined in macro line 49 which references a separate ECL attribute containing the record definition 
stored in the ECL repository in the Log_Analysis module named Layout_DTSM_Keyval which is shown in Figure 12.

7.	 The initially parsed log file from macro line 33 (log_init) is projected to the output format in lines 51-55.  To complete 
the output file, the key-value pairs for each log line generated in step 5 (keyvals_init) are added to the initialized 
output file (log_out_init) using the ECL DENORMALIZE statement in macro lines 67-74.  Both files are distributed 
across the available nodes in the cluster by log line number so this operation can be performed locally.  The key-value 
pairs are sorted by the linenum and key fields and the final out put is sorted in order by the linenum field.

8.	 Lines which had invalid formats which failed to parse properly are identified and written to a separate dataset in lines 
57-64 using the ECL JOIN operation to join the initial sequenced log file (log_seq) to the initial log data parse (log_init) 
by the log line number (linenum).  Lines which appear in the log_seq file and not in the log_init file are written to the 
error dataset.  This is facilitated by a unique ECL JOIN option LEFT ONLY which generates records which appear in 
the left dataset of the join operation and not in the right dataset.

Figure 12 ECL Programming Example – Log File Output Format
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The MAC_Parse_DTSM_Keyval_Format ECL macro can now be used to process any raw log file with the defined format.  
An example of using this ECL macro is shown in Figure 13.  This code can be executed from the QueryBuilder IDE as 
an ECL job.  The code includes a dataset definition of the raw input log file (lines 1-7), an output statement to dispaly a 
sample of the raw log data (line 10), a MAC_Parse_DTSM_Keyval_Format macro call to process the raw log data (line 13), 
an output statement to display a sample of invalid format raw log lines, and an output statement to display a sample of 
the processed log data.  Figure 14 shows the job execution graph for the example job.  Figure 15 shows a sample of the raw 
log file input data and the formatted log data output for the example job.

Figure 13 ECL Programming Example – Log File Analysis Job
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Figure 14
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Figure 15 ECL Programming Example – Log File Analysis Output
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HPCC Middleware and System Servers

An HPCC configuration includes a number of system servers which provide a gateway from the Thor and Roxie clusters 
to the outside world and also support services within an HPCC environment.  These include the ECL Server, Dali Server, 
Sasha Server, DFU Server, and ESP Server and are referred to as the HPCC middleware components which are shown in 
Figure 8.

The ECL Server includes the ECL compiler and executable code generator, and functions as the job server for the Thor 
job execution environment.  The ECL compiler translates the source ECL statements into executable C++ code in the 
form of dynamic link libraries (DLLs) that can be executed on Thor or Roxie clusters.  When an ECL job (also referred to 
as a workunit) is submitted for execution on a Thor cluster, it is first converted to executable code by the ECL Server.  For 
a Roxie cluster, this process occurs when a new ECL query is deployed and stored on a Roxie cluster which allows the 
query to be compiled once, but then executed multiple times as queries are received.  ECL Server is also accessed when 
a syntax check is performed in the QueryBuilder IDE, and is responsible for starting an ECL Agent process whenever a job 
is executed.  Multiple ECL servers can be configured in an HPCC environment which will automatically be load balanced 
to increase throughput.

The Dali Server functions as the system data store.  It manages workunit data related to job execution, it maintains the 
logical file directory for the DFS functioning as the nameserver, and provides shared object services for execution of 
workunits.  In addition it is used to configure the HPCC environment, maintain the message queues that implement job 
execution and scheduling, and enforces the LDAP security restrictions for data files and workunit user scopes.

The Sasha server functions as a companion “housekeeping” server to the Dali server and works independently of all other 
components and can be restarted without affecting current jobs in flight.  Its main function is to reduce the stress and 
resource utilization on the Dali server whenever possible, and archives job execution workunits and DFU workunits which 
are stored in a series of folders, can be restored when needed, and can be manually moved to an alternate or off-site 
location.  The Sasha server performs additional housekeeping functions including removal of cached workunits and DFU 
recovery files.

The DFU Server (distributed file utility) manages and controls the spraying and despraying operations that used to move 
files to and from the DFS in a Thor cluster.  For each DFU operation a workunit, similar to an ECL job workunit, is created 
for managing and tracking the operation.  DFU services can be accessed from the Querybuilder IDE or as part of a ECL job 
using common service libraries, using the ECLWatch utility program, or the DFU command line interface program.

The ESP Server (Enterprise Service Platform) is a communications server and customizable framework that provides 
communications interfaces and services to client applications and to the job execution and cluster environment.  
Protocols supported by the ESP server include HTTP, SOAP, and proprietary protocols.  Standard services include 
WS_Attribute a SOAP interface to the ECL repository; WS_ECL which provides a form based Web interface to submit 
an ECL job on a Thor Cluster or to access a deployed  query on the on a Roxie cluster; and ECL_Watch, a Web-based 
query execution, monitoring, and file management interface that can be accessed from QueryBuilder or directly from 
a Web browser.  Other ESP-based tools include RoxieConfig which provides a Web-interface for deploying managing 
deployed queries to a Roxie cluster with the ability to add, delete, suspend, un-suspend, provide alias names for queries, 
and provide access to statistics on executed queries.  ESP can also include custom user-defined authentication, logging, 
billing, and audit services.

Development Tools and User Interfaces

The HPCC platform includes a suite of development tools and utilities for data analysts, programmers, administrators, 
and end-users.    These include QueryBuilder, an integrated programming development environment (IDE) similar to 
those available for other languages such as C++ and Java, which encompasses source code editing, source code version 
control, access to the ECL source code repository, and the capability to execute and debug ECL programs.  Figure 16 
shows the Query Builder IDE application.
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Figure 16 QueryBuilder IDE

QueryBuilder provides a full-featured Windows-based GUI for ECL program development and direct access to the ECL 
repository source code. QueryBuilder allows you to create and edit ECL attributes which can be shared and reused in 
multiple ECL programs or to enter an ECL query which can be submitted directly to a Thor cluster as an executable job 
or deployed to a Roxie cluster.  An ECL query can be self-contained or reference other sharable ECL code in the attribute 
repository.  QueryBuilder also allows you to utilize a large number of built-in ECL functions from included libraries 
covering string handling, data manipulation, file handling, file spray and despray, superfile management, job monitoring, 
cluster management, word handling, date processing, auditing, parsing support, phonetic (metaphone) support, and 
workunit services.

ECLWatch is a Web-based utility which uses the ESP server to provide a set of tools for monitoring and managing HPCC 
clusters which is shown in Figure 17.  ECLWatch allows you see information  about workunits including a graph displaying a 
visual representation of the dataflows for the workunit complete with statistics which are updated as the job progresses.  
The graph is interactive and you can drill down on nodes and connectors to see more detailed information and statistics.  
This information is retained in the workunit even after the job has completed so it can be reviewed and analyzed.  An 
example of an ECL execution graph corresponding to the code example in Figure 10 is shown in Figure 18.  In addition 
with ECLWatch, you can monitor cluster activity, browse through or search for previously submitted workunits, use 
DFU functions to search for files and see information including record counts and layouts and display data from the file, 
spray and despray files from available landing zones to and from clusters, check the status of all system servers, view log 
files, change job priorities, and much more.  Figure 17 shows an example of the ECLWatch Web-interface for the HPCC 
environment.
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Figure 17 ECLWatch Web-based Utility

The HPCC platform also provides an Attribute Migration Tool (AMT) which allows ECL source code  to be copied from one 
ECL repository to another.  For example, in most HPCC configurations there are separate development and production 
environments.  AMT allows newly developed ECL attributes to be migrated from development to production in a 
controlled manner.
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Figure 18

The HPCC platform also includes command line programs which can be used from the Windows command prompt 
or called from other programs.  The ECLPlus application can access the ECL repository and accepts command line 
parameters to access the ECL repository and initiate ECL job execution. Commands can be typed directly on the 
command line, read from a batch file, initiated using an INI file, or any combination. The DFUPlus application accepts 
command line parameters or reads batch files to initiate distributed file utility functions such as spraying or despraying 
of files to and from clusters.  A version of the AMT program is also provided in a command line interface version called 
AMTPlus.  In addition, a command line version of the Roxie configuration utility RoxieConfig provided in the ESP services 
as a Web interface is available.
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Using a Thor Cluster

As described earlier, the Thor cluster is used as a data refinery whose overall purpose is the general processing of massive 
volumes of raw data of any type for any purpose but typically used for data cleansing and hygiene, ETL processing of 
the raw data, record linking and entity resolution, large-scale ad-hoc complex analytics, and creation of keyed data and 
indexes to support high-performance structured queries and data warehouse applications.  A Thor cluster includes a 
master node, and as many slave nodes as needed to satisfy the processing, data storage, and throughput requirements 
for a specific HPCC installation.  For example, a training cluster might have only a few nodes, a Thor cluster for a small 
organization might have 20 nodes, and a Thor cluster for large organizations with terabytes of data to be processed 
might have hundreds of nodes.  Multiple Thor clusters can be included in an HPCC environment and share the distributed 
filesystem storage available on each cluster and job scheduling and processing requirements.

Each Thor cluster also includes a distributed filesystem (DFS2), and each node of a Thor cluster is a data node in the 
file system as well as a job execution node for the parallel processing environment.  Data is initially loaded to the Thor 
DFS using a process called spraying, in which data from a landing zone for external files is copied to the Thor cluster so 
that each node receives a segment of the file, initially divided as equally among the nodes as possible depending on the 
logical record structure of the file so that logical records are not split across nodes.  Files in the DFS can be redistributed 
as needed during a processing sequence using the ECL programming language.  For example, the logical records in a 
file can be distributed so that all the records with matching key fields are placed on the same node which insures that 
subsequent data processing operations such as project, sort, and join for matching records are localized to the node, and 
no additional inter-node movement of data is needed accomplishing the goal of data parallel operation and maximizing 
performance.

ETL (extract, transform, load) to process or refine raw data for some other purpose is a typical application performed on 
a Thor cluster.  This type of application can be coded in ECL to execute as a single job on the Thor cluster encompassing 
may separate processing steps.  This allows the ECL compiler to optimize the full processing sequence instead of 
just a single step.  The Extract process may include projecting of source data fields to common record layouts used 
in the data; splitting or combining multiple source files, records, and fields to match the required layout; cleansing 
and standardization of data fields which will be used for searching such as name, address, identifiers, dates, etc.; and 
statistical and other types of analysis of the data to assess quality or to derive new information to be appended to 
the processed records.  The Transform process can include combining multiple records into one (denormalize), or 
splitting single records into multiple or parent and child records (normalize); translation of codes into descriptions 
or vice-versa; standardizing names and addresses into separate parts in individual fields; validating and reformatting 
date fields; resolving and appending internal identifiers to people, businesses, and other entities, in order to link them 
across datasets; adding new records to an existing dataset, replacing or updating matching existing records; removing 
duplicates (dedup) or combining information with existing data (rollup); and linking or clustering records to each other 
if applicable.  The Load Process includes building indexes or other data structures for use on a separate system such as 
a data warehouse or other independent query platform, an online analytical processing (OLAP) system, or a business 
intelligence system (BIS).  In an HPCC environment, indexes are built which are subsequently deployed to a Roxie cluster 
to support online queries. Roxie indexes can contain both the searchable fields and other data fields from the base data 
referred to as the payload to improve query performance.

In summary, the steps for a typical process on a Thor cluster from spray to delivery of information are (1) spray the raw 
data to be processed to the Thor cluster, i.e. load the data to the Thor DFS; (2) perform the ETL process described 
previously to clean, standardize, and transform the data for its intended purpose updating any internal base files on 
the Thor cluster and building index files to be used with online queries developed for a Roxie cluster; (3) deploy the 
transformed data to the delivery system such as a Roxie cluster, or despray the data to a landing zone for transfer to 
an external system such as a traditional RDBMS, data warehouse, or other system platform.  The transformed data can 
also be left on the Thor cluster to support additional entity resolution or complex ad-hoc analytical processing on large 
datasets.

2)  Each node in a Thor system serves an important dual-purpose, as a processing node for job execution, and as data storage for the DFS which can be 
accessed by processing nodes and other clusters.
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Using a Roxie Cluster

As described previously, the Roxie cluster is designed as an online high-performance structured query and analysis 
engine or data warehouse supporting thousands of simultaneous queries and users with sub-second response times 
through Web services interfaces.  The Roxie cluster uses a distributed indexed file system3 and structured query 
programs written in the same ECL programming language used with Thor clusters.  Query programs in ECL are pre-
compiled and deployed to a Roxie cluster to facilitate high-performance execution, fast response times, and reusability.  
When a query is deployed to a Roxie cluster, the supporting data and index files are loaded into the Roxie distributed 
indexed file system which is independent from the DFS on the Thor cluster.  Roxie clusters are designed to have high 
availability, data is redundantly stored on two or more nodes, and Roxie continues to operate seamlessly even if one or 
more nodes fail.  Additional redundancy can be provided by including multiple Roxie clusters in an HPCC environment.

Roxie clusters are typically used for searching and other types of information retrieval and analysis applications using 
index files previously built on a Thor cluster.  Multi-threading is used for efficient parallel multi-user retrieval of data.  The 
Roxie distributed file system supports sophisticated multi-field index structures that can support range of value indices, 
phonetic keys, compound (multivariate keys), keys with data built from multiple data files, and keys that support full text 
ranked Boolean searches.  Indexes can be specified to be memory-based to further support high-performance lookup or 
in cases where full scans are required.

Roxie query requests can be submitted from a client application as a SOAP call, HTTP or HTTPS protocol request from a 
Web application,  or through a direct socket connection.  Each Roxie query request is associated with a specific deployed 
ECL query program.  Roxie queries can also be executed from programs running on Thor clusters.    Queries can access 
data files and index files referred to in the ECL code.  Files can be accessed from a remote location which can be another 
Thor or Roxie cluster, by copying the files to the nodes of the local Roxie cluster when queries are deployed, and by using 
a remote copy until the local copy is complete.

A Roxie cluster uses the concept of Servers and Agents.  Each node in a Roxie cluster runs Server and Agent processes 
which are configurable by a System Administrator depending on the processing requirements for the cluster.  A Server 
process waits for a query request from a Web services interface then determines the nodes and associated Agent 
processes that have the data locally that is needed for a query, or portion of the query. The Roxie Server process that 
receives the request owns the processing of the ECL program for the query until it is completed.  The Server sends 
portions of the query job to the nodes in the cluster and Agent processes which have data needed for the query stored 
locally as needed, and waits for results. When a Server receives all the results needed from all nodes, it collates them, 
performs any additional processing, and then returns the result set to the client requestor.

The performance of query processing varies depending on factors such as machine speed, data complexity, number 
of nodes, and the nature of the query, but production results have shown throughput of a thousand results a second or 
more.  Roxie clusters have flexible data storage options with indexes and data stored locally on the cluster, as well as being 
able to use indexes stored remotely in the same environment on a Thor cluster.  The Roxie cluster provides automatic 
failover in case of node failure, and the cluster will continue to perform even if one or more nodes are down.  

Thor and Roxie Together: A Complete Solution

LexisNexis developers recognized that to meet all the requirements of data-intensive computing two distinct computing 
platforms were needed, one for processing large volumes of raw data which could also support complex ad-hoc 
analytical applications, and another to function as a high-performance search and structured query processing engine 
that could support thousands of users with sub-second access to information.  LexisNexis also recognized the need for 
a new data-centric programming language for parallel data processing to significantly enhance programmer productivity 
and reduce programming complexity for parallel applications.  The result was the HPCC platform, which integrates Thor 

3)  The Roxie filesystem stores both indexes and data distributed across the nodes of the cluster to facilitate parallel high-performance online query 
processing.
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and Roxie clusters and the ECL programming language in a powerful, flexible, and easy to implement and use high-
performance cluster computing environment.  (Note: a Roxie is not required in an HPCC environment which can contain 
only Thor clusters, however to use a Roxie cluster, a Thor system is required for building and deploying index files to the 
Roxie cluster).

The high-level of integration in the HPCC platform provides a distinct advantage over competing technology such 
as Hadoop which utilizes the MapReduce processing approach and bolt-on systems to provide a complete parallel 
processing solution.  This is evident in the significantly better performance of the HPCC platform based on standard 
benchmark results using the same hardware platform.  This performance advantage results because Thor and Roxie 
clusters and their filesystems are each individually optimized for their specific parallel processing purpose, and ECL 
batch job execution and online query execution are optimized as a whole process end-to-end, instead of sequencing or 
chaining individual MapReduce steps.  The power, flexibility, advanced capabilities, speed of development, and ease of 
use of the ECL programming language and seamless integration across HPCC systems is also an important distinguishing 
factor between the LexisNexis HPCC platform and other data-intensive computing solutions.  The HPCC platform 
provides a complete high-performance integrated parallel processing solution from raw data to useful information.

 

HPCC Performance
A standard benchmark available for data-intensive computing platforms is the Terasort benchmark managed by 
an industry group led by Microsoft and HP.  This permits head-to-head system performance benchmarking using a 
standard workload or set of application programs designed to test the parallel data processing capabilities of a system.  
The Terabyte sort has since evolved to be the GraySort which measures the number of terabytes per minute that can 
be sorted on a platform which allows clusters with any number of nodes to be utilized.  However, in comparing the 
effectiveness and equivalent cost/performance of various systems, it is useful to run benchmarks on identical system 
hardware configurations.  A head-to-head comparison of the HPCC platform to Hadoop using the original Terabyte sort 
on a 400-node cluster is presented here.

Terabyte Sort Benchmark.

The Terabyte sort benchmark has its roots in benchmark tests sorting conducted on computer systems since the 1980s.  
More recently, a Web site originally sponsored by Microsoft has conducted formal competitions each year with the 
results presented at the SIGMOD (Special Interest Group for Management of Data) conference sponsored by the ACM 
each year (http://sortbenchmark.org).  Several categories for sorting on systems exist including the original Terabyte 
sort which was to measure how fast a file of 1 Terabyte of data formatted in 100 byte records (10,000,000 total records) 
could be sorted.  Two categories were allowed: Daytona (a standard commercial computer system and software with no 
modifications) and Indy (a custom computer system with any type of modification).  No restrictions exist on the size of 
the system so the sorting benchmark could be conducted on as large a system as desired.  The 2009 record holder for 
the Daytona category is Yahoo! using a Hadoop configuration with 1460 nodes with 8GB Ram per node, 8000 Map tasks, 
and 2700 Reduce tasks which sorted 1 TB in 62 seconds.    In 2008 using 910 nodes, Yahoo! performed the benchmark 
in 3 minutes 29 seconds.  In 2008, LexisNexis using the HPCC architecture on only a 400-node system performed 
the Terabyte sort benchmark in 3 minutes 6 seconds.  In 2009, LexisNexis again using only a 400-node configuration 
performed the Terabyte sort benchmark in 102 seconds.

However, a fair and more logical comparison of the capability of data-intensive computer system and software 
architectures using computing clusters would be to conduct this benchmark with competitive systems on the same 
hardware configuration.  Other factors should also be evaluated such as the amount of code required to perform the 
benchmark which provides a strong indication of programmer productivity, and is a significant performance factor in the 
implementation of parallel computing applications.
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Figure 19 Hadoop Terabyte Sort Benchmark Results.

Figure 20 HPCC Terabyte Sort Benchmark Results.

On August 8, 2009 a Terabyte Sort benchmark test was conducted on a development configuration located at 
LexisNexis Risk Solutions offices in Boca Raton, FL in conjunction with and verified by Lawrence Livermore National Labs 
(LLNL).  The test cluster included 400 processing nodes each with two local 300MB SCSI disk drives, Intel Xeon single 
core processors running at 3.00 GHz, 4GB memory per node, all connected to a single Gigabit ethernet switch with 1.4 
Terabytes/sec throughput.  Hadoop Release 0.19 was deployed to the cluster and the standard Terasort benchmark 
written in Java included with the release was used for the benchmark.  Hadoop required 6 minutes 45 seconds to create 
the test data, and the Terasort benchmark required a total of 25 minutes 28 seconds to complete the sorting test as 
shown in Figure 19.  The HPCC system software deployed to the same platform and using standard ECL required 2 
minutes and 35 seconds to create the test data, and a total of 6 minutes and 27 seconds to complete the sorting test as 
shown in Figure 20.  Thus the Hadoop implementation using Java running on the same hardware configuration took 3.95  
times longer than the HPCC implementation using ECL.
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The Hadoop version of the benchmark used hand-tuned Java code including custom TeraSort, TeraInputFormat and 
TeraOutputFormat classes with a total of 562 lines of code required for the sort.  The HPCC system required only 10 lines 
of ECL code for the sort, a 50-times reduction in the amount of code required.

 

Conclusions
As a result of the continuing information explosion, many organizations are experiencing a significant “data gap” or 
inability to process this information and use it effectively.  High-performance data-intensive computing with commodity 
computing clusters represents a new approach which can address the data gap and allow government and commercial 
organizations and research environments to process massive amounts of data and implement new applications 
previously thought to be impractical or infeasible.  Technology solutions such as Hadoop MapReduce and  the HPCC 
platform from LexisNexis are now available which offer data parallel processing capability on low-cost commodity 
computing clusters.

The suitability of a processing platform and architecture for an organization and its application requirements can only 
be determined after careful evaluation of available alternatives.  Many organizations have embraced open source 
platforms such as Hadoop while others prefer a commercially developed and supported platform by an established 
industry leader.  The Hadoop MapReduce platform is being used successfully at many Web companies whose data 
encompasses massive amounts of Web information as its data source.  The LexisNexis HPCC platform is at the heart of a 
premier information services provider and industry leader, and has been adopted by government agencies, commercial 
organizations, and National Research Laboratories because of its higher-performance cost-effective implementation.  
Existing HPCC applications include raw data processing, ETL, linking of enormous amounts of data to support online 
information services such as LexisNexis and industry-leading information search applications such as Accurint®; entity 
extraction and resolution of unstructured and semi-structured data such as Web documents; statistical analysis of Web 
logs for security applications such as intrusion detection; online analytical processing to support business intelligence 
systems;  and data analysis of massive datasets in educational and research environments and by state and federal 
government agencies.  There are many tradeoffs in making the right decision in choosing a new computer systems 
architecture, and often the best approach is to conduct a specific benchmark test with a customer application to 
determine the overall system effectiveness and performance.   The relative cost-performance characteristics of the 
system in additional to suitability, flexibility, scalability, footprint, and power consumption factors which impact the total 
cost of ownership (TCO) must be considered.

A performance comparison of the Hadoop MapReduce and the HPCC platform using the Terabyte sort benchmark in 
this paper reveals a significant performance advantage for the HPCC platform on identical hardware configurations.  
Other advantages of selecting the LexisNexis HPCC platform for data-intensive computing include: (1) a highly integrated 
system environment with capabilities from raw data processing to high-performance queries and data analysis using 
a common language; (2) a cluster approach which provides high performance at a much lower system cost than other 
system alternatives resulting in significantly lower total cost of ownership (TCO);  (3) a stable and reliable processing 
environment proven in production applications for varied organizations over a 10-year period;  (4) an innovative data-
centric programming language (ECL) with extensive built-in capabilities for data-parallel processing, significantly 
increasing programmer productivity for application development, which automatically optimizes execution graphs with 
hundreds of processing steps into single efficient workunits;  (5) a high-level of fault resilience and capabilities which 
reduce the need for re-processing in case of system failures; (6) suitability for a wide range of data-intensive applications 
from large volume ETL processing to support databases, data warehouses, and high volume online applications to 
network security analysis of massive amounts of log information; and (7) available from and supported by a well-known 
leader in information services and “large data” solutions (LexisNexis) which is part of one of the world’s largest publishers 
of information – ReedElsevier.
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Glossary

AMT	 Attribute Migration Tool.  Allows ECL source code  to be copied from one ECL repository 
to another within HPCC system environments.

BORPS	 Billions of records per second.  A term invented by LexisNexis to describe the processing 
capabilities of its HPCC platform.

Computing Cluster	 A group of shared individual computers, linked by high-speed communications in 
a local area network topology using technology such as gigabit network switches, 
and incorporating system software which provides an integrated parallel processing 
environment for applications with the capability to divide processing among the nodes in 
the cluster.

COTS	 Commodity off the shelf.  Used to describe commodity hardware (personal computers, 
disks, network) that can be purchased from multiple sources.

Dali Server	 Functions as the system data store in the HPCC system environment.  Manages workunit 
data related to job execution, maintains the logical file directory for the distributed file 
system, and provides shared object services for execution of workunits.

DAS	 Data Analytic Supercomputer.  An alternate name for the HPCC Platform.

Data-Intensive Computing	 Used to describe computing applications that are I/O bound or with a need to process 
large volumes of data.  Such applications devote most of their processing time to I/O and 
movement of data.

Data parallel	 A parallel processing approach where computation is applied independently to each data 
item of a set of data which allows the degree of parallelism to be scaled with the volume 
of data.

DFU Server	 Distributed File Utility.  A server in the HPCC system environment that manages and 
controls the spraying and despraying operations that used to move files to and from the 
DFS in a Thor cluster and other DFS operations.  

ECL	 Enterprise Data Control Language.  A high-level parallel programming language used on 
the HPCC platform for data-intensive computing applications.

ECL Server	 Includes the ECL compiler and executable code generator, and functions as the job 
server for Thor job execution in the HPCC system environment.  The ECL compiler 
translates the source ECL statements into executable C++ code in the form of dynamic 
link libraries (DLLs) that can be executed on Thor or Roxie clusters

ECLWatch	 A Web-based utility which uses the ESP server to provide a set of tools for monitoring 
and managing HPCC clusters. ECLWatch allows you see information  about workunits 
including a graph displaying a visual representation of the dataflows for the workunit 
complete with statistics which are updated as the job progresses.

ESP Server	 Enterprise Service Platform. A communications server and customizable framework in 
the HPCC system environment that provides communications interfaces and services 
to client applications and to the job execution and cluster environment.  Protocols 
supported by the ESP server include HTTP, SOAP, and proprietary protocols.  

ETL	 Extract, transform, load.  An industry standard acronym for the process of reading data 
from an external file, cleansing and converting the data into the form it needs to be, and 
loading the data into an internal database.
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Hadoop	 An open source software project initiated to create an open source implementation of 
the MapReduce architecture

HPC	 High-Performance Computing.  Describes computing environments which utilize 
supercomputers and computer clusters to address complex computational 
requirements, support applications with significant processing time requirements, or 
require processing of significant amounts of data

HPCC	 High-Performance Computing Cluster.  The LexisNexis data-intensive computing 
platform.

MapReduce	 A programming model that allows group aggregations in parallel over a cluster of 
machines.  Programmers provide a Map function that processes input data and groups 
the data according to a key-value pair, and a Reduce function that performs aggregation 
by key-value on the output of the Map function.

 NLP	 Natural Language Processing.  Processing of natural language in machine-readable form 
such as text by a computer system for a wide variety of applications.

QueryBuilder	 An interactive development environment (IDE) for the ECL programming language.  
Provides a full-featured GUI for ECL program development and direct access to the ECL 
repository source code

ROXIE	 The rapid data delivery system for online query processing in the HPCC platform.  
Acronym for Rapid Online XML Inquiry Engine.

Sasha Server	 A companion “housekeeping” server to the Dali server in the HPCC system environment.  
Archives job execution workunits and DFU workunits which are stored in a series of 
folders, which can be restored when needed, and can be manually moved to an alternate 
or off-site location.  Provides additional housekeeping functions including removal of 
cached workunits and DFU recovery files.

Seisint	 Refers to Seisint, Inc., the original developer of the HPCC data supercomputer technology 
which was acquired by LexisNexis in 2004.

THOR	 The data refinery system in the HPCC platform.  A batch job processing environment 
used for ETL and other data-intensive computing applications.

Workunit	 A job in the HPPC environment.  Encapsulates all information related to a job. For ECL 
job execution,  includes input file information, results, timings, graphs, and ECL code and 
helper files including the C++ code generated and system logs for the job.

XML	 Extensible Markup Language.  An industry open standard for describing and formatting 
data.  Provides a flexible way to create common information formats and share both the 
format and the data on the Web.
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