

HPCC Systems ® GSoC 2016 project preview

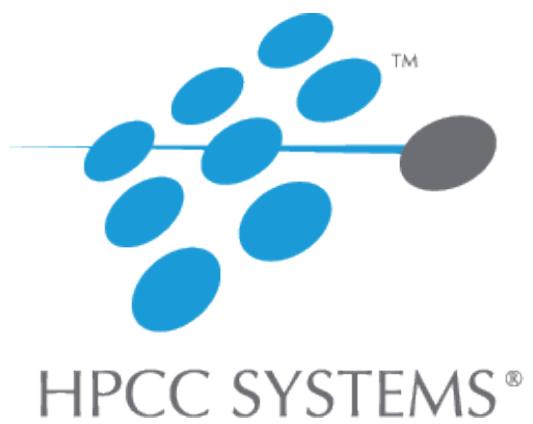
HPCC SYSTEMS®

Lorraine Chapman
Consulting Business Analyst

January 2016

RELX Group

Proposed GSoC 2016 Ideas List

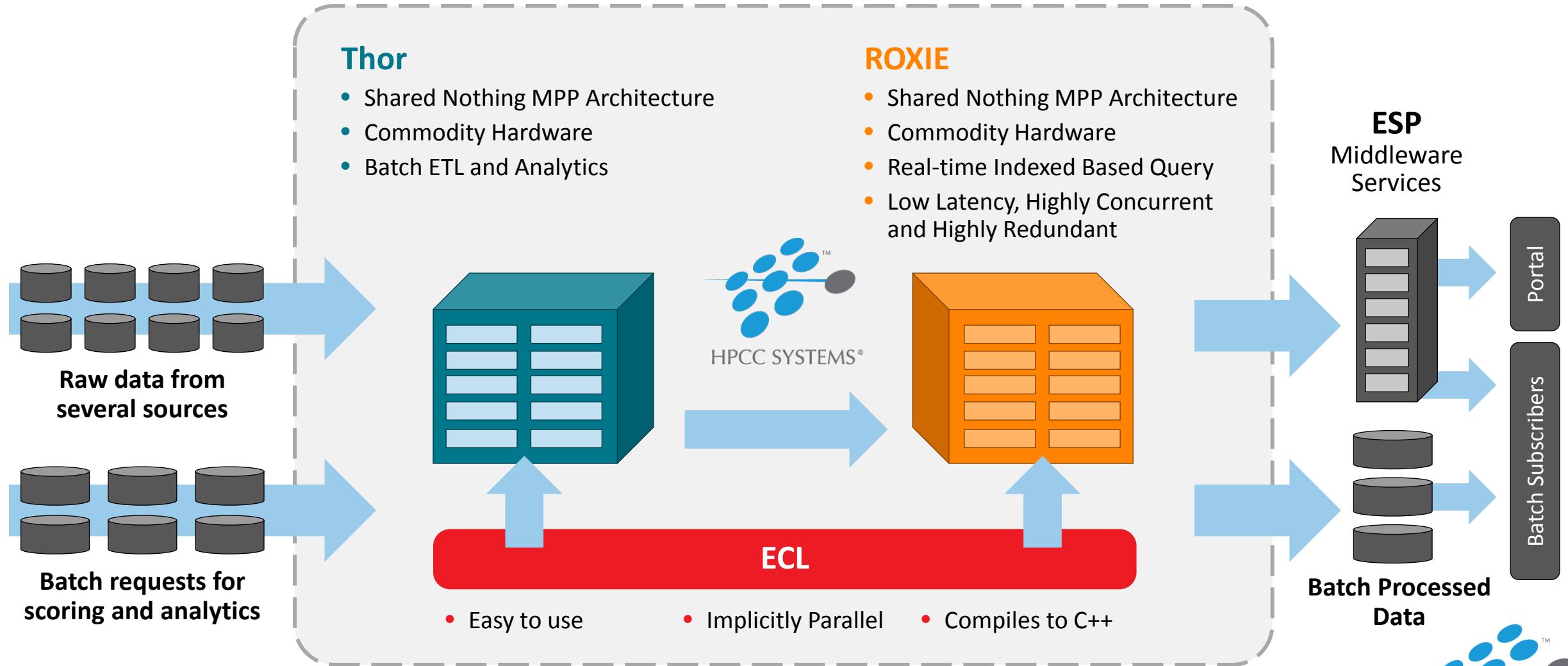

[HPCC Systems GSoC/Interns Wiki](#)

What happens when...

- 9th -19th Feb Accepted organizations application period
- 29th Feb Accepted organizations are announced
- 14th- 25th March Students application period
- 25th April Accepted students announced
- 25th Apr - 23rd May Community Bonding Period
- 23rd May Coding starts
- 22nd August Coding ends

Find out more about HPCC Systems and GSoC

- Read various blogs about GSoC 2015 written by Lorraine Chapman:
<http://bit.ly/1OJUIBT>
- GSoC 2015 completed projects details: <http://bit.ly/1QvMEqO>
- Keep in touch! Visit the GSoC Forum: <http://bit.ly/1K6MTHs>
- Want to know more about the projects? Visit our GSoC 2016 Ideas page:
<http://bit.ly/1UmmxI5>
- Recommend the HPCC Systems GSoC/Intern Wiki to interested students:
<http://bit.ly/1UmqhDo>


Highlights of features coming soon in HPCC Systems® 6.0.0

Lorraine Chapman
Consulting Business Analyst

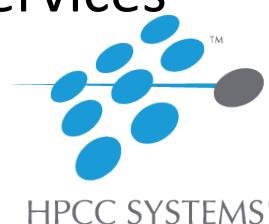
January 2016

Data Flow Oriented Big Data Platform

HPCC Systems 6.0.0 – What's the focus?

Performance

- Virtual slave thor
- Dali replacement for workunit storage
- Optimized merge sort for large numbers of cores
- Affinity support in Thor
- Parallel activity execution
- LZ4 compression for temporary files


Usability

- Trace activity
- Refresh boolean option on persist
- Improved ECL compiler error reporting
- DFUPLUS restore superfiles
- Security enhancements
- Init system improvements
- Ability to merge multiple package files
- NEW ESP service methods

New Features

- HPCC Systems Visualization Framework
- Kafka plugin
- RESTful roxie
- Security manager plugin support
- Quantile activity
- Option to bind queries to cores in ROXIE
- Dynamic ESDL support for writing web services in JAVA

Performance – Faster and even better

- **Optimized merge sort** - Faster execution of sorts and more efficient use of multiple core processors
- **Parallel activity execution** - Refactoring of the engines makes it easier to allow activities and sections of a graph to be executed in parallel
- **LZ4 compression for temporary files** – Implemented as the default in Thor for temp files (e.g. spills)

Performance – Faster and even better (cont'd)

- **Affinity support in Thor** - Improvement in overall performance because you can now bind each process to a single socket
- **Dali replacement for workunit storage** – The first release to contain an option to use a Cassandra database instead of DALI
- **Virtual slave Thor** - Thor clusters can be configured to take full advantages of the resources available per node

Thor - Cluster Configuration

Before – SlavesPerNode is set to N

N independent slave processes per node

Node1	Node 2	Node 3
RAM	RAM	RAM
Slave 4	Slave 8	Slave 12
Slave 2	Slave 6	Slave 10
Slave 3	Slave 7	Slave 11
Slave 1	Slave 5	Slave 9

After – Virtual slave Thor

Virtual slaves created with a single slave process

Node1	Node 2	Node 3
RAM	RAM	RAM
Slave 1	Slave 2	Slave 3
VS1	VS5	VS9
VS2	VS6	VS10
VS3	VS7	VS11
VS4	VS8	VS12

Virtual slave Thor – Sharing resources

- **Each virtual slave shares cached resources**
- **Slaves can request and share all available RAM**
- **Startup and management of the cluster is faster and simpler**
- **Access to all available memory is significant for some activities e.g. Smart/Lookup join**

Smart/Lookup join example

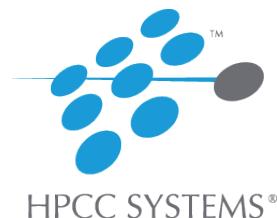
How does a lookup join work?

- Streams local slave RHS dataset to all other slaves
- All slaves gather global RHS into 1 table
- Hash table based on the hard key match fields is built
- Slaves finish and the LHS is streamed/matched against the hash table producing joined results

What is a 'Smart' join?

Lookup join evolved. Two things...

- 1. If global RHS won't fit in memory it is hash partitioned. The LHS is hash distributed and a local lookup join is performed.**
- 2. If it cannot fit local RHS set into memory on any given node, both local datasets are gathered and sorted and a standard join is performed.**


Smart/Lookup join advantages on a virtual slave thor

- ✓ **N times as much memory available for RHS**

4 times as much in the Smart/lookup join example

- ✓ **Significantly less communication of row data**

Faster processing for larger RHS sets

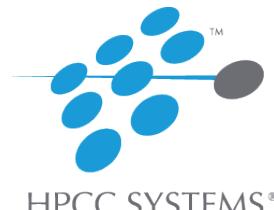
Usability – Easier and even more efficient

- **Refresh boolean option on persist** – Can now read cached copies of data without requiring them to be rebuilt when out of date
- **Improved ECL compiler error reporting** – More specific errors and follow on errors kept to a minimum
- **Ability to merge multiple package files** – Smaller packages files can be added or removed individually and organized locally, only affecting those queries individuals/teams are responsible for

Usability – Easier and even more efficient And even more...

- **DFUPLUS restore superfiles** – Restore all the files from a previous session including the ability to export and restore superfiles
- **Init system improvements** – Better checking to detect configgen failures including more specific error messages, improved startup for ROXIE and Thor and more.
- **New ESP service methods** – Temporarily change the ESP logging level when it is running (WSESPControl.SetLogging) and get the list of graphs you want (WsWorkunit.WUGraphQuery).
- **Trace Activity** – Add and control tracing which doesn't change the graph and can be left in place when not being used

The Trace Activity – What is it?


- TRACE provides a way of putting ‘tracepoints’ in your ECL code using the syntax:

```
myds:=TRACE(ds [, traceOptions]);
```

- Some or all of the data going through that part of the graph is saved into a log file:

```
TRACE: <name><fieldname>value</fieldname>...</name>
```

- The workunit debug value traceEnabled must be set.
- Request tracing on a deployed query in ROXIE by specifying traceEnabled=1 in the query XML.

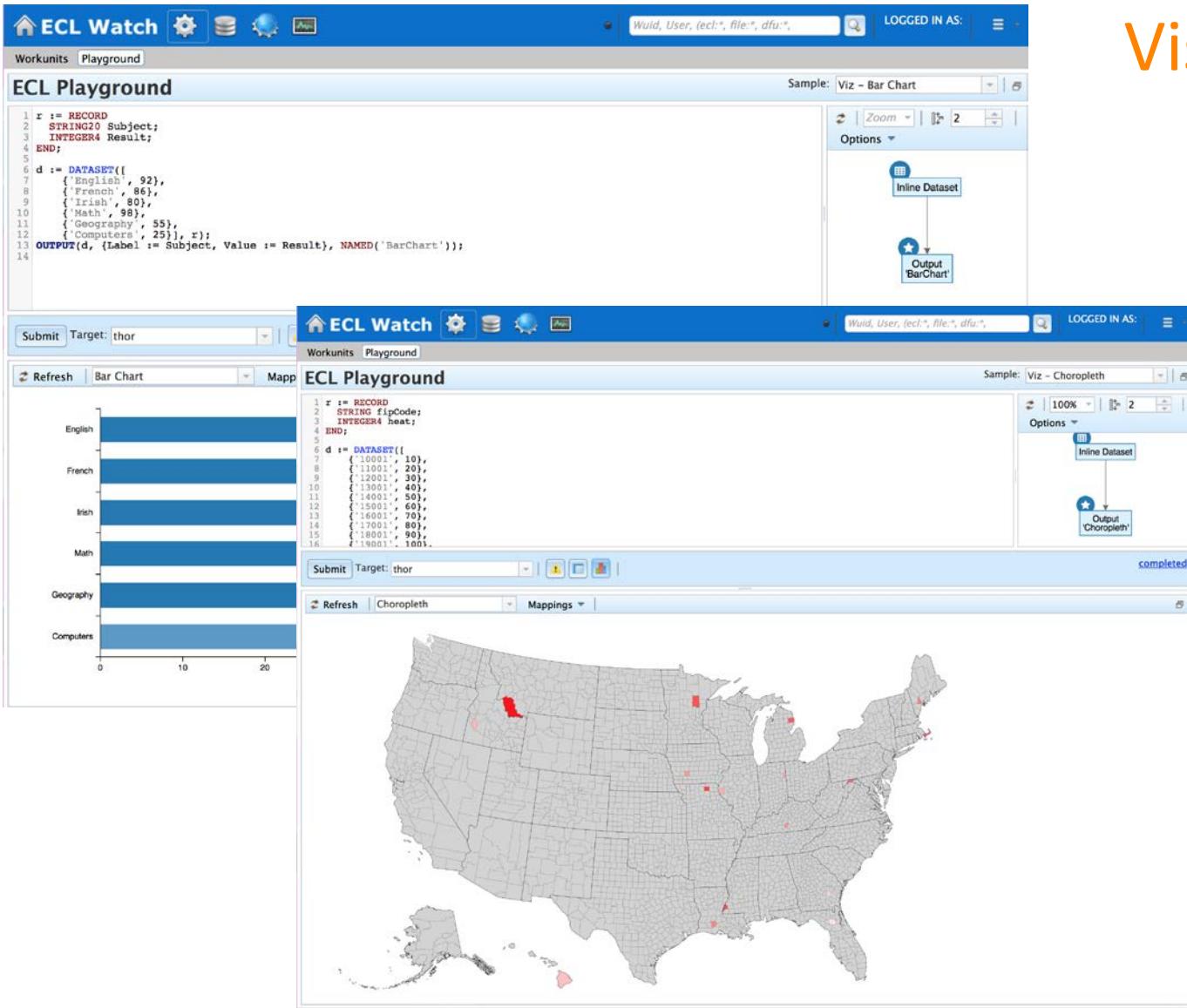
TRACE Activity - Options

- Zero or more expressions which act as a filter
- KEEP (n) – How many rows will be traced
- SKIP (n) – n rows will be skipped before tracing starts
- SAMPLE (n) – Only every nth row is traced
- NAMED(string) – Name for the rows in the tracing

‘...much better than scattering OUTPUT statements throughout your code!’

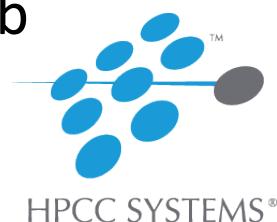
Gavin Halliday

New features – More cool and useful stuff


- **Kafka plugin** – Interface to Apache Kafka from ECL code
- **RESTful ROXIE** – Native ROXIE support for these additional REST access formats, SOAP, JSON, HTTP-GET, Form-UrlEncoding etc
- **Quantile activity** – Find the records that split a dataset into two equal sized blocks to locate the median, percentiles or split a dataset for distribution across the nodes in a system without performing a full sort

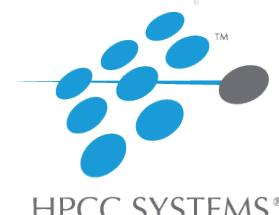
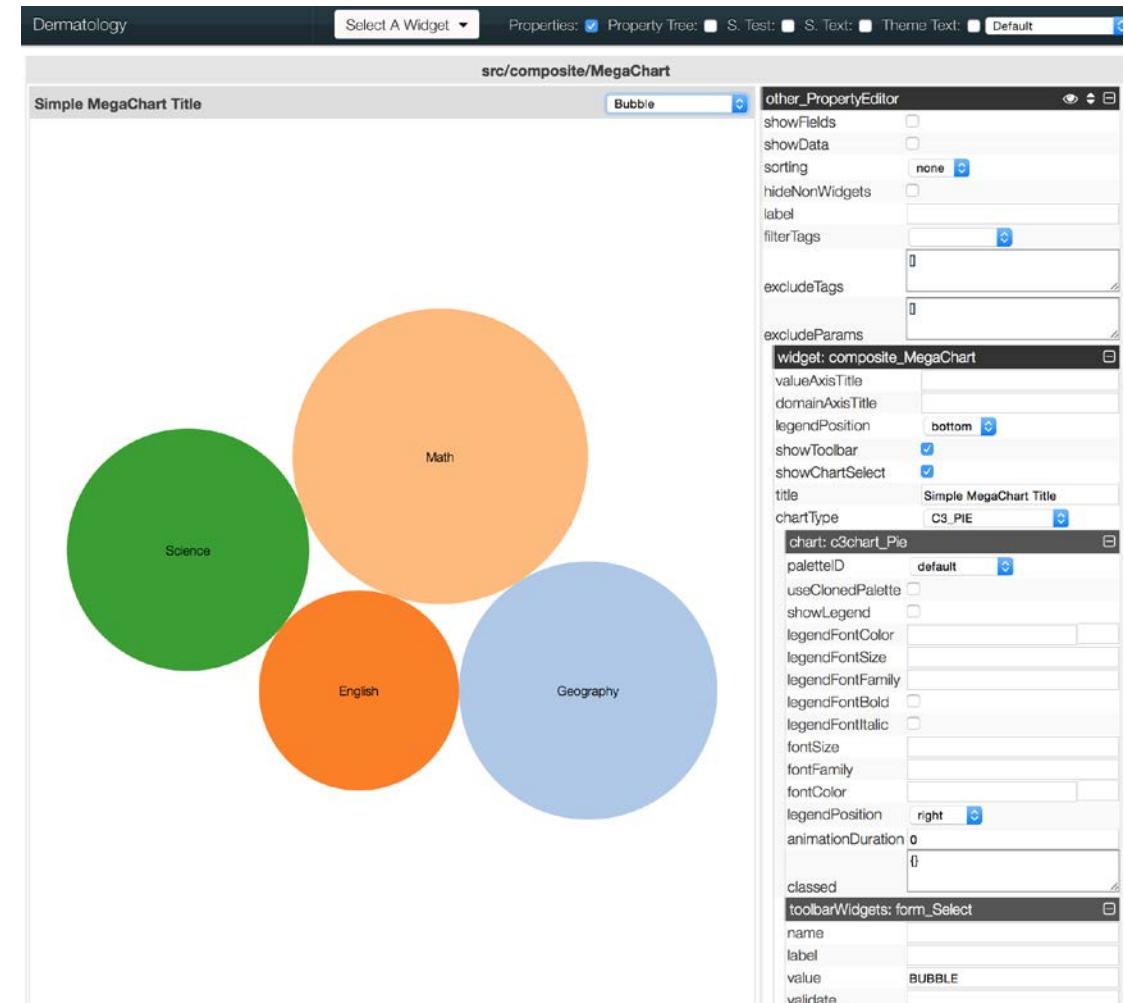
New features – More cool and useful stuff (cont'd)

- **Option to bind queries to cores in ROXIE** – Improve the performance of ROXIE using thread affinities to restrict a query's threads to a subset of cores on a machine.
- **Dynamic ESDL support for writing web services in JAVA (Technical Preview)** – Configure an instance of Dynamic ESDL to run on ESP using the HPCC Systems Configuration Manager.
Walkthrough: `opt/HPCCSystems/examples/EsdIExample`
- **HPCC Systems Visualization Framework** – a wrapper making it easier to put your HPCC Systems, or hand coded visualizations onto a web page.



Visualizations in HPCC Systems

What's available now since 5.0.0...



- Visualizations for a number of chart/graph types including bar, scatter, pie, histogram etc.
- Examples available in the ECL Playground for bar and choropleth
- Include additional resources (e.g an index web page) in your ECL code via the manifest mechanism
- Helper functions to facilitate calling Roxie from inside web pages.

Visualizations Framework – Dermatology Page

If you want to go and play with any of the widgets:

- Look at the sources on github:
<https://github.com/hpcc-systems/Visualization>
- Dermatology page for widget properties:
<http://rawgit.com/hpcc-systems/Visualization/master/demos/dermatology.html?src/map/Layered>

Want to know more...

- Email Lorraine.Chapman@lexisnexis.com or post on the developer forum: <http://bit.ly/23nLjYn>
- HPCC Systems 6.0.0 Blogs – Beta 1: <http://bit.ly/1WPkLKY> and Beta 2: <http://bit.ly/1VubyGI>
- Quantile activity blogs: <http://bit.ly/1nJzMIG>
- Kafka plugin: <https://github.com/hpcc-systems/HPCC-Platform/blob/master/plugins/kafka/README.md>
- Dynamic ESDL docs: <http://bit.ly/1njlXtA> and example: /opt/HPCCSystems/examples/EsdlExample