
carlosco@amazon.lu

@caarlco

carlosco@amazon.lu

@caarlco

HIGHLY AVAILABLE

ARCHITECTURES
WITH AMAZON WEB SERVICES

LET’S BUILD A

WEBSITE

LET’S BUILD A

HIGHLY AVAILABLE

WEBSITE

LET’S BUILD A

HIGHLY AVAILABLE

AND DURABLE

WEBSITE

LET’S BUILD A

HIGHLY AVAILABLE,

SCALABLE

AND DURABLE

WEBSITE

LET’S BUILD A

HIGHLY AVAILABLE,

SCALABLE

AND DURABLE

WEBSITE

THAT REQUIRES LOW

MAINTENANCE

+
SERVICES

ON-DEMAND

PAY AS YOU GO

ELASTIC

AWS BUILDING BLOCKS

Inherently Fault-Tolerant Services
Fault-Tolerant with

the right architecture

 Amazon S3

 Amazon SimpleDB

 Amazon DynamoDB

 Amazon CloudFront

 Amazon SWF

 Amazon SQS

 Amazon SNS

 Amazon SES

 Amazon Route53

 Elastic Load Balancing

 Amazon EC2

 Amazon EBS

 Amazon RDS

 Amazon VPC

 AWS IAM

 AWS Elastic Beanstalk

 Amazon ElastiCache

 Amazon EMR

 Amazon CloudSearch

 Amazon Redshift

 Amazon Kinesis

 Amazon Cognito

 Amazon AppStream

 Amazon CloudSearch

#

DESIGN FOR FAILURE

« Everything fails

all the time »

Werner Vogels

CTO of Amazon

YOUR GOAL:

Applications should continue to function even

if the underlying physical hardware fails or is

removed or replaced

AVOID SINGLE POINTS OF

FAILURE.

ASSUME EVERYTHING FAILS,

AND DESIGN BACKWARDS.

AVOID SINGLE POINTS OF

FAILURE.

ASSUME EVERYTHING FAILS,

AND DESIGN BACKWARDS.

HEALTH CHECKS

#

USE MULTIPLE

AVAILABILITY ZONES

US-WEST

(Oregon)

EU-WEST

(Ireland) ASIA PAC

(Tokyo)

US-WEST

(N. California)

SOUTH AMERICA

(Sao Paulo)

US-EAST

(Virginia)

AWS GovCloud

(US)

ASIA PAC

(Sydney)

ASIA PAC

(Singapore)

CHINA

(Beijing)

US-WEST

(Oregon)

EU-WEST

(Ireland) ASIA PAC

(Tokyo)

US-WEST

(N. California)

SOUTH AMERICA

(Sao Paulo)

US-EAST

(Virginia)

AWS GovCloud

(US)

ASIA PAC

(Sydney)

ASIA PAC

(Singapore)

CHINA

(Beijing)

AMAZON RDS

MULTI-AZ

ANY GIVEN NIGHT, 150,000 PEOPLE ARE HOSTED

1000s OF SERVERS, TBs OF STORAGE

5 PERS. OPERATIONS TEAM

#

BUILD FOR SCALE

HEALTH CHECKS

+
AUTO SCALING

HEALTH CHECKS

+
AUTO SCALING

=

SELF-HEALING

#

LOOSE COUPLING

PUBLISH&

NOTIFY
RECEIVE TRANSCODE

PUBLISH&

NOTIFY
RECEIVE TRANSCODE

PUBLISH&

NOTIFY
RECEIVE

PUBLISH&

NOTIFY
RECEIVE TRANSCODE

VISIBILITY

TIMEOUT

BUFFERING

CLOUDWATCH METRICS

FOR AMAZON SQS

+
AUTO SCALING

BUILD LOOSELY

COUPLED SYSTEMS

The looser they are coupled,

the bigger they scale,

the more fault tolerant they get…

#

AUTOMATE & TEST

=

PROGRAMMABLE

PLATFORM

IF YOU CAN PROGRAM IT

YOU CAN AUTOMATE IT

HTTP://SORCERY.SMUGMUG.COM/

11.6s

Mean time between

deployments

(weekday)

1,079

Max number of

deployments in a

single hour

10,000

Mean number of

hosts

simultaneously

receiving a

deployment

30,000

Max number of

hosts

simultaneously

receiving a

deployment

DEPLOYMENTS AT

AMAZON.COM

1.5 BILLION PAGE VIEWS

OCTOBER 2012

$83 MILLION IN TRANSACTIONS

4.2 MILLION ITEMS SOLD

30 DEPLOYS PER DAY
1 DEPLOY EVERY 20 MINUTES

AWS

CLOUDFORMATION
STACK-BASED DEPLOYMENT

SERVICE

CLOUDFORMATION

TEMPLATE

{
"Description" : "Create RDS with username and password",
"Resources" : {

"MyDB" : {
"Type" : "AWS::RDS::DBInstance",
"Properties" : {
"AllocatedStorage" : "500",
"DBInstanceClass" : "db.m1.small",
"Engine" : "MySQL",
"EngineVersion" : "5.5",
"MasterUsername" : "MyName",
"MasterUserPassword" : "MyPassword"

}
}

}
}

"AWS::CloudFormation::Init" : { "config" : {

"packages" : {
"yum" : {
"mysql" : [],
"mysql-server" : [],
"httpd" : [],
"php" : [],
"php-mysql" : []

}
},
"sources" : {

"/var/www/html" :
"https://s3.amazonaws.com/my-builds/build-v4.zip"

}
}

CLOUDFORMATION

TEMPLATE

ARCHITECTURE AS CODE

SOFTWARE

VERSIONS

+
ARCHITECTURE

VERSIONS

TEST ENVIRONMENTS

USING AMAZON EC2 TO SIMULATE

2.4 MILLION PLAYERS

NETFLIX CHAOS MONKEY
RANDOMLY TERMINATE INSTANCES TO

TEST FAULT-TOLERANCE

1. DESIGN FOR FAILURE

2. USE MULTI-AZs

3. BUILD FOR SCALE

4. DECOUPLE COMPONENTS

5. AUTOMATE & TEST

« Civilisation advances by extending the

number of operations we can do without

thinking about them. »

– Alfred North Whitehead

carlosco@amazon.lu @caarlco

