
White Paper

HPCC Systems:
Introduction to HPCC
(High-Performance Computing Cluster)

Author: Anthony M. Middleton, Ph.D. LexisNexis Risk Solutions

Date: May 24, 2011

2 HPCC Systems: Introduction to HPCC

Executive Summary
As a result of the continuing information explosion, many organizations now have the need to process and analyze
massive volumes of data. These data-intensive computing requirements can be addressed by scalable systems
based on hardware clusters of commodity servers coupled with system software to provide a distributed file
storage system, job execution environment, online query capability, parallel application processing, and parallel
programming development tools. The LexisNexis HPCC platform provides all of these capabilities in an integrated,
easy to implement and use, commercially-available high-performance computing environment. This paper provides
an introduction to the LexisNexis HPCC system architecture also referred to (in the government space) as the
LexisNexis Data Analytics Supercomputer (DAS).

LexisNexis Risk Solutions, an industry leader in data content, data aggregation, and information services,
independently developed and implemented the HPCC platform as a solution for its own data-intensive computing
requirements. In a similar manner to Hadoop (the open source implementation of MapReduce), the LexisNexis
approach also uses commodity clusters of hardware running the Linux operating system and includes additional
system software and middleware components to provide a complete and comprehensive job execution
environment and distributed query and filesystem support needed for data-intensive computing.

The HPCC platform includes a powerful high-level, heavily-optimized, data-centric declarative language for parallel
data processing called ECL (Enterprise Data Control Language) which is also described in this paper. The power,
flexibility, advanced capabilities, speed of development, maturity, and ease of use of the ECL programming language
is a primary distinguishing factor between the LexisNexis HPCC platform and other data-intensive computing
solutions.

Advantages of selecting the LexisNexis HPCC platform for data-intensive computing include: (1) a highly integrated
system environment with capabilities from raw data processing to high-performance queries and data analysis using
a common language; (2) an optimized cluster approach which provides high performance at a much lower system
cost than other system alternatives resulting in significantly lower total cost of ownership (TCO); (3) a stable and
reliable processing environment proven in production applications for varied organizations over a 10-year period;
(4) an innovative data-centric programming language (ECL) with extensive built-in capabilities for data-parallel
processing, significantly increasing programmer productivity for application development, which automatically
optimizes execution graphs with hundreds of processing steps into single efficient workunits; (5) a high-level of fault
resilience and capabilities which reduce the need for re-processing in case of system failures; (6) suitability for a wide
range of data-intensive applications from large volume ETL processing to support databases, data warehouses, and
high volume online applications to network security analysis of massive amounts of log information; and (7) available
from and supported by a well-known leader in information services and “large data” solutions (LexisNexis) which is
part of one of the world’s largest publishers of information – ReedElsevier.

3 HPCC Systems: Introduction to HPCC

Table of Contents

Executive Summary.. 2
List of Figures..4

Introduction... 5
 High-Performance Computing.. 5
 Commodity Computing Clusters..6
 Data-Intensive Computing Applications.. 7
 MapReduce... 8
 Hadoop..9
 Current Limitations of MapReduce... 11

HPCC Platform Overview.. 13
 Cluster Types.. 14
 Data Refinery (Thor)... 17
 Rapid Data Delivery Engine (Roxie)...17
 The ECL Programming Language.. 18
 Key Benefits of ECL... 21
 ECL Programming Example.. 21
 HPCC Middleware and System Servers...27
 Development Tools and User Interfaces..27
 Using a Thor Cluster.. 31
 Using a Roxie Cluster...32
 Thor and Roxie Together: A Complete Solution...................................... 32

HPCC Performance.. 33
 Terabyte Sort Benchmark ... 53

Conclusions ..35

Glossary... 36

Reference List.. 38

4 HPCC Systems: Introduction to HPCC

List of figures

1 Commodity Computing Cluster... 6

2 MapReduce Processing Architecture... 9

3 Hadoop MapReduce.. 10

4 Sample Pig Latin Program.. 11

5 LexisNexis Vision for a Data Analytics Supercomputer...................... 13

6 Thor Processing Cluster.. 14

7 Roxie Processing Cluster .. 15

8 HPCC System Architecture... 16

9 ECL Sample Syntax for JOIN operation.. 19

10 ECL Code Example.. 20

11 ECL Programming Example – Log File Analysis Macro 22

12 ECL Programming Example – Log File Output Format........................23

13 ECL Programming Example – Log File Analysis Job............................. 24

14 ECL Programming Example – Log File Analysis Graph.........................25

15 ECL Programming Example – Log File Analysis Output...................... 26

16 QueryBuilder IDE ..28

17 ECLWatch Web-based Utility... 29

18 ECLWatch Job Execution Graph... 30

19 Hadoop Terabyte Sort Benchmark Results... 34

20 HPCC Terabyte Sort Benchmark Results... 34

5 HPCC Systems: Introduction to HPCC

Introduction
Many organizations have large amounts of data which has been collected and stored in massive datasets which
needs be processed and analyzed to provide business intelligence, improve products and services for customers,
or to meet other internal data processing requirements. For example, Internet companies need to process data
collected by Web crawlers as well as logs, click data, and other information generated by Web services. Parallel
relational database technology has not proven to be cost-effective or provide the high-performance needed to
analyze massive amounts of data in a timely manner [1-3]. As a result several organizations developed technology
to utilize large clusters of commodity servers to provide high-performance computing capabilities for processing
and analysis of massive datasets. Clusters can consist of hundreds or even thousands of commodity machines
connected using high-bandwidth networks. Examples of this type of cluster technology include Google’s MapReduce
[1, 4], Hadoop [5, 6], SCOPE [2], Sector/Sphere [7], and LexisNexis HPCC platform described in this paper.

This paper will introduce high-performance computing utilizing clusters of commodity hardware, describe
the characteristics and requirements of data-intensive applications, and also briefly discuss the MapReduce
programming model and Hadoop system as an example of a basic cluster system architecture for comparison.
This is followed by an overview of LexisNexis HPCC platform and the ECL Programming language describing its
advantages over other approaches.

High-Performance Computing

High-Performance Computing (HPC) is used to describe computing environments which utilize supercomputers
and computer clusters to address complex computational requirements, support applications with significant
processing time requirements, or require processing of significant amounts of data. Supercomputers have
generally been associated with scientific research and compute-intensive types of problems, but more and
more supercomputer technology is appropriate for both compute-intensive and data-intensive applications.
Supercomputers utilize a high-degree of internal parallelism and typically use specialized multi-processors with
custom memory architectures which have been highly-optimized for numerical calculations [8]. Supercomputers
also require special parallel programming techniques to take advantage of its performance potential.

Today a higher-end desktop workstation has more computing power than the supercomputers which existed
during the early 1990’s. This has led to a new trend in supercomputer design for high-performance computing:
using clusters of independent processors connected in parallel [9]. Many computing problems are suitable for
parallelization, often problems can be divided in a manner so that each independent processing node can work
on a portion of the problem in parallel by simply dividing the data to be processed, and then combining the final
processing results for each portion. This type of parallelism is often referred to as data-parallellism, and data-
parallel applications are a potential solution to petabyte scale data processing requirements [10, 11].

Data-parallelism can be defined as a computation applied independently to each data item of a set of data which
allows the degree of parallelism to be scaled with the volume of data. The most important reason for developing
data-parallel applications is the potential for scalable performance in high-performance computing, and may result
in several orders of magnitude performance improvement. The key issues with developing applications using data-
parallelism are the choice of the algorithm, the strategy for data decomposition, load balancing on processing nodes,
communications between processing nodes, and the overall accuracy of the results [10]. Nyland et al. [10] also note
that the development of a data-parallel application can involve substantial programming complexity to define the
problem in the context of available programming tools, and to address limitations of the target architecture.

6 HPCC Systems: Introduction to HPCC

Commodity Computing Clusters

The resulting economies of scale in using multiple independent processing nodes for supercomputer design to
address high-performance computing requirements led directly to the implementation of commodity computing
clusters. A computer cluster is a group of shared individual computers, linked by high-speed communications in
a local area network topology using technology such as gigabit network switches or InfiniBand, and incorporating
system software which provides an integrated parallel processing environment for applications with the capability
to divide processing among the nodes in the cluster. Cluster configurations can not only improve the performance
of applications which use a single computer, but provide higher availability and reliability, and are typically much
more cost-effective than single supercomputer systems with equivalent performance. The key to the capability,
performance, and throughput of a computing cluster is the system software and tools used to provide the parallel
job execution environment. Programming languages with implicit parallel processing features and a high-degree of
optimization are also needed to insure high-performance results as well as high programmer productivity.

Clusters allow the data used by an application to be partitioned among the available computing resources and
processed independently to achieve performance and scalability based on the amount of data. This approach to
parallel processing is often referred to as a “shared nothing” approach since each node consisting of processor,
local memory, and disk resources shares nothing with other nodes in the cluster (Figure 1). Clusters are extremely
effective when it is relatively easy to separate the problem into a number of parallel tasks and there is no dependency
or communication required between the tasks other than overall management of the tasks.

Figure 1

7 HPCC Systems: Introduction to HPCC

High-performance clusters are usually configured using commercial off-the-shelf (COTS) PC components. Rack-
mounted servers or blade servers each with local memory and disk storage are often used as processing nodes
to allow high-density small footprint configurations which facilitate the use of very high-speed communications
equipment to connect the nodes. Linux is widely used as the operating system for computer clusters [13, 14].
According to Sloan [14], cluster configurations can be symmetric (each node can also function as a separate
individual computer) or asymmetric (one computer functions as the master node providing a gateway to users
and managing the activity of other nodes) which is the most common architecture. Cluster management, security,
and workload distribution are less problematic and optimum performance is usually more easily achieved in
asymmetric clusters. The hardware utilized in high-performance computing clusters is typically homogeneous, with
each processing node consisting of the same processor, memory, and disk components. This enables the system
software to better optimize workloads and deliver more consistent performance for parallel processing applications.
In a parallel processing application on a cluster where the workload has been divided evenly, a node which has
a slower processor or less memory will lag other nodes in completing its part of an application affecting overall
performance.

Data-Intensive Computing Applications

Data-intensive is used to describe computing applications that are I/O bound or with a need to process large
volumes of data [15-17]. Such applications devote most of their processing time to I/O and movement of data.
Parallel processing of data-intensive applications typically involves partitioning or subdividing the data into multiple
segments which can be processed independently using the same executable application program in parallel on an
appropriate computing platform, then reassembling the results to produce the completed output data [10]. The
greater the aggregate distribution of the data, the more benefit there is in parallel processing of the data. Data-
intensive processing requirements normally scale linearly according to the size of the data and are very amenable to
straightforward parallelization.

There are several important common characteristics of data-intensive computing systems that distinguish them
from other forms of computing. First is the principle of collocation of the data and programs or algorithms to
perform the computation. To achieve high performance in data-intensive computing, it is important to minimize the
movement of data. Most other types of computing and supercomputing utilize data stored in a separate repository
or servers and transfer the data to the processing system for computation. Data-intensive computing typically
uses distributed data and distributed file systems in which data is located across a cluster of processing nodes,
and instead of moving the data, the program or algorithm is transferred to the nodes with the data that needs to be
processed. This principle – “Move the code to the data” – is extremely effective since program size is usually small
in comparison to the large datasets processed by data-intensive systems and results in much less network traffic
since data can be read locally instead of across the network. This characteristic allows processing algorithms to
execute on the nodes where the data resides reducing system overhead and increasing performance [15]. The
use of high-bandwidth network switching capabilities also allows file system clusters and processing clusters to be
interconnected to provide even more processing flexibility.

A second important characteristic of data-intensive computing systems is the programming model utilized. Data-
intensive computing systems typically utilize a machine-independent approach in which applications are expressed
in terms of high-level operations on data, and the runtime system transparently controls the scheduling, execution,
load balancing, communications, and movement of programs and data across the distributed computing cluster
[18]. The programming abstraction and language tools allow the processing to be expressed in terms of data flows
and transformations incorporating new data-centric programming languages and shared libraries of common data
manipulation algorithms such as sorting. Conventional supercomputing and distributed computing systems typically
utilize machine dependent programming models which can require low-level programmer control of processing
and node communications using conventional imperative programming languages and specialized software
packages which adds complexity to the parallel programming task and reduces programmer productivity. A machine
dependent programming model also requires significant tuning and is more susceptible to single points of failure.

8 HPCC Systems: Introduction to HPCC

A third important characteristic of data-intensive computing systems is the focus on reliability and availability.
Large-scale systems with hundreds or thousands of processing nodes are inherently more susceptible to hardware
failures, communications errors, and software bugs. Data-intensive computing systems are typically designed to
be fault resilient. This includes redundant copies of all data files on disk, storage of intermediate processing results
on disk, automatic detection of node or processing failures, and selective re-computation of results. A processing
cluster configured for data-intensive computing is typically able to continue operation with a reduced number of
nodes following a node failure with automatic and transparent recovery of incomplete processing.

A final important characteristic of data-intensive computing systems is the inherent scalability of the underlying
hardware and software architecture. Data-intensive computing systems can typically be scaled in a linear fashion
to accommodate virtually any amount of data, or to meet time-critical performance requirements by simply
adding additional processing nodes to a system configuration in order to achieve billions of records per second
processing rates (BORPS1). The number of nodes and processing tasks assigned for a specific application can be
variable or fixed depending on the hardware, software, communications, and distributed file system architecture.
This scalability allows computing problems once considered to be intractable due to the amount of data required
or amount of processing time required to now be feasible and affords opportunities for new breakthroughs in data
analysis and information processing.

MapReduce

A variety of system architectures have been implemented for data-intensive and large-scale data analysis
applications including parallel and distributed relational database management systems which have been available
to run on shared nothing clusters of processing nodes for more than two decades [19]. Although this approach offers
benefits when the data utilized is primarily structured in nature and fits easily into the constraints of a relational
database, and often excels for transaction processing applications, most data growth is with data in unstructured
form [20] and new processing paradigms with more flexible data models were needed. Internet companies such
as Google, Yahoo, Facebook, and others required a new processing approach to effectively deal with the enormous
amount of Web data for applications such as search engines and social networking. In addition, many government
and business organizations were overwhelmed with data that could not be effectively processed, linked, and
analyzed with traditional computing approaches.

Several solutions have emerged including the MapReduce architecture pioneered by Google and now available
in an open-source implementation called Hadoop used by Yahoo, Facebook, and others. Google MapReduce is
an example of a basic system architecture designed for processing and analyzing large datasets on commodity
computing clusters and is being used successfully by Google in many applications to process massive amounts
of raw Web data [1, 4]. LexisNexis, an acknowledged industry leader in information services and “large data”
solutions, also developed and implemented a scalable platform for data-intensive computing called HPCC which
offers significantly more capability than MapReduce and has been used for several years by LexisNexis and other
commercial and government organizations to process very large volumes of structured and unstructured data.

The MapReduce programming model allows group aggregations in parallel over a cluster of machines. Programmers
provide a Map function that processes input data and groups the data according to a key-value pair, and a Reduce
function that performs aggregation by key-value on the output of the Map function. According to Dean and
Ghemawat in [1, 4], the processing is automatically parallelized by the system on the cluster, and takes care of
details like partitioning the input data, scheduling and executing tasks across a processing cluster, and managing the
communications between nodes, allowing programmers with no experience in parallel programming to use a large
parallel processing environment. The overall model for this process is shown in Figure 2. For more complex data
processing procedures, multiple MapReduce calls must be linked together in sequence.

1) BORPS an acronym for Billions Of Records Per Second first introduced by Seisint, Inc. in 2001.

9 HPCC Systems: Introduction to HPCC

Figure 2

Underlying and overlayed on the same computing cluster with the MapReduce architecture is the Google File System
(GFS). GFS was designed to be a high-performance, scalable distributed file system for very large data files and data-
intensive applications providing fault tolerance and running on clusters of commodity hardware [21]. GFS is oriented
to very large files dividing and storing them in fixed-size chunks of 64 Mb by default. Each GFS consists of a single
master node acting as a nameserver and multiple nodes in the cluster acting as chunkservers using a commodity
Linux-based machine (node in a cluster) running a user-level server process.

Google has also implemented a high-level language for performing parallel data analysis and data mining using the
MapReduce and GFS architecture called Sawzall and a workflow management and scheduling infrastructure for
Sawzall jobs called Workqueue [22]. For most applications implemented using Sawzall, the code is much simpler
and smaller than the equivalent C++ by a factor of 10 or more. Pike et al. in [22] cite several reasons why a new
language is beneficial for data analysis and data mining applications: (1) a programming language customized for a
specific problem domain makes resulting programs “clearer, more compact, and more expressive”; (2) aggregations
are specified in the Sawzall language so that the programmer does not have to provide one in the Reduce task of a
standard MapReduce program; (3) a programming language oriented to data analysis provides a more natural way
to think about data processing problems for large distributed datasets; and (4) Sawzall programs are significantly
smaller that equivalent C++ MapReduce programs and significantly easier to program.

Hadoop.

Hadoop is an open source software project sponsored by The Apache Software Foundation (http://www.
apache.org) initiated to create an open source implementation of the MapReduce architecture [6]. The Hadoop
MapReduce architecture shown in Figure 3 is functionally similar to the Google implementation except that the base
programming language for Hadoop is Java instead of C++. The implementation is intended to execute on clusters of
commodity processors utilizing Linux as the operating system environment.

10 HPCC Systems: Introduction to HPCC

Figure 3

Hadoop implements a distributed data processing scheduling and execution environment and framework for
MapReduce jobs. A MapReduce job is a unit of work that consists of the input data, the associated Map and Reduce
programs, and user-specified configuration information [6]. The Hadoop framework utilizes a master/slave architecture
with a single master server called a jobtracker and slave servers called tasktrackers, one per node in the cluster. Hadoop
includes a distributed file system called HDFS which is analogous to GFS in the Google MapReduce implementation.
HDFS also follows a master/slave architecture which consists of a single master server that manages the distributed
filesystem namespace and regulates access to files by clients called the Namenode. In addition, there are multiple
Datanodes, one per node in the cluster, which manage the disk storage attached to the nodes and assigned to Hadoop.

The Hadoop job execution environment supports additional distributed data processing capabilities which are designed
to run using the Hadoop MapReduce architecture including the Pig system. Pig includes a high-level dataflow-oriented
language and execution environment originally developed at Yahoo! ostensibly for the same reasons that Google
developed the Sawzall language for its MapReduce implementation – to provide a specific language notation for data
analysis applications and to improve programmer productivity and reduce development cycles when using the Hadoop
MapReduce environment.

11 HPCC Systems: Introduction to HPCC

Figure 4

Working out how to fit many data analysis and processing applications into the MapReduce paradigm can be a
challenge, and often requires multiple MapReduce jobs [6]. Pig programs are automatically translated into sequences of
MapReduce programs if needed in the execution environment. An example program is shown in Figure 4 which requires
execution of 3 separate MapReduce jobs.

Current Limitations of MapReduce.

Although the MapReduce model and programming abstraction provides basic functionality for many data processing
operations, users are limited by its rigid structure and forced to adapt their applications to the model in order to
achieve parallelism. This can require implementation of multiple MapReduce sequences for more complex processing
requirements that may need to perform multiple sequenced operations or operations such as joining multiple input files
which can add substantial job management overhead to the overall processing time, as well as limit opportunities for
optimization of the processing with different execution strategies. In addition many data processing operations do not fit
naturally into the group-by-aggregation model using single key-value pairs required by the model. Even simple operations
such as projection and selection must be fit into this model and users must provide custom Map and Reduce functions
for all applications which is more error-prone and limits reusability [2]. Since custom Map and Reduce functions must be
provided for each step, the inability to globally optimize the execution of complex data processing sequences can result
in significantly degraded performance.

Both Google with its Sawzall language and Yahoo with its Pig system and language for Hadoop address some of the
limitations of the MapReduce model by providing an external dataflow-oriented programming language which translates
language statements into MapReduce processing sequences[22, 26, 27]. These languages provide many standard data
processing operators so users do not have to implement custom Map and Reduce functions, improve reusability, and
provide some optimization for job execution. However, these languages are externally implemented executing on client
systems and not integral to the MapReduce architecture, but still rely on the on the same infrastructure and limited
execution model provided by MapReduce.

The MapReduce model is designed to operate in a parallel batch processing environment which is useful for performing
ETL (Extract, Transform, Load) work on large datasets which must be transformed for some other use such as building
inverted indexes. The system is also useful for batch queries performing aggregation operations or complex analytical
tasks on large datasets and particularly unstructured data without the need for building indices or loading into a
relational DBMS [1]. However, for online efficient querying of large datasets which must support large numbers of users

12 HPCC Systems: Introduction to HPCC

or provide fast response times with random access to structured data and support data warehouse applications such
as that provided by parallel DBMS systems [3], other platforms are required in a MapReduce environment. Google has
addressed this requirement by adding BigTable [28], and Hadoop with Hbase and Hive [6]. These operate essentially
as bolt-ons to the MapReduce architecture utilizing the underlying file storage systems and MapReduce processing but
otherwise operating as independent non-integrated applications. A better approach would be an integrated system
environment which excels at both ETL tasks and complex analytics, and at efficient querying of large datasets using a
common data-centric parallel processing language. The LexisNexis HPCC system platform was designed exactly for this
purpose.

3) In such a situation, the main strength of the analysis will have been performed during the record selection process.

13 HPCC Systems: Introduction to HPCC

HPCC Platform Overview
LexisNexis, an industry leader in data content, data aggregation, and information services independently developed and
implemented a solution for data-intensive computing called HPCC (High-Performance Computing Cluster) which is also
referred to as the Data Analytics Supercomputer (DAS). The LexisNexis vision for this computing platform is depicted in
Figure 5.

Figure 5 LexisNexis Vision for a Data Analytics Supercomputer.

The development of this computing platform by the Seisint, Inc. (acquired by LexisNexis in 2004) began in 1999 and
applications were in production by late 2000. The LexisNexis approach also utilizes commodity clusters of hardware
running the Linux operating system similar to the cluster depicted in Figure 1. Custom system software and middleware
components were developed and layered on the base Linux operating system to provide the execution environment
and distributed filesystem support required for data-intensive computing. Because LexisNexis recognized the need for
a new computing paradigm to address its growing volumes of data, the design approach included the definition of a new
high-level language for parallel data processing called ECL (Enterprise Data Control Language). The power, flexibility,
advanced capabilities, speed of development, maturity, and ease of use of the ECL programming language is a primary
distinguishing factor between the LexisNexis HPCC platform and other data-intensive computing solutions.

4) Entity extraction being a good example.

14 HPCC Systems: Introduction to HPCC

Cluster Types

LexisNexis developers recognized that to meet all the requirements of data-intensive computing applications in an
optimum manner required the design and implementation of two distinct cluster processing environments, each of
which could be optimized independently for its parallel data processing purpose. The first of these platforms is called
a Data Refinery whose overall purpose is the general processing of massive volumes of raw data of any type for any
purpose but typically used for data cleansing and hygiene, ETL processing of the raw data, record linking and entity
resolution, large-scale ad-hoc complex analytics, and creation of keyed data and indexes to support high-performance
structured queries and data warehouse applications. The Data Refinery is also referred to as Thor, a reference to
the mythical Norse god of thunder with the large hammer symbolic of crushing large amounts of raw data into useful
information. A Thor cluster is similar in its function, execution environment, filesystem, and capabilities to the Google and
Hadoop MapReduce platforms, but offers significantly higher performance in equivalent configurations.

Figure 6 Thor Processing Cluster.

Figure 6 shows a representation of a physical Thor processing cluster which functions as a batch job execution engine
for scalable data-intensive computing applications. In addition to the Thor master and slave nodes, additional auxiliary
and common components are needed to implement a complete HPCC processing environment. The actual number of
physical nodes required for the auxiliary components is determined during the configurations process.

The second of the parallel data processing platforms designed and implemented by LexisNexis is called the Rapid
Data Delivery Engine. This platform is designed as an online high-performance structured query and analysis platform
or data warehouse delivering the parallel data access processing requirements of online applications through Web
services interfaces supporting thousands of simultaneous queries and users with sub-second response times. Online
applications developed by LexisNexis such as Accurint® utilize both Thor and Roxie platforms. The Rapid Data Delivery
Engine is also referred to as Roxie, which is an acronym for Rapid Online XML Inquiry Engine. Roxie uses a special

	

15 HPCC Systems: Introduction to HPCC

distributed indexed filesystem to provide parallel processing of queries. A Roxie cluster is similar in its function and
capabilities to Hadoop with HBase and Hive capabilities added, but provides significantly higher throughput since it uses a
more optimized execution environment and filesystem for high-performance online processing. Most importantly, both
Thor and Roxie clusters utilize the same ECL programming language for implementing applications, increasing continuity
and programmer productivity.

Figure7 Roxie Processing Cluster.

Figure 7 shows a representation of a physical Roxie processing cluster which functions as a online query execution
engine for high-performance query and data warehousing applications. A Roxie cluster includes multiple nodes with
server and worker processes for processing queries; an additional auxiliary component called an ESP server which
provides interfaces for external client access to the cluster; and additional common components which are shared with
a Thor cluster in an HPCC environment. Although a Thor processing cluster can be implemented and used without a
Roxie cluster, an HPCC environment which includes a Roxie cluster must also include a Thor cluster. The Thor cluster is
required to build the distributed index files used by the Roxie cluster and to develop online queries which will be deployed
with the index files to the Roxie cluster. The specific function of the auxiliary and common HPCC components are
discussed later in this paper.

The implementation of two types of parallel data processing platforms (Thor and Roxie) in the HPCC processing
environment serving different data processing needs allows these platforms to be optimized and tuned for their specific
purposes to provide the highest level of system performance possible to users. This is a distinct advantage when
compared to Hadoop where the MapReduce architecture must be overlayed with additional systems such as HBase,
Hive, and Pig which have different processing goals and requirements, and don’t always map readily into the MapReduce
paradigm. In addition, the LexisNexis HPCC approach incorporates the notion of a processing environment which can
integrate Thor and Roxie clusters as needed to meet the complete processing needs of an organization. As a result,
scalability can be defined not only in terms of the number of nodes in a cluster, but in terms of how many clusters and

16 HPCC Systems: Introduction to HPCC

of what type are needed to meet system performance goals and user requirements. This provides significant flexibility
when compared to Hadoop clusters which tend to be independent islands of processing. For additional information and
a detailed comparison of the HPCC system platform to Hadoop, see [29].

The HPCC system architecture incorporates the Thor and Roxie clusters as well as common middleware components, an
external communications layer, client interfaces which provide both end-user services and system management tools,
and auxiliary components to support monitoring and to facilitate loading and storing of filesystem data from external
sources. An HPCC environment can include only Thor clusters, or both Thor and Roxie clusters. Each of these cluster
types is described in more detail in the following sections. The overall HPCC system architecture is shown in Figure 8.

Figure8

17 HPCC Systems: Introduction to HPCC

Data Refinery (Thor)

The Thor system cluster is implemented using a master/slave approach with a single master node and multiple slave
nodes which provides a parallel job execution environment for programs coded in ECL. Each of the slave nodes is
also a data node within the distributed file system for the cluster. Multiple Thor clusters can exist in an HPCC system
environment, and job queues can span multiple clusters in an environment if needed. Jobs executing on a Thor cluster
in a multi-cluster environment can also read files from the distributed file system on foreign clusters if needed. The
middleware layer provides additional server processes to support the execution environment including ECL Agents and
ECL Servers. A client process submits an ECL job to the ECL Agent which coordinates the overall job execution on behalf
of the client process.

An ECL program is compiled by the ECL server which interacts with an additional server called the ECL Repository which
is a source code repository and contains shared, reusable ECL code. ECL programs are compiled into optimized C++
source code, which is subsequently linked into executable code and distributed to the slave nodes of a Thor cluster
by the Thor master node. The Thor master monitors and coordinates the processing activities of the slave nodes and
communicates status information monitored by the ECL Agent processes. When the job completes, the ECL Agent and
client process are notified, and the output of the process is available for viewing or subsequent processing. Output can
be stored in the distributed filesystem for the cluster or returned to the client process.

The distributed filesystem (DFS) used in a Thor cluster is record-oriented which is somewhat different from the block
format used in MapReduce clusters. Records can be fixed or variable length, and support a variety of standard (fixed
record size, CSV, XML) and custom formats including nested child datasets. Record I/O is buffered in large blocks to
reduce latency and improve data transfer rates to and from disk Files to be loaded to a Thor cluster are typically first
transferred to a landing zone from some external location, then a process called “spraying” is used to partition the file and
load it to the nodes of a Thor cluster. The initial spraying process divides the file on user-specified record boundaries and
distributes the data as evenly as possible with records in sequential order across the available nodes in the cluster. Files
can also be “desprayed” when needed to transfer output files to another system or can be directly copied between Thor
clusters in the same environment. Index files generated on Thor clusters can also be directly copied to Roxie clusters to
support online queries.

Nameservices and storage of metadata about files including record format information in the Thor DFS are maintained
in a special server called the Dali server. Thor users have complete control over distribution of data in a Thor cluster,
and can re-distribute the data as needed in an ECL job by specific keys, fields, or combinations of fields to facilitate the
locality characteristics of parallel processing. The Dali nameserver uses a dynamic datastore for filesystem metadata
organized in a hierarchical structure corresponding to the scope of files in the system. The Thor DFS utilizes the local
Linux filesystem for physical file storage, and file scopes are created using file directory structures of the local file system.
Parts of a distributed file are named according to the node number in a cluster, such that a file in a 400-node cluster will
always have 400 parts regardless of the file size. Each node contains an integral number of records (individual records
are not split across nodes), and I/O is completely localized to the processing node for local processing operations. The
ability to easily redistribute the data evenly to nodes based on processing requirements and the characteristics of the
data during a Thor job can provide a significant performance improvement over the blocked data and input splits used in
the MapReduce approach.

The Thor DFS also supports the concept of “superfiles” which are processed as a single logical file when accessed, but
consist of multiple Thor DFS files. Each file which makes up a superfile must have the same record structure. New files
can be added and old files deleted from a superfile dynamically facilitating update processes without the need to rewrite
a new file. Thor clusters are fault resilient and a minimum of one replica of each file part in a Thor DFS file is stored on a
different node within the cluster.

Rapid Data Delivery Engine (Roxie)

Roxie clusters consist of a configurable number of peer-coupled nodes functioning as a high-performance, high
availability parallel processing query platform. ECL source code for structured queries is pre-compiled and deployed

18 HPCC Systems: Introduction to HPCC

to the cluster. The Roxie distributed filesystem is a distributed indexed-based filesystem which uses a custom B+Tree
structure for data storage. Indexes and data supporting queries are pre-built on Thor clusters and deployed to the
Roxie DFS with portions of the index and data stored on each node. Typically the data associated with index logical
keys is embedded in the index structure as a payload. Index keys can be multi-field and multivariate, and payloads can
contain any type of structured or unstructured data supported by the ECL language. Queries can use as many indexes
as required for a query and contain joins and other complex transformations on the data with the full expression and
processing capabilities of the ECL language. For example, the LexisNexis Accurint® comprehensive person report which
produces many pages of output is generated by a single Roxie query.

A Roxie cluster uses the concept of Servers and Agents. Each node in a Roxie cluster runs Server and Agent processes
which are configurable by a System Administrator depending on the processing requirements for the cluster. A Server
process waits for a query request from a Web services interface then determines the nodes and associated Agent
processes that have the data locally that is needed for a query, or portion of the query. Roxie query requests can be
submitted from a client application as a SOAP call, HTTP or HTTPS protocol request from a Web application, or through
a direct socket connection. Each Roxie query request is associated with a specific deployed ECL query program.
Roxie queries can also be executed from programs running on Thor clusters. The Roxie Server process that receives
the request owns the processing of the ECL program for the query until it is completed. The Server sends portions of
the query job to the nodes in the cluster and Agent processes which have data needed for the query stored locally as
needed, and waits for results. When a Server receives all the results needed from all nodes, it collates them, performs any
additional processing, and then returns the result set to the client requestor.

The performance of query processing on a Roxie cluster varies depending on factors such as machine speed, data
complexity, number of nodes, and the nature of the query, but production results have shown throughput of 5000
transactions per second on a 100-node cluster. Roxie clusters have flexible data storage options with indexes and data
stored locally on the cluster, as well as being able to use indexes stored remotely in the same environment on a Thor
cluster. Nameservices for Roxie clusters are also provided by the Dali server. Roxie clusters are fault-resilient and data
redundancy is built-in using a peer system where replicas of data are stored on two or more nodes, all data including
replicas are available to be used in the processing of queries by Agent processes. The Roxie cluster provides automatic
failover in case of node failure, and the cluster will continue to perform even if one or more nodes are down. Additional
redundancy can be provided by including multiple Roxie clusters in an environment.

Load balancing of query requests across Roxie clusters is typically implemented using external load balancing
communications devices. Roxie clusters can be sized as needed to meet query processing throughput and response
time requirements, but are typically smaller that Thor clusters.

The ECL Programming Language

The ECL programming language is a key factor in the flexibility and capabilities of the HPCC processing environment.
ECL was designed to be a transparent and implicitly parallel programming language for data-intensive applications. It
is a high-level, highly-optimized, data-centric declarative language that allows the programmer to define what the data
processing result should be and the dataflows and transformations that are necessary to achieve the result. Execution
is not determined by the order of the language statements, but from the sequence of dataflows and transformations
represented by the language statements. It combines data representation with algorithm implementation, and is the
fusion of both a query language and a parallel data processing language.

ECL uses an intuitive syntax which has taken cues from other familiar languages, supports modular code organization
with a high degree of reusability and extensibility, and supports high-productivity for programmers in terms of the amount
of code required for typical applications compared to traditional languages like Java and C++, a 20 times increase in
programmer productivity is typical.

ECL is compiled into optimized C++ code for execution on the HPCC system platform, and can be used for complex
data processing and analysis jobs on a Thor cluster or for comprehensive query and report processing on a Roxie cluster.
ECL allows inline C++ functions to be incorporated into ECL programs, and external programs in other languages can be

19 HPCC Systems: Introduction to HPCC

incorporated and parallelized through a PIPE facility. External services written in C++ and other languages which generate
DLLs can also be incorporated in the ECL system library, and ECL programs can access external Web services through a
standard SOAPCALL interface.

The basic unit of code for ECL is called an attribute. An attribute can contain a complete executable query or program, or
a shareable and reusable code fragment such as a function, record definition, dataset definition, macro, filter definition,
etc. Attributes can reference other attributes which in turn can reference other attributes so that ECL code can be
nested and combined as needed in a reusable manner. Attributes are stored in ECL code repository which is subdivided
into modules typically associated with a project or process. Each ECL attribute added to the repository effectively
extends the ECL language like adding a new word to a dictionary, and attributes can be reused as part of multiple ECL
queries and programs. With ECL a rich set of programming tools is provided including an IDE called QueryBuilder similar
to Visual C++, Eclipse and other interactive code development environments.

Figure 9 ECL Sample Syntax for JOIN operation.

The ECL language includes extensive capabilities for data definition, filtering, data management, and data
transformation, and provides an extensive set of built-in functions to operate on records in datasets which can include
user-defined transformation functions. Transform functions operate on a single record or a pair of records at a time
depending on the operation. Built-in transform operations in the ECL language which process through entire datasets
include PROJECT, ITERATE, ROLLUP, JOIN, COMBINE, FETCH, NORMALIZE, DENORMALIZE, and PROCESS. The
transform function defined for a JOIN operation for example receives two records, one from each dataset being joined,

	

20 HPCC Systems: Introduction to HPCC

and can perform any operations on the fields in the pair of records, and returns an output record which can be completely
different from either of the input records. Example syntax for the JOIN operation from the ECL Language Reference
Manual is shown in Figure 9.

The Thor system allows data transformation operations to be performed either locally on each node independently in
the cluster, or globally across all the nodes in a cluster, which can be user-specified in the ECL language. Some operations
such as PROJECT for example are inherently local operations on the part of a distributed file stored locally on a node.
Others such as SORT can be performed either locally or globally if needed. This is a significant difference from the
MapReduce architecture in which Map and Reduce operations are only performed locally on the input split assigned to
the task. A local SORT operation in an HPCC cluster would sort the records by the specified keys in the file part on the
local node, resulting in the records being in sorted order on the local node, but not in full file order spanning all nodes.
In contrast, a global SORT operation would result in the full distributed file being in sorted order by the specified key
spanning all nodes. This requires node to node data movement during the SORT operation. Figure 10 shows a sample
ECL program using the LOCAL mode of operation which is the equivalent of the sample PIG program for Hadoop shown
in Figure 4. Note the explicit programmer control over distribution of data across nodes. The colon-equals “:=”operator
in an ECL program is read as “is defined as”. The only action in this program is the OUTPUT statement, the other
statements are declarative definitions.

Figure 10 ECL Code Example.

An additional important capability provided in the ECL programming language is support for natural language processing
(NLP) with PATTERN statements and the built-in PARSE operation. PATTERN statements allow matching patterns
including regular expressions to be defined and used to parse information from unstructured data such as raw text.
PATTERN statements can be combined to implement complex parsing operations or complete grammars from BNF
definitions. The PARSE operation operates across a dataset of records on a specific field within a record, this field could
be an entire line in a text file for example. Using this capability of the ECL language is possible to implement parallel
processing form information extraction applications across document files including XML-based documents or Web
pages.

	

21 HPCC Systems: Introduction to HPCC

Key Benefits of ECL

The key benefits of ECL can be summarized as follows:

1.	ECL incorporates transparent and implicit data parallelism regardless of the size of the computing cluster and reduces
the complexity of parallel programming increasing the productivity of application developers.

2.	 ECL enables implementation of data-intensive applications with huge volumes of data previously thought to be
intractable or infeasible. ECL was specifically designed for manipulation of data and query processing. Orders of
magnitude performance increases over other approaches are possible.

3.	 ECL provides a more than 20 times productivity improvement for programmers over languages such as Java and C++.
The ECL compiler generates highly optimized C++ for execution.

4.	 ECL is a powerful, high-level, parallel programming language ideal for implementation of ETL, information retrieval,
information extraction, record linking and entity resolution, and many other data-intensive applications.

5.	 ECL is a mature and proven language but still evolving as new advancements in parallel processing and data-intensive
computing occur.

ECL also provides a comprehensive IDE and programming tools that provide a highly-interactive environment for rapid
development and implementation of ECL applications.

ECL Programming Example

Analysis of log data collected by Web servers, system servers, and other network devices such as routers and firewalls
is an important application for generating statistical information and reports on system and network utilization and
other types of analysis such as intrusion detection and misuse of network resources. Log data is usually collected in
unstructured text files which must be parsed using NLP to extract key information for reporting and analysis. This is
typical of many data processing applications which must process data in a raw form, extracting, transforming, and loading
the data for subsequent processing and is commonly referred to as ETL processing. The volume of log data generated
by a large network of system and network servers can be enormous and is representative of applications which require a
data-intensive computing solution like the LexisNexis HPCC platform.

Since log files from various system servers and networks devices can have varying formats, but a network generally
includes multiples of the same types of devices which use common log formats, a useful design approach is to generate
a function or macro for each type of device. The ECL programming language includes both functions and macros, and
a macro format was selected for this example. A macro in a programming language accepts parameters similar to a
function, and substitutes the parameter values to replace parts of the code generated by the macro, generating new
inline code each time it is referenced.

22 HPCC Systems: Introduction to HPCC

Figure 11 ECL Programming Example – Log File Analysis Macro

	

	

23 HPCC Systems: Introduction to HPCC

The example log file data contains lines of text which include a date, time, log source, message type, and additional log
information formatted as key value pairs. An ECL macro (MAC_Parse_DTSM_Keyval_Format) was implemented for this
specific type of log file format and is shown in Figure 11. The macro accepts parameters defining the input raw log file, the
output formatted log file, and an output error file which will contain lines from the raw log file data which had an invalid
format.

The steps used by the ECL macro shown in Figure 11 to process the raw log file data transforming the data to a formatted
output file are as follows:

1.	 The raw input log file (inlogfile) is projected to a new format which adds a sequential line number in a separate field to
each log line for reference in macro lines 5-13. Individual ECL statements are terminated by a semicolon character,
and whitespace can be used freely to improve readability of the code.

2.	 NLP patterns are defined using the ECL PATTERN statement to represent the data to be extracted from the raw log
lines in macro lines 15-20. Note references to other patterns such as Text.Date and Text.ISO_Time which are shared
pattern definitions stored in the Text module in the ECL repsository.

3.	 The output record format for parsed log lines is shown in macro lines 22-30 and include separate fields for the date,
time, log source, message type, and additional log information.

4.	 Parsing of the raw log data into the format described in step 3 is shown in macro line 33. This parse statement as well
as other ECL statements operate on the entire file. Each node in a Thor processing cluster operates on the part of
the file locally stored on the node.

5.	 The log_info field parsed in the operation described in step 4 includes additional key-value pairs. This information is
then parsed into a separate dataset in macro line 46, using pattern statements defined in macro lines 35-38, and the
output record definition defined in macro lines 40-44.

6.	 The final formatted output from the log file is designed to include the fields data, time, log source, and message type,
and a child dataset for each log line containing the key-value pairs extracted from the log_info field. This output
record format is defined in macro line 49 which references a separate ECL attribute containing the record definition
stored in the ECL repository in the Log_Analysis module named Layout_DTSM_Keyval which is shown in Figure 12.

7.	 The initially parsed log file from macro line 33 (log_init) is projected to the output format in lines 51-55. To complete
the output file, the key-value pairs for each log line generated in step 5 (keyvals_init) are added to the initialized
output file (log_out_init) using the ECL DENORMALIZE statement in macro lines 67-74. Both files are distributed
across the available nodes in the cluster by log line number so this operation can be performed locally. The key-value
pairs are sorted by the linenum and key fields and the final out put is sorted in order by the linenum field.

8.	 Lines which had invalid formats which failed to parse properly are identified and written to a separate dataset in lines
57-64 using the ECL JOIN operation to join the initial sequenced log file (log_seq) to the initial log data parse (log_init)
by the log line number (linenum). Lines which appear in the log_seq file and not in the log_init file are written to the
error dataset. This is facilitated by a unique ECL JOIN option LEFT ONLY which generates records which appear in
the left dataset of the join operation and not in the right dataset.

Figure 12 ECL Programming Example – Log File Output Format

	

24 HPCC Systems: Introduction to HPCC

	

The MAC_Parse_DTSM_Keyval_Format ECL macro can now be used to process any raw log file with the defined format.
An example of using this ECL macro is shown in Figure 13. This code can be executed from the QueryBuilder IDE as
an ECL job. The code includes a dataset definition of the raw input log file (lines 1-7), an output statement to dispaly a
sample of the raw log data (line 10), a MAC_Parse_DTSM_Keyval_Format macro call to process the raw log data (line 13),
an output statement to display a sample of invalid format raw log lines, and an output statement to display a sample of
the processed log data. Figure 14 shows the job execution graph for the example job. Figure 15 shows a sample of the raw
log file input data and the formatted log data output for the example job.

Figure 13 ECL Programming Example – Log File Analysis Job

25 HPCC Systems: Introduction to HPCC

Figure 14

26 HPCC Systems: Introduction to HPCC

	

Figure 15 ECL Programming Example – Log File Analysis Output

	

27 HPCC Systems: Introduction to HPCC

HPCC Middleware and System Servers

An HPCC configuration includes a number of system servers which provide a gateway from the Thor and Roxie clusters
to the outside world and also support services within an HPCC environment. These include the ECL Server, Dali Server,
Sasha Server, DFU Server, and ESP Server and are referred to as the HPCC middleware components which are shown in
Figure 8.

The ECL Server includes the ECL compiler and executable code generator, and functions as the job server for the Thor
job execution environment. The ECL compiler translates the source ECL statements into executable C++ code in the
form of dynamic link libraries (DLLs) that can be executed on Thor or Roxie clusters. When an ECL job (also referred to
as a workunit) is submitted for execution on a Thor cluster, it is first converted to executable code by the ECL Server. For
a Roxie cluster, this process occurs when a new ECL query is deployed and stored on a Roxie cluster which allows the
query to be compiled once, but then executed multiple times as queries are received. ECL Server is also accessed when
a syntax check is performed in the QueryBuilder IDE, and is responsible for starting an ECL Agent process whenever a job
is executed. Multiple ECL servers can be configured in an HPCC environment which will automatically be load balanced
to increase throughput.

The Dali Server functions as the system data store. It manages workunit data related to job execution, it maintains the
logical file directory for the DFS functioning as the nameserver, and provides shared object services for execution of
workunits. In addition it is used to configure the HPCC environment, maintain the message queues that implement job
execution and scheduling, and enforces the LDAP security restrictions for data files and workunit user scopes.

The Sasha server functions as a companion “housekeeping” server to the Dali server and works independently of all other
components and can be restarted without affecting current jobs in flight. Its main function is to reduce the stress and
resource utilization on the Dali server whenever possible, and archives job execution workunits and DFU workunits which
are stored in a series of folders, can be restored when needed, and can be manually moved to an alternate or off-site
location. The Sasha server performs additional housekeeping functions including removal of cached workunits and DFU
recovery files.

The DFU Server (distributed file utility) manages and controls the spraying and despraying operations that used to move
files to and from the DFS in a Thor cluster. For each DFU operation a workunit, similar to an ECL job workunit, is created
for managing and tracking the operation. DFU services can be accessed from the Querybuilder IDE or as part of a ECL job
using common service libraries, using the ECLWatch utility program, or the DFU command line interface program.

The ESP Server (Enterprise Service Platform) is a communications server and customizable framework that provides
communications interfaces and services to client applications and to the job execution and cluster environment.
Protocols supported by the ESP server include HTTP, SOAP, and proprietary protocols. Standard services include
WS_Attribute a SOAP interface to the ECL repository; WS_ECL which provides a form based Web interface to submit
an ECL job on a Thor Cluster or to access a deployed query on the on a Roxie cluster; and ECL_Watch, a Web-based
query execution, monitoring, and file management interface that can be accessed from QueryBuilder or directly from
a Web browser. Other ESP-based tools include RoxieConfig which provides a Web-interface for deploying managing
deployed queries to a Roxie cluster with the ability to add, delete, suspend, un-suspend, provide alias names for queries,
and provide access to statistics on executed queries. ESP can also include custom user-defined authentication, logging,
billing, and audit services.

Development Tools and User Interfaces

The HPCC platform includes a suite of development tools and utilities for data analysts, programmers, administrators,
and end-users. These include QueryBuilder, an integrated programming development environment (IDE) similar to
those available for other languages such as C++ and Java, which encompasses source code editing, source code version
control, access to the ECL source code repository, and the capability to execute and debug ECL programs. Figure 16
shows the Query Builder IDE application.

28 HPCC Systems: Introduction to HPCC

	

Figure 16 QueryBuilder IDE

QueryBuilder provides a full-featured Windows-based GUI for ECL program development and direct access to the ECL
repository source code. QueryBuilder allows you to create and edit ECL attributes which can be shared and reused in
multiple ECL programs or to enter an ECL query which can be submitted directly to a Thor cluster as an executable job
or deployed to a Roxie cluster. An ECL query can be self-contained or reference other sharable ECL code in the attribute
repository. QueryBuilder also allows you to utilize a large number of built-in ECL functions from included libraries
covering string handling, data manipulation, file handling, file spray and despray, superfile management, job monitoring,
cluster management, word handling, date processing, auditing, parsing support, phonetic (metaphone) support, and
workunit services.

ECLWatch is a Web-based utility which uses the ESP server to provide a set of tools for monitoring and managing HPCC
clusters which is shown in Figure 17. ECLWatch allows you see information about workunits including a graph displaying a
visual representation of the dataflows for the workunit complete with statistics which are updated as the job progresses.
The graph is interactive and you can drill down on nodes and connectors to see more detailed information and statistics.
This information is retained in the workunit even after the job has completed so it can be reviewed and analyzed. An
example of an ECL execution graph corresponding to the code example in Figure 10 is shown in Figure 18. In addition
with ECLWatch, you can monitor cluster activity, browse through or search for previously submitted workunits, use
DFU functions to search for files and see information including record counts and layouts and display data from the file,
spray and despray files from available landing zones to and from clusters, check the status of all system servers, view log
files, change job priorities, and much more. Figure 17 shows an example of the ECLWatch Web-interface for the HPCC
environment.

29 HPCC Systems: Introduction to HPCC

	

Figure 17 ECLWatch Web-based Utility

The HPCC platform also provides an Attribute Migration Tool (AMT) which allows ECL source code to be copied from one
ECL repository to another. For example, in most HPCC configurations there are separate development and production
environments. AMT allows newly developed ECL attributes to be migrated from development to production in a
controlled manner.

30 HPCC Systems: Introduction to HPCC

Figure 18

The HPCC platform also includes command line programs which can be used from the Windows command prompt
or called from other programs. The ECLPlus application can access the ECL repository and accepts command line
parameters to access the ECL repository and initiate ECL job execution. Commands can be typed directly on the
command line, read from a batch file, initiated using an INI file, or any combination. The DFUPlus application accepts
command line parameters or reads batch files to initiate distributed file utility functions such as spraying or despraying
of files to and from clusters. A version of the AMT program is also provided in a command line interface version called
AMTPlus. In addition, a command line version of the Roxie configuration utility RoxieConfig provided in the ESP services
as a Web interface is available.

31 HPCC Systems: Introduction to HPCC

Using a Thor Cluster

As described earlier, the Thor cluster is used as a data refinery whose overall purpose is the general processing of massive
volumes of raw data of any type for any purpose but typically used for data cleansing and hygiene, ETL processing of
the raw data, record linking and entity resolution, large-scale ad-hoc complex analytics, and creation of keyed data and
indexes to support high-performance structured queries and data warehouse applications. A Thor cluster includes a
master node, and as many slave nodes as needed to satisfy the processing, data storage, and throughput requirements
for a specific HPCC installation. For example, a training cluster might have only a few nodes, a Thor cluster for a small
organization might have 20 nodes, and a Thor cluster for large organizations with terabytes of data to be processed
might have hundreds of nodes. Multiple Thor clusters can be included in an HPCC environment and share the distributed
filesystem storage available on each cluster and job scheduling and processing requirements.

Each Thor cluster also includes a distributed filesystem (DFS2), and each node of a Thor cluster is a data node in the
file system as well as a job execution node for the parallel processing environment. Data is initially loaded to the Thor
DFS using a process called spraying, in which data from a landing zone for external files is copied to the Thor cluster so
that each node receives a segment of the file, initially divided as equally among the nodes as possible depending on the
logical record structure of the file so that logical records are not split across nodes. Files in the DFS can be redistributed
as needed during a processing sequence using the ECL programming language. For example, the logical records in a
file can be distributed so that all the records with matching key fields are placed on the same node which insures that
subsequent data processing operations such as project, sort, and join for matching records are localized to the node, and
no additional inter-node movement of data is needed accomplishing the goal of data parallel operation and maximizing
performance.

ETL (extract, transform, load) to process or refine raw data for some other purpose is a typical application performed on
a Thor cluster. This type of application can be coded in ECL to execute as a single job on the Thor cluster encompassing
may separate processing steps. This allows the ECL compiler to optimize the full processing sequence instead of
just a single step. The Extract process may include projecting of source data fields to common record layouts used
in the data; splitting or combining multiple source files, records, and fields to match the required layout; cleansing
and standardization of data fields which will be used for searching such as name, address, identifiers, dates, etc.; and
statistical and other types of analysis of the data to assess quality or to derive new information to be appended to
the processed records. The Transform process can include combining multiple records into one (denormalize), or
splitting single records into multiple or parent and child records (normalize); translation of codes into descriptions
or vice-versa; standardizing names and addresses into separate parts in individual fields; validating and reformatting
date fields; resolving and appending internal identifiers to people, businesses, and other entities, in order to link them
across datasets; adding new records to an existing dataset, replacing or updating matching existing records; removing
duplicates (dedup) or combining information with existing data (rollup); and linking or clustering records to each other
if applicable. The Load Process includes building indexes or other data structures for use on a separate system such as
a data warehouse or other independent query platform, an online analytical processing (OLAP) system, or a business
intelligence system (BIS). In an HPCC environment, indexes are built which are subsequently deployed to a Roxie cluster
to support online queries. Roxie indexes can contain both the searchable fields and other data fields from the base data
referred to as the payload to improve query performance.

In summary, the steps for a typical process on a Thor cluster from spray to delivery of information are (1) spray the raw
data to be processed to the Thor cluster, i.e. load the data to the Thor DFS; (2) perform the ETL process described
previously to clean, standardize, and transform the data for its intended purpose updating any internal base files on
the Thor cluster and building index files to be used with online queries developed for a Roxie cluster; (3) deploy the
transformed data to the delivery system such as a Roxie cluster, or despray the data to a landing zone for transfer to
an external system such as a traditional RDBMS, data warehouse, or other system platform. The transformed data can
also be left on the Thor cluster to support additional entity resolution or complex ad-hoc analytical processing on large
datasets.

2) Each node in a Thor system serves an important dual-purpose, as a processing node for job execution, and as data storage for the DFS which can be
accessed by processing nodes and other clusters.

32 HPCC Systems: Introduction to HPCC

Using a Roxie Cluster

As described previously, the Roxie cluster is designed as an online high-performance structured query and analysis
engine or data warehouse supporting thousands of simultaneous queries and users with sub-second response times
through Web services interfaces. The Roxie cluster uses a distributed indexed file system3 and structured query
programs written in the same ECL programming language used with Thor clusters. Query programs in ECL are pre-
compiled and deployed to a Roxie cluster to facilitate high-performance execution, fast response times, and reusability.
When a query is deployed to a Roxie cluster, the supporting data and index files are loaded into the Roxie distributed
indexed file system which is independent from the DFS on the Thor cluster. Roxie clusters are designed to have high
availability, data is redundantly stored on two or more nodes, and Roxie continues to operate seamlessly even if one or
more nodes fail. Additional redundancy can be provided by including multiple Roxie clusters in an HPCC environment.

Roxie clusters are typically used for searching and other types of information retrieval and analysis applications using
index files previously built on a Thor cluster. Multi-threading is used for efficient parallel multi-user retrieval of data. The
Roxie distributed file system supports sophisticated multi-field index structures that can support range of value indices,
phonetic keys, compound (multivariate keys), keys with data built from multiple data files, and keys that support full text
ranked Boolean searches. Indexes can be specified to be memory-based to further support high-performance lookup or
in cases where full scans are required.

Roxie query requests can be submitted from a client application as a SOAP call, HTTP or HTTPS protocol request from a
Web application, or through a direct socket connection. Each Roxie query request is associated with a specific deployed
ECL query program. Roxie queries can also be executed from programs running on Thor clusters. Queries can access
data files and index files referred to in the ECL code. Files can be accessed from a remote location which can be another
Thor or Roxie cluster, by copying the files to the nodes of the local Roxie cluster when queries are deployed, and by using
a remote copy until the local copy is complete.

A Roxie cluster uses the concept of Servers and Agents. Each node in a Roxie cluster runs Server and Agent processes
which are configurable by a System Administrator depending on the processing requirements for the cluster. A Server
process waits for a query request from a Web services interface then determines the nodes and associated Agent
processes that have the data locally that is needed for a query, or portion of the query. The Roxie Server process that
receives the request owns the processing of the ECL program for the query until it is completed. The Server sends
portions of the query job to the nodes in the cluster and Agent processes which have data needed for the query stored
locally as needed, and waits for results. When a Server receives all the results needed from all nodes, it collates them,
performs any additional processing, and then returns the result set to the client requestor.

The performance of query processing varies depending on factors such as machine speed, data complexity, number
of nodes, and the nature of the query, but production results have shown throughput of a thousand results a second or
more. Roxie clusters have flexible data storage options with indexes and data stored locally on the cluster, as well as being
able to use indexes stored remotely in the same environment on a Thor cluster. The Roxie cluster provides automatic
failover in case of node failure, and the cluster will continue to perform even if one or more nodes are down.

Thor and Roxie Together: A Complete Solution

LexisNexis developers recognized that to meet all the requirements of data-intensive computing two distinct computing
platforms were needed, one for processing large volumes of raw data which could also support complex ad-hoc
analytical applications, and another to function as a high-performance search and structured query processing engine
that could support thousands of users with sub-second access to information. LexisNexis also recognized the need for
a new data-centric programming language for parallel data processing to significantly enhance programmer productivity
and reduce programming complexity for parallel applications. The result was the HPCC platform, which integrates Thor

3) The Roxie filesystem stores both indexes and data distributed across the nodes of the cluster to facilitate parallel high-performance online query
processing.

33 HPCC Systems: Introduction to HPCC

and Roxie clusters and the ECL programming language in a powerful, flexible, and easy to implement and use high-
performance cluster computing environment. (Note: a Roxie is not required in an HPCC environment which can contain
only Thor clusters, however to use a Roxie cluster, a Thor system is required for building and deploying index files to the
Roxie cluster).

The high-level of integration in the HPCC platform provides a distinct advantage over competing technology such
as Hadoop which utilizes the MapReduce processing approach and bolt-on systems to provide a complete parallel
processing solution. This is evident in the significantly better performance of the HPCC platform based on standard
benchmark results using the same hardware platform. This performance advantage results because Thor and Roxie
clusters and their filesystems are each individually optimized for their specific parallel processing purpose, and ECL
batch job execution and online query execution are optimized as a whole process end-to-end, instead of sequencing or
chaining individual MapReduce steps. The power, flexibility, advanced capabilities, speed of development, and ease of
use of the ECL programming language and seamless integration across HPCC systems is also an important distinguishing
factor between the LexisNexis HPCC platform and other data-intensive computing solutions. The HPCC platform
provides a complete high-performance integrated parallel processing solution from raw data to useful information.

HPCC Performance
A standard benchmark available for data-intensive computing platforms is the Terasort benchmark managed by
an industry group led by Microsoft and HP. This permits head-to-head system performance benchmarking using a
standard workload or set of application programs designed to test the parallel data processing capabilities of a system.
The Terabyte sort has since evolved to be the GraySort which measures the number of terabytes per minute that can
be sorted on a platform which allows clusters with any number of nodes to be utilized. However, in comparing the
effectiveness and equivalent cost/performance of various systems, it is useful to run benchmarks on identical system
hardware configurations. A head-to-head comparison of the HPCC platform to Hadoop using the original Terabyte sort
on a 400-node cluster is presented here.

Terabyte Sort Benchmark.

The Terabyte sort benchmark has its roots in benchmark tests sorting conducted on computer systems since the 1980s.
More recently, a Web site originally sponsored by Microsoft has conducted formal competitions each year with the
results presented at the SIGMOD (Special Interest Group for Management of Data) conference sponsored by the ACM
each year (http://sortbenchmark.org). Several categories for sorting on systems exist including the original Terabyte
sort which was to measure how fast a file of 1 Terabyte of data formatted in 100 byte records (10,000,000 total records)
could be sorted. Two categories were allowed: Daytona (a standard commercial computer system and software with no
modifications) and Indy (a custom computer system with any type of modification). No restrictions exist on the size of
the system so the sorting benchmark could be conducted on as large a system as desired. The 2009 record holder for
the Daytona category is Yahoo! using a Hadoop configuration with 1460 nodes with 8GB Ram per node, 8000 Map tasks,
and 2700 Reduce tasks which sorted 1 TB in 62 seconds. In 2008 using 910 nodes, Yahoo! performed the benchmark
in 3 minutes 29 seconds. In 2008, LexisNexis using the HPCC architecture on only a 400-node system performed
the Terabyte sort benchmark in 3 minutes 6 seconds. In 2009, LexisNexis again using only a 400-node configuration
performed the Terabyte sort benchmark in 102 seconds.

However, a fair and more logical comparison of the capability of data-intensive computer system and software
architectures using computing clusters would be to conduct this benchmark with competitive systems on the same
hardware configuration. Other factors should also be evaluated such as the amount of code required to perform the
benchmark which provides a strong indication of programmer productivity, and is a significant performance factor in the
implementation of parallel computing applications.

34 HPCC Systems: Introduction to HPCC

Figure 19 Hadoop Terabyte Sort Benchmark Results.

Figure 20 HPCC Terabyte Sort Benchmark Results.

On August 8, 2009 a Terabyte Sort benchmark test was conducted on a development configuration located at
LexisNexis Risk Solutions offices in Boca Raton, FL in conjunction with and verified by Lawrence Livermore National Labs
(LLNL). The test cluster included 400 processing nodes each with two local 300MB SCSI disk drives, Intel Xeon single
core processors running at 3.00 GHz, 4GB memory per node, all connected to a single Gigabit ethernet switch with 1.4
Terabytes/sec throughput. Hadoop Release 0.19 was deployed to the cluster and the standard Terasort benchmark
written in Java included with the release was used for the benchmark. Hadoop required 6 minutes 45 seconds to create
the test data, and the Terasort benchmark required a total of 25 minutes 28 seconds to complete the sorting test as
shown in Figure 19. The HPCC system software deployed to the same platform and using standard ECL required 2
minutes and 35 seconds to create the test data, and a total of 6 minutes and 27 seconds to complete the sorting test as
shown in Figure 20. Thus the Hadoop implementation using Java running on the same hardware configuration took 3.95
times longer than the HPCC implementation using ECL.

	

	

35 HPCC Systems: Introduction to HPCC

The Hadoop version of the benchmark used hand-tuned Java code including custom TeraSort, TeraInputFormat and
TeraOutputFormat classes with a total of 562 lines of code required for the sort. The HPCC system required only 10 lines
of ECL code for the sort, a 50-times reduction in the amount of code required.

Conclusions
As a result of the continuing information explosion, many organizations are experiencing a significant “data gap” or
inability to process this information and use it effectively. High-performance data-intensive computing with commodity
computing clusters represents a new approach which can address the data gap and allow government and commercial
organizations and research environments to process massive amounts of data and implement new applications
previously thought to be impractical or infeasible. Technology solutions such as Hadoop MapReduce and the HPCC
platform from LexisNexis are now available which offer data parallel processing capability on low-cost commodity
computing clusters.

The suitability of a processing platform and architecture for an organization and its application requirements can only
be determined after careful evaluation of available alternatives. Many organizations have embraced open source
platforms such as Hadoop while others prefer a commercially developed and supported platform by an established
industry leader. The Hadoop MapReduce platform is being used successfully at many Web companies whose data
encompasses massive amounts of Web information as its data source. The LexisNexis HPCC platform is at the heart of a
premier information services provider and industry leader, and has been adopted by government agencies, commercial
organizations, and National Research Laboratories because of its higher-performance cost-effective implementation.
Existing HPCC applications include raw data processing, ETL, linking of enormous amounts of data to support online
information services such as LexisNexis and industry-leading information search applications such as Accurint®; entity
extraction and resolution of unstructured and semi-structured data such as Web documents; statistical analysis of Web
logs for security applications such as intrusion detection; online analytical processing to support business intelligence
systems; and data analysis of massive datasets in educational and research environments and by state and federal
government agencies. There are many tradeoffs in making the right decision in choosing a new computer systems
architecture, and often the best approach is to conduct a specific benchmark test with a customer application to
determine the overall system effectiveness and performance. The relative cost-performance characteristics of the
system in additional to suitability, flexibility, scalability, footprint, and power consumption factors which impact the total
cost of ownership (TCO) must be considered.

A performance comparison of the Hadoop MapReduce and the HPCC platform using the Terabyte sort benchmark in
this paper reveals a significant performance advantage for the HPCC platform on identical hardware configurations.
Other advantages of selecting the LexisNexis HPCC platform for data-intensive computing include: (1) a highly integrated
system environment with capabilities from raw data processing to high-performance queries and data analysis using
a common language; (2) a cluster approach which provides high performance at a much lower system cost than other
system alternatives resulting in significantly lower total cost of ownership (TCO); (3) a stable and reliable processing
environment proven in production applications for varied organizations over a 10-year period; (4) an innovative data-
centric programming language (ECL) with extensive built-in capabilities for data-parallel processing, significantly
increasing programmer productivity for application development, which automatically optimizes execution graphs with
hundreds of processing steps into single efficient workunits; (5) a high-level of fault resilience and capabilities which
reduce the need for re-processing in case of system failures; (6) suitability for a wide range of data-intensive applications
from large volume ETL processing to support databases, data warehouses, and high volume online applications to
network security analysis of massive amounts of log information; and (7) available from and supported by a well-known
leader in information services and “large data” solutions (LexisNexis) which is part of one of the world’s largest publishers
of information – ReedElsevier.

36 HPCC Systems: Introduction to HPCC

Glossary

AMT	 Attribute Migration Tool. Allows ECL source code to be copied from one ECL repository
to another within HPCC system environments.

BORPS	 Billions of records per second. A term invented by LexisNexis to describe the processing
capabilities of its HPCC platform.

Computing Cluster	 A group of shared individual computers, linked by high-speed communications in
a local area network topology using technology such as gigabit network switches,
and incorporating system software which provides an integrated parallel processing
environment for applications with the capability to divide processing among the nodes in
the cluster.

COTS	 Commodity off the shelf. Used to describe commodity hardware (personal computers,
disks, network) that can be purchased from multiple sources.

Dali Server	 Functions as the system data store in the HPCC system environment. Manages workunit
data related to job execution, maintains the logical file directory for the distributed file
system, and provides shared object services for execution of workunits.

DAS	 Data Analytic Supercomputer. An alternate name for the HPCC Platform.

Data-Intensive Computing	 Used to describe computing applications that are I/O bound or with a need to process
large volumes of data. Such applications devote most of their processing time to I/O and
movement of data.

Data parallel	 A parallel processing approach where computation is applied independently to each data
item of a set of data which allows the degree of parallelism to be scaled with the volume
of data.

DFU Server	 Distributed File Utility. A server in the HPCC system environment that manages and
controls the spraying and despraying operations that used to move files to and from the
DFS in a Thor cluster and other DFS operations.

ECL	 Enterprise Data Control Language. A high-level parallel programming language used on
the HPCC platform for data-intensive computing applications.

ECL Server	 Includes the ECL compiler and executable code generator, and functions as the job
server for Thor job execution in the HPCC system environment. The ECL compiler
translates the source ECL statements into executable C++ code in the form of dynamic
link libraries (DLLs) that can be executed on Thor or Roxie clusters

ECLWatch	 A Web-based utility which uses the ESP server to provide a set of tools for monitoring
and managing HPCC clusters. ECLWatch allows you see information about workunits
including a graph displaying a visual representation of the dataflows for the workunit
complete with statistics which are updated as the job progresses.

ESP Server	 Enterprise Service Platform. A communications server and customizable framework in
the HPCC system environment that provides communications interfaces and services
to client applications and to the job execution and cluster environment. Protocols
supported by the ESP server include HTTP, SOAP, and proprietary protocols.

ETL	 Extract, transform, load. An industry standard acronym for the process of reading data
from an external file, cleansing and converting the data into the form it needs to be, and
loading the data into an internal database.

37 HPCC Systems: Introduction to HPCC

Hadoop	 An open source software project initiated to create an open source implementation of
the MapReduce architecture

HPC	 High-Performance Computing. Describes computing environments which utilize
supercomputers and computer clusters to address complex computational
requirements, support applications with significant processing time requirements, or
require processing of significant amounts of data

HPCC	 High-Performance Computing Cluster. The LexisNexis data-intensive computing
platform.

MapReduce	 A programming model that allows group aggregations in parallel over a cluster of
machines. Programmers provide a Map function that processes input data and groups
the data according to a key-value pair, and a Reduce function that performs aggregation
by key-value on the output of the Map function.

 NLP	 Natural Language Processing. Processing of natural language in machine-readable form
such as text by a computer system for a wide variety of applications.

QueryBuilder	 An interactive development environment (IDE) for the ECL programming language.
Provides a full-featured GUI for ECL program development and direct access to the ECL
repository source code

ROXIE	 The rapid data delivery system for online query processing in the HPCC platform.
Acronym for Rapid Online XML Inquiry Engine.

Sasha Server	 A companion “housekeeping” server to the Dali server in the HPCC system environment.
Archives job execution workunits and DFU workunits which are stored in a series of
folders, which can be restored when needed, and can be manually moved to an alternate
or off-site location. Provides additional housekeeping functions including removal of
cached workunits and DFU recovery files.

Seisint	 Refers to Seisint, Inc., the original developer of the HPCC data supercomputer technology
which was acquired by LexisNexis in 2004.

THOR	 The data refinery system in the HPCC platform. A batch job processing environment
used for ETL and other data-intensive computing applications.

Workunit	 A job in the HPPC environment. Encapsulates all information related to a job. For ECL
job execution, includes input file information, results, timings, graphs, and ECL code and
helper files including the C++ code generated and system logs for the job.

XML	 Extensible Markup Language. An industry open standard for describing and formatting
data. Provides a flexible way to create common information formats and share both the
format and the data on the Web.

38 HPCC Systems: Introduction to HPCC

References

1.	 J. Dean, and S. Ghemawat, “MapReduce: A Flexible Data Processing Tool,” Communications of the ACM, Vol. 53, No.
1, 2010, pp. 72-77.

2.	 R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. “SCOPE: Easy and Efficient Parallel
Processing of Massive Data Sets,” Proceedings of the VLDB Endowment, 2008.

3.	 M. Stonebraker, D. Abadi, D.J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin, “MapReduce and Parallel DBMSs:
Friends or Foes?” Communications of the ACM, Vol. 53, No. 1, 2010, pp. 64-71.

4.	 J. Dean, and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters,” Proceedings of the Sixth
Symposium on Operating System Design and Implementation (OSDI), 2004.

5.	 J. Venner, “Pro Hadoop,” Apress, 2009.

6.	 T. White, “Hadoop: The Definitive Guide,” O’Reilly Media Inc., 2009.

7.	 R. Grossman, and Y. Gu. “Data Mining Using High Performance Data Clouds: Experimental Studies Using Sector and
Sphere,” Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2008.

8.	 K. Dowd, and C. Severance, “High Performance Computing,” O’Reilly and Associates, Inc., 1998.

9.	 R. Buyya, “High Performance Cluster Computing,” Prentice Hall, 1999.

10.	 L.S. Nyland, J.F. Prins, A. Goldberg, and P.H. Mills, “A Design Methodology for Data-Parallel Applications,” IEEE
Transactions on Software Engineering, Vol. 26, No. 4, 2000, pp. 293-314.

11.	 D. Ravichandran, P. Pantel, and E. Hovy. “The Terascale Challenge,” Proceedings of the KDD Workshop on Mining for
and from the Semantic Web, 2004.

12.	 O. O’Malley. “Introduction to Hadoop,” 2008, Available from: http://wiki.apache.org/hadoop-data/attachments/
HadoopPresentations/attachments/YahooHadoopIntro-apachecon-us-2008.pdf.

13.	 C. Bookman, “Linux Clustering: Building and Maintaining Linux Clusters,” New Riders Publishing, 2003.

14.	 J.D. Sloan, “High Performance Linux Clusters,” O’Reilly Media Inc., 2005.

15.	 I. Gorton, P. Greenfield, A. Szalay, and R. Williams, “Data-Intensive Computing in the 21st Century,” IEEE Computer,
Vol. 41, No. 4, 2008, pp. 30-32.

16.	 W.E. Johnston, “High-Speed, Wide Area, Data Intensive Computing: A Ten Year Retrospective,” IEEE Computer
Society, 1998.

17.	 M. Gokhale, J. Cohen, A. Yoo, and W.M. Miller, “Hardware Technologies for High-Performance Data-Intensive
Computing,” IEEE Computer, Vol. 41, No. 4, 2008, pp. 60-68.

18.	 R.E. Bryant. “Data Intensive Scalable Computing,” 2008, Available from: http://www.cs.cmu.edu/~bryant/
presentations/DISC-concept.ppt.

19.	 A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. Dewitt, S. Madden, and M. Stonebraker. “A Comparison of Approaches
to Large-Scale Data Analysis,” Proceedings of the 35th SIGMOD international conference on Management of data,
2009.

20.	 J.F. Gantz, D. Reinsel, C. Chute, W. Schlichting, J. McArthur, S. Minton, J. Xheneti, A. Toncheva, and A. Manfrediz, “The
Expanding Digital Universe,” IDC, White Paper, 2007.

21.	 S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google File System,” Proceedings of the 19th ACM Symposium on
Operating Systems Principles, 2003.

39 HPCC Systems: Introduction to HPCC

22.	 R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the Data: Parallel Analysis with Sawzall,” Scientific
Programming Journal, Vol. 13, No. 4, 2004, pp. 227-298.

23.	 T. White. “Understanding MapReduce with Hadoop,” 2008, Available from: http://wiki.apache.org/hadoop-data/
attachments/HadoopPresentations/attachments/MapReduce-SPA2008.pdf.

24.	 D. Borthakur. “Hadoop Distributed File System,” 2008, Available from: http://wiki.apache.org/hadoop-data/
attachments/HadoopPresentations/attachments/hdfs_dhruba.pdf.

25.	 C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. “Pig Latin: A Not-So-Foreign Language for Data
Processing (Presentation at SIGMOD 2008),” 2008, Available from: http://i.stanford.edu/~usriv/talks/sigmod08-
pig-latin.ppt#283,18,User-Code as a First-Class Citizen.

26.	 A.F. Gates, O. Natkovich, S. Chopra, P. Kamath, S.M. Narayanamurthy, C. Olston, B. Reed, S. Srinivasan, and U.
Srivastava. “Building a High-Level Dataflow System on top of Map-Reduce: The Pig Experience,” Proceedings of the
35th International Conference on Very Large Databases (VLDB 2009), 2009.

27.	 C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. “Pig Latin: A Not-So_Foreign Language for Data
Processing,” Proceedings of the 28th ACM SIGMOD/PODS International Conference on Management of Data /
Principles of Database Systems, 2008.

28.	 F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R.E. Gruber.
“Bigtable: A Distributed Storage System for Structured Data,” Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI ‘06), 2006.

29.	 A.M. Middleton, “Data-Intensive Computing Solutions,” LexisNexis, Whitepaper, 2009.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license. Other products and services may be trademarks or
registered trademarks of their respective companies. Copyright © 2011 LexisNexis Risk Solutions. All rights reserved.

For more information:
Website: http://hpccsystems.com/
Email: info@hpccsystems.com
US inquiries: 1.877.316.9669
International inquiries: 1.678.694.2200

About HPCC Systems
HPCC Systems from LexisNexis® Risk Solutions offers a proven, data-intensive supercomputing platform designed for the enterprise to solve big data
problems. As an alternative to Hadoop, HPCC Systems offers a consistent data-centric programming language, two processing platforms and a single
architecture for efficient processing. Customers, such as financial institutions, insurance carriers, insurance companies, law enforcement agencies,
federal government and other enterprise-class organizations leverage the HPCC Systems technology through LexisNexis® products and services. For
more information, visit http://hpccsystems.com.

About LexisNexis Risk Solutions
LexisNexis® Risk Solutions (http://lexisnexis.com/risk/) is a leader in providing essential information that helps customers across all industries and
government predict, assess and manage risk. Combining cutting-edge technology, unique data and advanced scoring analytics, Risk Solutions
provides products and services that address evolving client needs in the risk sector while upholding the highest standards of security and privacy.
LexisNexis Risk Solutions is headquartered in Alpharetta, Georgia, United States.

