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MAINTENANCE





+
SERVICES



ON-DEMAND

PAY AS YOU GO

ELASTIC









AWS BUILDING BLOCKS

Inherently Fault-Tolerant Services
Fault-Tolerant with 

the right architecture

 Amazon S3

 Amazon SimpleDB

 Amazon DynamoDB

 Amazon CloudFront

 Amazon SWF

 Amazon SQS

 Amazon SNS

 Amazon SES

 Amazon Route53

 Elastic Load Balancing

 Amazon EC2

 Amazon EBS

 Amazon RDS

 Amazon VPC

 AWS IAM

 AWS Elastic Beanstalk

 Amazon ElastiCache

 Amazon EMR

 Amazon CloudSearch

 Amazon Redshift

 Amazon Kinesis

 Amazon Cognito

 Amazon AppStream

 Amazon CloudSearch











#

DESIGN FOR FAILURE



« Everything fails

all the time »

Werner Vogels

CTO of Amazon



YOUR GOAL:

Applications should continue to function even 

if the underlying physical hardware fails or is 

removed or replaced



AVOID SINGLE POINTS OF 

FAILURE.

ASSUME EVERYTHING FAILS, 

AND DESIGN BACKWARDS.
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HEALTH CHECKS













#

USE MULTIPLE 

AVAILABILITY ZONES
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AMAZON RDS

MULTI-AZ















ANY GIVEN NIGHT, 150,000 PEOPLE ARE HOSTED

1000s OF SERVERS, TBs OF STORAGE

5 PERS. OPERATIONS TEAM
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BUILD FOR SCALE
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HEALTH CHECKS

+
AUTO SCALING

=

SELF-HEALING
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LOOSE COUPLING
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VISIBILITY

TIMEOUT

















BUFFERING













CLOUDWATCH METRICS

FOR AMAZON SQS

+
AUTO SCALING















BUILD LOOSELY 

COUPLED SYSTEMS

The looser they are coupled, 

the bigger they scale, 

the more fault tolerant they get…



#

AUTOMATE & TEST



=

PROGRAMMABLE 

PLATFORM





IF YOU CAN PROGRAM IT

YOU CAN AUTOMATE IT











HTTP://SORCERY.SMUGMUG.COM/



11.6s

Mean time between 

deployments 

(weekday)

1,079

Max number of 

deployments in a 

single hour

10,000

Mean number of 

hosts 

simultaneously 

receiving a 

deployment 

30,000

Max number of 

hosts 

simultaneously 

receiving a 

deployment 

DEPLOYMENTS AT 

AMAZON.COM





1.5 BILLION PAGE VIEWS

OCTOBER 2012

$83 MILLION IN TRANSACTIONS

4.2 MILLION ITEMS SOLD



30 DEPLOYS PER DAY
1 DEPLOY EVERY 20 MINUTES



AWS 

CLOUDFORMATION
STACK-BASED DEPLOYMENT 

SERVICE



CLOUDFORMATION

TEMPLATE





{
"Description" : "Create RDS with username and password",
"Resources" : {

"MyDB" : {
"Type" : "AWS::RDS::DBInstance",
"Properties" : {
"AllocatedStorage" : "500",
"DBInstanceClass" : "db.m1.small",
"Engine" : "MySQL",
"EngineVersion" : "5.5",
"MasterUsername" : "MyName",
"MasterUserPassword" : "MyPassword"

}
}

}
}



"AWS::CloudFormation::Init" : {  "config" : {

"packages" : {
"yum" : {
"mysql"        : [],
"mysql-server" : [],
"httpd"        : [],
"php"          : [],
"php-mysql"    : []

}
},
"sources" : {

"/var/www/html" :
"https://s3.amazonaws.com/my-builds/build-v4.zip"

}
}







CLOUDFORMATION

TEMPLATE



ARCHITECTURE AS CODE



SOFTWARE

VERSIONS

+
ARCHITECTURE 

VERSIONS



TEST ENVIRONMENTS









USING AMAZON EC2 TO SIMULATE

2.4 MILLION PLAYERS







NETFLIX CHAOS MONKEY
RANDOMLY TERMINATE INSTANCES TO 

TEST FAULT-TOLERANCE



1. DESIGN FOR FAILURE

2. USE MULTI-AZs

3. BUILD FOR SCALE

4. DECOUPLE COMPONENTS

5. AUTOMATE & TEST



« Civilisation advances by extending the 

number of operations we can do without 

thinking about them. »

– Alfred North Whitehead
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