

HPCC Systems:
Big Data NLP with HPCC Systems –

A Development Ride from Spray to THOR to ROXIE
Bob Foreman – Senior Software Engineer/ECL Instructor

Twitter:
#HPCCMeetup

WHT/082311

 HPCC Systems Platform Overview
 Getting Started
 Installations
 Data Acquisition
 Data Definition

 Parsing Semi-Structured Data
 Parsing Unstructured Data
 Post-Processing Parse Results
 Creating a Delivery Service

2

Welcome!

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

 Familiarity with the HPCC Systems Platform
 Familiarity with the ECL (Enterprise Control Language)

Programming tools:
 ECL IDE
 ECL Watch

 Familiarity with Basic ECL Concepts and Syntax
 Familiarity with ECL’s Parsing Technology

3

 Primary Goals of this Meetup

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

 Quick Demo:
 Parsing Free Form Text (BWR_QuickDemo)

 Search Service
 Search the Bible for matching words

4

Where We’re Going!

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

 It was NOT developed with the idea of selling the
technology to anybody else!

 It was all created only to solve some of the data-
handling problems that we encountered as we were
developing our products.

5

Why Does HPCC Systems Exist?

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

HPCC Systems
A single, fully-integrated platform supporting the entire
life cycle of Big Data product development:
 Raw Data Ingest – Thor
 Data Transformation to Product – Thor
 End-user Query Development – Thor
 End-user Query Delivery – Roxie

6

The Result Of All That Development?

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

 The Complete Big Data Value Chain

Collection – collecting structured, unstructured and semi-structured data

Ingestion – consuming vast amounts of data including extraction, transforming and loading

Discovery & Cleansing - clean up, formatting and statistical analysis of the data

Integration – linking, indexing and data fusion

Analysis – statistics and machine learning

Delivery – querying, visualization, and redundancy, enterprise-class availability

7 #HPCCMeetup A Development Ride from Spray to THOR to ROXIE

Collection Ingestion Discovery &
Cleansing Integration Analysis Delivery

WHT/082311

There are two types of clusters in HPCC Systems:
Data Refinery (THOR) – Processes every one of billions of
records in order to create billions of "improved" records –
runs one job at a time.
Rapid Data Delivery Engine (ROXIE) – Searches quickly
for a particular record or set of records – handles
thousands of concurrent transactions per second.
These are tightly coupled to the infrastructure that
supports their operation, and the ECL programming
language that defines the work done on them

8

HPCC Systems Platform

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

Clusters of commercial off-the-shelf components (COTS). Components are
ideally homogeneous (all processing/disk storage components same) and the
system is tightly coupled.
Nodes are managed en masse instead of individually, which allows coordinated
processing like global sorts (unlike Grid systems).

9

HPCC Systems Hardware

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

 Brute force: Thor operates on massive amounts of data where datasets
typically contain billions of records

 Open Data Model: The data model is defined by the user, not constrained
by the limitations of a strict key-value paradigm

 Scalable: Horizontally linear scalability provides room to accommodate
future data and performance growth

 Truly parallel: Datagraph Nodes can be processed in parallel as data
seamlessly flows through them, effectively avoiding the well-known “long
tail problem”, resulting in higher and predictable performance.

 Powerful optimizer: The HPCC Systems optimizer ensures submitted ECL
code executes at the maximum possible speed for the underlying hardware.
Advanced techniques such as lazy execution and code reordering are
thoroughly utilized to maximize performance

10 #HPCCMeetup A Development Ride from Spray to THOR to ROXIE

Thor Cluster

WHT/082311

 Low latency: Data queries typically complete sub-second
 Not a key-value store: Roxie is not limited by the constraints of key-value

data stores, allowing for complex queries, multi-key retrieval, fuzzy matching
and more

 Highly available: Roxie operates in critical environments under the most
rigorous service level requirements

 Scalable: Horizontally linear scalability provides room to accommodate
future data and performance growth

 Highly concurrent: In a typical environment, thousands of concurrent clients
can be simultaneously executing transactions on the same Roxie system

 Redundant: A shared-nothing architecture with no single point of failure
provides extreme fault tolerance

11 #HPCCMeetup A Development Ride from Spray to THOR to ROXIE

Roxie Cluster

WHT/082311

 Batteries included: All components create a consistent and homogeneous
platform

 Over 15 years of experience: The HPCC Systems platform is the technology
underpinning LexisNexis data offerings – its development began in 1999

 Few moving parts: HPCC Systems is an integrated solution extending across
the entire data lifecycle, from data ingest and transformation to data
delivery – no third party tools needed

 Multiple data formats: Supported out of the box, including fixed and
variable length, delimited records, and XML

 ECL inside: One language to describe both: the data transformations in Thor
and data delivery strategies in Roxie. Solutions to complex data problems
are expressed easily and directly in terms of high level ECL primitives.

 Consistent tools: Thor and Roxie share the same set of tools, which provides
consistency across the platform.

12 #HPCCMeetup A Development Ride from Spray to THOR to ROXIE

HPCC Systems Platform

WHT/082311

 Open Data Model: The data model is defined by the
user, as standard files and fields (tables and columns)

 Simple: Solutions to complex data problems can be
expressed easily and directly in terms of high level ECL
primitives

 Implicitly parallel: Data is always in distributed
datasets whose parts are managed by the DFU,
eliminating the need for programmers to manage the
complexity of working with distributed datasets

13 #HPCCMeetup A Development Ride from Spray to THOR to ROXIE

Data on HPCC Systems

WHT/082311

 Data is stored in ISAM Files
 Native support for:
 Flat files, with fixed or variable-length records
 CSV-type files (any delimiters may be used)
 XML datasets
 New JSON format support

 Each Record is always whole and complete on a single
node

 A Record may have as many fields as needed
 Indexes are always LZW compressed and may contain

“payload” fields in addition to search terms
14 #HPCCMeetup A Development Ride from Spray to THOR to ROXIE

Data on HPCC Systems

WHT/082311

 Declarative programming language:
“Describes what needs to be done, not how to do it”

 Powerful: Unlike Java, high level primitives such as JOIN, TRANSFORM,
PROJECT, SORT, DISTRIBUTE, MAP, etc. are available. Higher level code
means fewer programmers and shorter time to deliver complete projects

 Extensible: As new definitions are created, they become primitives that
other programmers can use

 Implicitly parallel: Parallelism is built into the underlying platform. The
programmer need not be concerned with it

 Maintainable: A High level programming language, no side effects and
definition encapsulation provide for more succinct, reliable and easier to
troubleshoot code

 Complete: Unlike Pig and Hive, ECL provides for a complete programming
paradigm.

 Homogeneous: One language to express data algorithms across the entire
HPCC Systems platform, including data ETL and delivery.

15 #HPCCMeetup A Development Ride from Spray to THOR to ROXIE

What is ECL?

WHT/082311

 Install:

1. Oracle’s VirtualBox:

https://www.virtualbox.org/wiki/Downloads

2. ECL IDE:
https://hpccsystems.com/download/developer-tools/ecl-ide

16

Getting Started

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

https://www.virtualbox.org/wiki/Downloads

WHT/082311

 Run:
1. Launch your VM player.

2. Import the HPCC Virtual Machine .ova file:

http://hpccsystems.com/download/hpcc-vm-image

3. Note the IP next to the IP Address: prompt at the top
of the VM.

This IP address is the key to allowing the HPCC Systems
client tools to access the environment.

17

Getting Started

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

http://hpccsystems.com/download/hpcc-vm-image

WHT/082311

 Run:
3. Open a browser and go to the ECL Watch page URL

referenced in the paragraph following the IP Address.

This web page is a key resource to have open while
working with HPCC Systems. ECL Watch allows you to
monitor the health of the environment, browse your
datasets and workunits, and most importantly, to get
data into and out of the HPCC Systems environment.

18

Getting Started

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

 Run:
4. Open the ECLIDE.exe application and:

1. In the Preferences dialog, enter the previously noted IP
(only) into the Server entry control.

2. Go to the Compiler tab and press the Add button below the
ECL Folders list.

3. Select your target ECL folder(s) and press OK.
4. Press OK to get back to the Login dialog,
5. Press OK to login.

19

Getting Started

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Task-switch to the ECL Watch page in your browser
2. Click the Landing Zones link in the Files section of the

main ECL Watch menu
3. Press the Upload option and select the actresses.list

file from your storage location.
4. In addition, select the KJV.txt file from your storage

location.
5. Press the Start button from the Uploader dialog (big

file may take awhile)

20

 Acquiring Data

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Select the actresses.list file from your Landing Zone
2. Select the Spray: Delimited option to open the spray

options.
3. Type Meetup::<initials> into the Name Prefix entry

control
4. Modify the Target to actresses
5. Check the Omit Separator box and clear the Quote

entry controls.
6. Press the Spray button
7. Monitor your DFU workunit to verify that the spray

completed successfully!
 21

Acquiring Data

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Deselect the actresses.list and select the KJV.txt file from
your Landing Zone

2. Select the Spray: Delimited option to open the spray
options.

3. Type Meetup::<initials> into the Name Prefix entry
control

4. Modify the Target to KJV
5. Check the Omit Separator box and clear the Quote entry

controls.
6. Press the Spray button
7. Monitor your DFU workunit to verify that the spray

completed successfully!

22

Acquiring Data

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Task-switch to the ECL IDE (overview of features)
2. Open the File_Actresses ECL code file
3. Examine the code that defines the file

1. The RECORD structure
2. The DATASET declaration

23

Defining the Files

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Create a new BWR_Actresses ECL code file
2. Add the following code

IMPORT $;
OUTPUT($.File_Actresses.File,NAMED('Input_Data'));

3. Look at the defined data

1. Select your Thor cluster as the Target
2. Press the Submit button

24

Defining the Files

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Open the File_KJV ECL code file
2. Examine the code that defines the file

1. The RECORD structure
2. The DATASET declaration

3. Open the BWR_KJV ECL code file
4. Look at the defined data

1. Select your Thor cluster as the Target
2. Press the Submit button

25

Defining the Files

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

Natural Language Parsing is accomplished in ECL by combining pattern
definitions with an output RECORD structure specifically designed to receive the
parsed values, then using the PARSE function to perform the operation.

Pattern definitions are used to detect "interesting" text within the data. Just as
with all other ECL definitions, these patterns typically define specific parsing
elements and may be combined to form more complex patterns, tokens, and
rules.

The output RECORD structure (or TRANSFORM function) defines the format of
the resulting recordset. It contains specific pattern matching functions that
return the "interesting” text, its length or position.

The PARSE function implements the parsing operation. It returns a recordset
that may then be post-processed as needed using standard ECL syntax, or
simply output.

26

Overview of Natural Language Parsing

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Open the ParseActress ECL code file
2. Examine the code

1. PATTERN definitions
2. The PARSE function

3. Look at the parsed result
1. Select your Thor cluster as the Target
2. Press the Submit button

27

Parsing Semi-Structured Text

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Open the ParseKJV ECL code file
2. Examine the code

1. The TABLE function
2. The TRANSFORM structure
3. The ROLLUP function
4. The SORT function

3. Look at the parsed result
1. Select your Thor cluster as the Target
2. Press the Submit button

28

Parsing Unstructured Text

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Open the BibleNames ECL code file
2. Examine the code

1. The FUNCTION structure
2. The IF function
3. The SET function
4. Inline DATASET definitions
5. The DEDUP function (Training Examples)

3. Look at the result
1. Select your Thor cluster as the Target
2. Press the Submit button

29

Post-Processing Parse Results

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Open the BWR_MatchNames ECL code file
2. Examine the code

1. The JOIN function

3. Look at the result
1. Select your Thor cluster as the Target
2. Press the Submit button

30

More Post-Processing

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Open the SecondDegree ECL code file
2. Examine the code

1. The TRIM function

3. Look at the result
1. Select your Thor cluster as the Target
2. Press the Submit button

31

And Even More Post-Processing

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. First, write the search and test in THOR.
2. Examine the code (Inversion)

1. The INDEX statement
2. The BUILD action
3. The GRAPH function

3. Test the Inversion Code (BWR_Inversion)
4. Look at the result

1. Select your Thor cluster as the Target
2. Press the Submit button

32

Building a Search Service

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

1. Open the SearchService ECL code file
2. Examine the code

1. The STORED workflow service – All you really need!

3. Publish the query to ROXIE
1. Select your ROXIE cluster as the Target
2. Press the Compile button
3. Publish in the ECL Watch interface

33

Get the Search Ready for ROXIE

#HPCCMeetup A Development Ride from Spray to THOR to ROXIE

WHT/082311

And There’s So Much More to Learn!!!
Thanks for attending!

34 #HPCCMeetup A Development Ride from Spray to THOR to ROXIE

That’s All Folks!

WHT/082311

35 #HPCCMeetup A Development Ride from Spray to THOR to ROXIE

Contact information:
Email: Robert.Foreman@lexisnexis.com

 LexisNexis Open Source HPCC Systems Platform: http://hpccsystems.com

 Online Training: http://learn.lexisnexis.com/hpcc

 The HPCC Systems blog: http://hpccsystems.com/blog

 Wiki: https://wiki.hpccsystems.com/

 Our GitHub portal: https://github.com/hpcc-systems

 Community Forums: http://hpccsystems.com/bb

 Bible Search ECL Tutorial by David Alan Bayliss (Chief Data Scientist):
http://www.dabhand.org/ECL/construct_a_simple_bible_search.htm

Deck - http://cdn.hpccsystems.com/presentations/meetup/meetup.pdf
Code - http://cdn.hpccsystems.com/presentations/meetup/code.zip
Data - http://cdn.hpccsystems.com/presentations/meetup/KJV.txt

Useful Links and References

Questions?

http://hpccsystems.com/
http://learn.lexisnexis.com/hpcc
http://hpccsystems.com/blog
https://wiki.hpccsystems.com/
https://github.com/hpcc-systems
http://hpccsystems.com/bb
http://www.dabhand.org/ECL/construct_a_simple_bible_search.htm
http://cdn.hpccsystems.com/presentations/meetup/meetup.pdf
http://cdn.hpccsystems.com/presentations/meetup/code.zip
http://cdn.hpccsystems.com/presentations/KSU/Data/KJV.txt

	HPCC Systems:�Big Data NLP with HPCC Systems – �A Development Ride from Spray to THOR to ROXIE�Bob Foreman – Senior Software Engineer/ECL Instructor
	Slide Number 2
		Primary Goals of this Meetup�
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	HPCC Systems Platform
	HPCC Systems Hardware
	Thor Cluster
	Roxie Cluster
	HPCC Systems Platform
	Data on HPCC Systems
	Slide Number 14
	Slide Number 15
	Getting Started
	Slide Number 17
	Slide Number 18
	Slide Number 19
		Acquiring Data
	Slide Number 21
	Slide Number 22
	Defining the Files
	Defining the Files
	Defining the Files
	Overview of Natural Language Parsing
	Parsing Semi-Structured Text
	Parsing Unstructured Text
	Post-Processing Parse Results
	More Post-Processing
	And Even More Post-Processing
	Building a Search Service
	Get the Search Ready for ROXIE
	Slide Number 34
	Slide Number 35

