
ht://Miner Tutorial
Gabriele Bartolini <g.bartolini@comune.prato.it>

Table of Contents
Getting Started ...1

Introduction ..1
Installation and configuration ..2

Requirements ...2
GeoIP library support ...3
Installation from sources ..3
Preparing the database ...4

Step one - Log collection ...6
Apache web server's log format ...6
Internet Information Server's log format ...7

Step two - Log import ..7
Importer's configuration file ..8
Exclusions ..8
MIME Types file ..8
Logger ..9

Step three - IP Address resolution ...9
Step four - Data processing (OLTP) ..9

OLTP loader configuration file ..10
Step five - First stage data warehouse loading ...13
Step six - Custom data warehouse loading (second stage) ..13

Hierarchy manager ...13
Anonymous Day facts ..14

Step seven - PHP Interface ..14
Copyright ...14
References ..14

C++ System for Web usage mining and data warehouse: it allows the discovery of knowledge from data
(KDD) regarding users' usage on the Web (such as unique visitors, sessions, transactions) and organises it in
a PostgreSQL multi-stage data warehouse.

Getting Started
Introduction

ht://Miner is an open-source system for Web usage mining.

Web usage mining is a specific branch of Web mining, first defined by Etzioni in 1996 as the “use of data
mining techniques to automatically discover and extract information from World Wide Web documents and
services”.

The term Web usage mining first appeared in 1997, when Cooley et al. defined a taxonomy for the Web
Mining discipline. Since then, we refer to Web usage mining as the automatic discovery of user access

1

patterns from Web servers.

ht://Miner is structured in order to perform the main operations of a system for KDD (Knowledge Discovery
from Data), which are:

1. Data pre-processing (selection, filtering and coding)

2. Data mining

3. Analysis

4. Decisions making

Although the system is designed to be expanded and to interface itself with several DBMS, currently
ht://Miner supports PostgreSQL. The data architecture is organised in two stages:

1. Transactional data for On-Line Transactional Processing purposes (OLTP)

2. Data warehouse for On-Line Analytical Processing purposes (OLAP)

The first data source is fully normalised, contains all the data and it is organised to perform specific queries.
The second data source is organised to privilege speed rather than redundancy, in order to improve
performances of aggregate functions over time periods such as days, months, semesters, years.

In order to produce reports, Web usage data produced by ht://Miner can be queried through:

1. third party applications for data mining and data reporting through ODBC or PostgreSQL client library

2. ht://Miner's PHP middleware library

3. customised applications that directly interface themselves with the database

Installation and configuration
Requirements

ht://Miner requires a GNU/Linux system with:

• kernel 2.4 or higher

• GNU C/C++ compiler (with libstdc++)

• PostgreSQL 8.x [pgsql]

• GNU gettext library [gettext]

• PCRE (Perl Compatibile Regular Expressions) library [pcre]

ht://Miner Tutorial

2

• zlib library [zlib]

• Open SSL library [openssl]

• eXpat library (XML parser) [expat]

Although it has not been tested on different platform, ht://Miner has been written using ANSI C++ and
should be easily ported on POSIX compliant systems.

GeoIP library support
ht://Miner is designed to support the GeoIP C library from Maxming [geoipcapi]. This library allows the
system to locate the Internet visitors based on their IP address. The accuracy of this operation depends on
the type of database used. Maxmind currently offers two databases for free:

1. GeoLite Country [geolitecountry]

2. GeoLite City [geolitecity]

ht://Miner supports both. For more information visit the section in the ht://Miner website.

The GeoIP support can be enabled through the —enable-geoip option of the configure script.

$./configure —enable-geoip [other options]

Installation from sources

Getting the sources

ht://Miner's sources are available from the SourceForge file releases system and are usually shipped as
compressed TAR archives (bzip2 and gzip).

Uncompressing the sources

For tar archive files that have been compressed using the gzip algorithm, type:

tar xzvf filename.tar.gz

For tar archive files that have been compressed using the bzip2 algorithm, type:

tar xjvf filename.tar.bz2

Quick install

In case you performed a system wide installation of the required libraries (which means that these libraries
stand in directories such as /usr/lib or /usr/local/lib and their headers in /usr/include or /usr/local/include),
you should be able to install ht://Miner by simply typing:

$ cd htminer-version

ht://Miner Tutorial

3

$./configure
$ make
$ su
make install

Configuring the source

By default ht://Miner is installed under the /usr/local/htminer directory. However, the system supports
the standard configure methods for customising the application's locations in the system. For more
information on the available options, type:

$./configure —help

For instance, if you need to install ht://Miner under a different directory (e.g. /usr), type:

$./configure —prefix=/usr

Compiling the source

Sources compilation is performed through the GNU make application. Once you have configured the
sources, type:

$ make

In order to install the application, depending on the location, you may need to become superuser and then
type:

$ make install

Preparing the database
Note

Currently ht://Miner supports solely the PostgreSQL RDBMS. Therefore the following information
refer to this particular product.

Users' creation

The first step is to create the owner of the ht://Miner data sources. The username to be created is htminer.
You can use your favourite method for the user's creation:

• createuser console application

• CREATE USER SQL command given via the psql console application

• pgAdmin

• phppgadmin's web interface

For more information on users' creation in PostgreSQL, read the documentation about the CREATE USER

ht://Miner Tutorial

4

http://www.postgresql.org/docs/8.1/interactive/sql-createuser.html

[http://www.postgresql.org/docs/8.1/interactive/sql-createuser.html] command or the 'Database Roles and
Privileges' chapter [http://www.postgresql.org/docs/8.1/interactive/user-manag.html].

Usually you may want to create a user that has login privileges but does not have the right to either create a
database or a user. You can do this by following the steps you find below (please change the password):

$ su - postgres
$ psql
postgres=> CREATE ROLE htminer LOGIN NOSUPERUSER

NOCREATEDB NOCREATEROLE ENCRYPTED PASSWORD 'changeme';

Warning

It is important that you understand the basics of PostgreSQL administration, especially what roles
are and how they work. In particular, you need to understand how access restrictions work (through
the pg_hba.conf file).

The second step is the creation of the user that can access data for reporting only. By default the user is
called htreport:

postgres=> CREATE ROLE htreport LOGIN NOSUPERUSER
NOCREATEDB NOCREATEROLE ENCRYPTED PASSWORD 'changeme';

Tablespaces' creation

One of the most important features that PostgreSQL 8.x has brought are tablespaces. As PostgreSQL
documentation says, “tablespaces allow administrators to select different file systems for storage of
individual tables, indexes, and databases. This improves performance and control over disk space usage”.

The use of tablespaces however is strictly tied to the size of your organisation. Depending on the number of
requests you may want to spread your data over multiple disks, in order to improve efficiency and data
integrity. For our purposes, we have decided to store the two data source stages in two different locations on
two different disks. This can be easily achieved in PostgreSQL.

Suppose you have the /disk1 and /disk2 locations for the first and second disk respectively. You can
create and register two tablespaces in PostgreSQL by simply performing the following steps.

$ su
$ mkdir /disk1/htminer_oltp
$ mkdir /disk2/htminer_warehouse
$ chown postgres /disk1/htminer_oltp
$ chmod 770 /disk1/htminer_oltp
$ chown postgres /disk2/htminer_warehouse
$ chmod 770 /disk2/htminer_warehouse
$ su - postgres
$ psql
postgres=> CREATE TABLESPACE htminer_oltp OWNER htminer
LOCATION '/disk1/htminer_oltp';

postgres=> CREATE TABLESPACE htminer_warehouse OWNER htminer
LOCATION '/disk1/htminer_warehouse';

Warning

Before proceeding with tablespaces creation, it is recommended that you read PostgreSQL
documentation on the topic, in particular the CREATE TABLESPACE
[http://www.postgresql.org/docs/8.1/interactive/sql-createtablespace.html] SQL command.

ht://Miner Tutorial

5

http://www.postgresql.org/docs/8.1/interactive/user-manag.html
http://www.postgresql.org/docs/8.1/interactive/user-manag.html
http://www.postgresql.org/docs/8.1/interactive/sql-createtablespace.html

Database creation

ht://Miner stores everything in one single database. However, tables are organised using PostgreSQL's
schemas, which allows to group tables into logically connected relations.

The final step for database preparation is the creation of the database itself. The database, by default, will be
called htminer.

$ su - postgres
$ psql
postgres=> CREATE DATABASE htminer WITH OWNER = htminer

ENCODING = 'LATIN1';

If you want, you can specify a default tablespace (it is recommended that you choose the warehouse
tablespace, as it is the one where new tables and indexes are created more often due to horizontal
partitioning of tables [http://en.wikipedia.org/wiki/Partition_(database)] - per month and per year).

postgres=> CREATE DATABASE htminer WITH OWNER = htminer
ENCODING = 'LATIN1'
TABLESPACE = htminer_warehouse;

The htminer database is now ready to be used by the suite of tools of ht://Miner. Each of them involves a
particular step of the KDD process.

Step one - Log collection
One of the fundamental parts of ht://Miner is log collection. In particular, ht://Miner is able to handle both
Apache [http://httpd.apache.org] and Microsoft Internet Information Server formats for access logs.

Apache web server's log format
ht://Miner needs more information than a common log format, in particular:

1. resource's content type

2. server's IP address

3. server's host name (virtual host)

4. server's port

5. resource's content language

Here you can find the instructions that need to be added to Apache's httpd.conf file in order to prepare
ht://Miner compliant log files.

LogFormat \"%h\t%u\t%t\t\"%r\"\t%\>s\t%b\t\"%{Referer}i\"\t\"%{User-Agent}i\"\t%A\t%v\t%p\t%T\t%{Content-Type}o\t%{Content-Language}o\" htminer
CustomLog admin/access_log htminer

Note

ht://Miner Tutorial

6

http://en.wikipedia.org/wiki/Partition_(database)
http://en.wikipedia.org/wiki/Partition_(database)
http://httpd.apache.org

You can change the location and the file name for the log file as you like.

Internet Information Server's log format
ht://Miner is able to detect Internet Information Server's log format on the fly, by performing a runtime
parsing of the IIS headers. You just need to enable all the fields from the control panel for the logging
module of IIS.

Step two - Log import
The very first phase of the ht://Miner's discovery process is to import the access log data in a temporary
table. This process allows to:

1. bulk load accesses from different web servers

2. organise requests in sessions by simply grouping the available data by user, origin IP address and user
agent (browser)

3. order requests within a single session by request time

This process has a huge impact in the potential of the information that is discovered, as it allows to identify
sessions coming from different servers (managed by the same organisation) where requests are not tied
together.

The application responsible for performing data import is called htminer_importer. For more information
regarding its usage, you can type:

$ htminer_importer —help

The application by default uses the importer.xml configuration file which sits in the configuration
directory (by default /usr/local/htminer/conf).

For example, in order to load the access_log.20061107 file, you simply type:

$ htminer_importer access_log.20061107

In case you want more verbosity, you add the -v option:

$ htminer_importer -v access_log.20061107
$ htminer_importer -vv access_log.20061107
$ htminer_importer -vvv access_log.20061107

The more v's you add, the more verbosity you get.

The first time you launch the application, you want it to initialise the data source (create the tables and the
indexes). You can do it by adding the -i option:

$ htminer_importer -vi access_log.20061107

ht://Miner Tutorial

7

Importer's configuration file
The importer configuration is an XML file which is made up of 5 sections:

1. input control

2. output control

3. exclusions (filtering)

4. mime types file (for IIS)

5. logger control

Input control

This section controls the configuration of the input module. In particular, it allows to specify the Apache log
format, using regular expressions (PCRE syntax) and to associate blocks to fields that ht://Miner recognises.

By default, the importer file is configured to manage the standard ht://Miner's log format for Apache.

Output control

This section allows to control the output database for the importer. This database serves for temporary
purposes. For the moment, the allowed type for the output data source is postgresql, as it is the only
RDBMS currently supported.

You need to modify the credentials to connect to the database, such as host, port, database name, user,
password and tablespace (for instance htminer_oltp or htminer_warehouse).

Exclusions
ht://Miner's importer can filter input data by applying regular expressions on the following fields:

1. content types (i.e. images, CSS files, etc.)

2. user agents (for instance internal spiders)

3. server names

MIME Types file
Unfortunately, IIS cannot store the Content-Type that servers return to the client. It is necessary that
ht://Miner performs an automatic detection by mapping the resource extension to a specific content-type.
For instance:

text/html htm html shtml xht xhtml phtml pht php php3 php4 asp cfm

ht://Miner Tutorial

8

Logger
Currently it only supports the standard output channel.

Step three - IP Address resolution
Once the data is imported in the temporary table (temporary.access_log), ht://Miner needs to resolve the IP
addresses into host names. The way ht://Miner performs this task is very efficient:

1. retrieves the list of IP addresses (performs a SELECT DISTINCT on the table to get just the IP
addresses list without duplicates)

2. supports multi-threading: you can decide the number of threads that perform IP address resolution
using the gethostbyaddr() system call

3. for each IP address that is resolved, performs an UPDATE of the host name in the database temporary
table

4. supports a dual method for IP resolution:

a. distributed: every UPDATE is embedded into a single atomic transaction (slower but crash-safe)

b. standalone: every thread performs all its operations within a single transaction (therefore in case
you run 10 threads there will be 10 open transaction); this approach is faster but it is not crash-safe
(if the application crashes, the transaction is not committed and you do not perform any update to
the database)

The application responsible for performing the IP addresses resolution is called htminer_ipresolver. For
more information regarding its usage, you can type:

$ htminer_ipresolver —help

The application currently does not support any configuration file. Therefore you need to provide access
credentials through command line:

$ htminer_ipresolver -H HOSTNAME -U USERNAME -D DATABASE -t THREADSNUMBER -v

Step four - Data processing (OLTP)
The data processing step of ht://Miner is responsible for organising Web usage data stored in the temporary
table in user's sessions.

This process is achieved through:

1. user's identification (anonymous or authenticated)

2. sessions' identification: user's requests are first ordered by access time then grouped into logical sets

ht://Miner Tutorial

9

called sessions, where the time difference between a particular request and the following (if available)
is less than 30 minutes (this value can be changed at run-time)

3. transactions' identification: requests in a session can be grouped in smaller subset called transactions.
Currently ht://Miner supports 3 algorithms for transactions discovery [gb2001]:

a. time-window length (TWL): requests are grouped into transactions of length t (e.g. 15 seconds)

b. maximal forward reference (MFR): grouping is based on the navigational path that is performed
by the user. A user makes forward references and backward references during the surfing activity
and the algorithm automatically attempts to detect these subsets. The algorithm is suitable for
tree-like websites, but highly discouraged for network-like sites

c. reference length (RL): requests are grouped according to the reference length parameter, which
represents the inactivity time (e.g. 15 seconds). This technique allows the classification of requests
into navigational or content ones. If a user spend more time than the reference length parameter on
a page, this page is classified as content request and the previous requests within the transaction as
navigational (or auxiliary) requests. This is also the current default method for transaction
discovery in ht://Miner.

4. spiders detection: ht://Miner is able to detect spiders both automatically and supervisedly. The latter
one is performed using regular expressions to match the User Agent string. The first one is partially
based on the algorithm by Tan and Kumar [tan00modeling] and allows the classification of sessions in
spiders sessions based on the characteristics of the requests

5. localisation: in case you enabled the GeoIP support the processing phase attempts for discover the
location of an IP address (country and possibly region and city)

At the end of the process the available web usage data is organised in the first stage data source (OLTP):
every information is stored in tables within the oltp schema of the PostgreSQL database.

The application responsible for performing the OLTP database loading operation is htminer_oltp_loader.
For more information regarding its usage, you can type:

$ htminer_oltp_loader —help

The application by default uses the oltp.xml configuration file which sits in the configuration directory (by
default /usr/local/htminer/conf).

A typical execution, which performs initialisation tasks as well (-i), is:

$ htminer_oltp_loader -vpi

OLTP loader configuration file
The OLTP loader file for configuration is an XML file. It allows the definition of several options, including
input channel, output channel, session length, transaction discovery algorithm, etc.

Here follows a brief description of the main features.

ht://Miner Tutorial

10

Input channel definition

The input element is responsible for defining an input channel. An input channel is a data source that
expects the following information:

1. data source type (currently postgresql)

2. host (host name, host IP address, Unix socket file - e.g. /tmp)

3. port

4. data source name (database name)

5. connection user

6. connection password

7. connection pool size (e.g. 10)

8. session length (in seconds, by default 1800 seconds - 30 minutes)

9. transaction discovery algorithm (by default reference length with 15 seconds inactivity time)

10. timeout for threads wait operations (in seconds): when waiting for connections from the pool, threads
can hang for up to timeout seconds

11. date range:

a. begin date: first date to be processed (specific date such as 2006-11-01, first, last, yesterday,
today)

b. end date (as above): last date to be processed

12. requirements for the input channel: in case of IP resolution, accepts only those requests where the IP
resolution has been performed

Output channel definition

The input element is responsible for defining the output channel. An output channel is a data source that
expects the following information:

1. data source type (currently postgresql)

2. host (host name, host IP address, Unix socket file - e.g. /tmp)

3. port

4. data source name (database name)

ht://Miner Tutorial

11

5. connection user

6. connection password

7. tablespace to be used for tables creation

8. connection pool size (e.g. 20)

Spider control configuration

The spidercontrol element is responsible for configuring the spider detection process. It serves both the
automatic process and the supervised one.

Automatic spider detection

The automatic spider detection is configured by setting the following attributes for the spidercontrol

element:

• robotstxt="boolean value": if a session contains a request to the /robots.txt file, the session is
classified as spider session

• headrequests="boolean value": if a session contains an HTTP HEAD request, it is classified as
spider session

• emptyreferers="percentage": percentage of allowed empty referers (if a session contains more than
the specified percentage it is classified as spider session)

• minimumlength="integer value": minimum sessions length (number of requests) for the application
of the automatic spiders detection algorithm. Sessions with a length shorter than this value are not
considered for the automatic detection algorithm.

A boolean value can be one of the following:

• true, t, yes, y

• false, f,no, n

A percentage value is an integer value from 0 to 100.

Supervised spider detection

Currently, the supervised detection of spiders is performed through regular expressions that are applied to
the user agent string that the browser sends to the HTTP server through the User-Agent HTTP header.

You can specify regular expressions using the regexp element within the useragents element. See the
default configuration file for examples.

Step five - First stage data warehouse

ht://Miner Tutorial

12

loading
Currently, the loading process of the first stage data warehousing is performed by a Perl script that you can
find in the contrib/scripts directory. The script name is htminer_warehouse_loader.

For more information regarding its usage, you can type:

$ htminer_warehouse_loader —help

A very common way of invoking the script is:

$ htminer_warehouse_loader -a -v

Step six - Custom data warehouse loading
(second stage)

The second stage data warehouse is for custom purposes. Theoretically there could be infinite applications of
custom warehouses which are built using the first stage data warehouse information.

Currently, ht://Miner implements the creation of anonymous day facts but it is designed to easily plug
different algorithms (for instance anonymous sessions facts, spider facts, entry points, crackers attempts,
association rules, etc.).

Also the custom warehouse is designed to handle hierarchies through the hierarchy manager application.

Hierarchy manager
ht://Miner comes with an application that manages URLs classification in hierarchies of categories, allowing
the creation of user-friendly reports and more powerful description of available data for business purposes.

Using an XML file and regular expressions that are applied to URLs, the hierarchy manager creates database
tables (including the powerful warehouse bridge hierarchy tables for multi-level hierarchies) and manages
them over time accounting data changes. This is an important feature for a data warehouse, because data
changes over time and it is fundamental to keep historical data.

Note

Consider this example: the C category is under the T category. On the D day, the website structure is
reorganised and the C category is moved under the Y category. Accesses to the C category before the
D day must be counted under the T category, whereas from that day on (unless other changes occur)
requests must be assigned to the Y category as well.

The htminer_hierarchy_manager is the application that is responsible for this process. For more
information:

$ htminer_hierarchy_manager —help

The application by default uses the hierarchy.xml configuration file which sits in the configuration
directory (by default /usr/local/htminer/conf). For more information, look at the default file.

ht://Miner Tutorial

13

Anonymous Day facts
An anonymous day fact is an aggregation of requests performed by an anonymous user (every information
about the possible user is detached to the requests) once spiders requests have been filtered.

These facts are organised in day tables and monthly tables, with different levels of aggregation
(granularity).

Data is also organised in categories, according to a specific hierarchy generated through the hierarchy
manager application.

Step seven - PHP Interface
ht://Miner's report layer has a PHP interface for online reporting. The PHP interface is currently under
development phase and is made up of a middleware library, a set of classes to be used by custom PHP
applications.

Copyright
ht://Miner has been developed by the Comune di Prato. Its sources are property of the Comune di Prato and
have been released under GNU/GPL license. Other authors have contributed to the project and the sources
contain their names when this is applicable.

© Copyright 2003-2006 Comune di Prato, Prato, Tuscany, Italy

References
[expat] The Expat XML Parser. http://expat.sourceforge.net/

[gb2001] "Web usage mining and discovery of association rules from HTTP servers logs", Gabriele
Bartolini, 2001. http://www.prato.linux.it/~gbartolini/en/view-a/2/pdf/wum.pdf

[geoipcapi] GeoIP C API. http://www.maxmind.com/app/c

[geolitecountry] GeoLite Country. http://www.maxmind.com/app/geoip_country

[geolitecity] GeoLite City. http://www.maxmind.com/app/geoip_city

[gettext] GNU gettext. http://www.gnu.org/software/gettext/

[openssl] The Open Source toolkit for SSL/TLS. http://www.openssl.org/

[pcre] Perl Compatibile Regular Expressions library. http://www.pcre.org/

[pgsql] PostgreSQL. http://www.postgresql.org/

[tan00modeling] "Modeling of Web Robot Navigational Patterns", P. Tan and V. Kumar, 2000.
http://citeseer.ist.psu.edu/tan00modeling.html

[zlib] Zlib. http://www.zlib.net/

ht://Miner Tutorial

14

http://expat.sourceforge.net/
http://www.maxmind.com/app/c
http://www.maxmind.com/app/geoip_country
http://www.maxmind.com/app/geoip_city
http://www.gnu.org/software/gettext/
http://www.openssl.org/
http://www.pcre.org/
http://www.postgresql.org/
http://citeseer.ist.psu.edu/tan00modeling.html
http://www.zlib.net/

	ht://Miner Tutorial
	Table of Contents
	Getting Started
	Introduction

	Installation and configuration
	Requirements
	GeoIP library support
	Installation from sources
	Getting the sources
	Uncompressing the sources
	Quick install
	Configuring the source
	Compiling the source

	Preparing the database
	Users' creation
	Tablespaces' creation
	Database creation

	Step one - Log collection
	Apache web server's log format
	Internet Information Server's log format

	Step two - Log import
	Importer's configuration file
	Input control
	Output control

	Exclusions
	MIME Types file
	Logger

	Step three - IP Address resolution
	Step four - Data processing (OLTP)
	OLTP loader configuration file
	Input channel definition
	Output channel definition
	Spider control configuration
	Automatic spider detection
	Supervised spider detection

	Step five - First stage data warehouse loading
	Step six - Custom data warehouse loading (second stage)
	Hierarchy manager
	Anonymous Day facts

	Step seven - PHP Interface
	Copyright
	References

