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Background



Shallow Models Since Late 80’s

" Neural Networks
" Boosting
" Support Vector Machines

" Maximum Entropy
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Since 2000 - Learning with Structures

" Kernel Learning

" Transfer Learning

" Semi-supervised Learning
" Manifold Learning

" Sparse Learning

" Matrix Factorization

® Structured Input-Output Prediction
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The pipeline of machine visual perception

Most Efforts in
Machine Learning

Low-level Pre- Feature Feature I
sensing = processing = extract. = selection = predld.'(.)n’
recognition
» Most critical for accuracy
» Account for most of the computation for testing

* Most time-consuming in development cycle
« Often hand-craft in practice
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Computer vision features
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Learning features from data

Machine Learning

Low-level 2 Pre- N Feature o Feature N lr;fe%rii?igi:
sensing processing extract. selection prediction,
recognition

—

Feature Learning
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Convolution Neural Networks

Input Image X
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Output Labels

Coding Pooling Coding Pooling

—
Feature Extraction ®(x)

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip
code recognition. Neural Computation, 1989.
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“Winter of Neural Networks” Since 90’s

® Non-convex

" Need a lot of tricks to play with

" Hard to do theoretical analysis
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The Paradigm of Deep Learning



Deep Learning Since 2006

504

materials are identical for all configurations. The
blue bars in Fig. 1 summarize the measured SHG
signals. For excitation of the LC resonance in Fig.
1A (horizontal incident polarization), we find
an SHG signal that is 500 times above the noise
level. As expected for SHG, this signal closely
scales with the square of the incident power
(Fig. 2A). The polarization of the SHG emission
is nearly vertical (Fig. 2B). The small angle with
respect to the vertical is due to deviations from
perfect mirror symmetry of the SRRs (see
electron micrographs in Fig. 1). Small detuning
of the LC resonance toward smaller wavelength
(i.e, to 1.3-pm wavelength) reduces the SHG
signal strength from 100% to 20%. For ex-
citation of the Mie resonance with vertical
incident polarization in Fig. 1D, we find a small
signal just above the noise level. For excitation
of the Mie resonance with horizontal incident
polarization in Fig. 1C, a small but significant
SHG emission is found, which is again po-

Reducing the Dimensionality of
Data with Neural Networks

G. E. Hinton™ and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

imensionality reduction facilitates the
classification, visualization, communi-
cation, and storage of high-dimensional
data. A simple and widely used method is
principal components analysis (PCA), which

finds the directions of greatest variance in the
data set and represents each data point by its
coordinates along each of these directions. We
describe a nonlinear generalization of PCA that
uses an adaptive, multilayer “encoder” network

28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org

Neural networks are coming back!
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Race on ImageNet (Top 5 Hit Rate)

72%, 2010

1000 object classes that we recognize

74%, 2011
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The Best system on ImageNet (by 2012.10)

Input Image X Output Labels
| ‘ | |
Local Gradients Pooling Variants Pooling Linear
\ ,  of Sparse Coding: Classifier

Y

LLC, Super-vector
e.g, SIFT, HOG

- This is a moderate deep model

- The first two layers are hand-designed
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Challenge to Deep Learners

Key questions:
" What if no hand-craft features at all?

" What if use much deeper neural networks!?

Our chief critic, Jitendra Malik, has said that this
competition is a good test of whether deep

neural networks really do work well for object
recognition. - By Geoff Hinton

13-1-12
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Answer from Geoff Hinton, 2012.10

- 72%, 2010

1000 object classes that we recognize

74%, 2011

85%, 2012
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The Architecture

 Max-pooling layers follow first, second, and
fifth convolutional layers

 The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000
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The Architecture

— 7 hidden layers not counting max pooling.

— Early layers are conv., last two layers globally connected.

— Uses rectified linear units in every layer.
— Uses competitive normalization to suppress hidden activities.
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Revolution on Speech Recognition

13-1-12
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Deep Learning for NLP
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Input Window

word of interest

Text cat sat on the mat
Feature 1 w} ’w% ... w]lv
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Natural Language Processing (Almost) from

Scratch, Collobert et al,

JMLR 2011
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Deep Learning in Industry



Microsoft

" First successful deep learning models for speech
recognition, by MSR in 2009

" Now deployed in MS products, e.g. Xbox

‘Research s

Inside Microsoft Research

Advancing the State of the Art in Computing / a

Deep-Neural-Network Speech
Recognition Debuts

~.. Inside Microsoft Researc h (0 14 Jun 2012 10:08 AM -1
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“Google Brain” Project

13-1-12

Ley by Google fellow Jeff Dean

" Published two papers,
ICML2012, NIPS2012

" Company-wise large-scale deep
learning infrastructure

" Big success on images, speech,
NLPs
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Deep Learning @ Baidu

® Starts working on deep learning in 2012 summer

" Achieved big success in speech recognition and

image recognition, both will be deployed into
products in late November.

" Meanwhile, efforts are being carried on in areas like
OCR, NLP, text retrieval, ranking, ...
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Building Blocks of Deep Learning



CVPR 2012 Tutorial: Deep Learning for Vision

09.00am: Introduction Rob Fergus (NYU)

10.00am: Coflee Break

10.30am: Sparse Coding  Kai Yu (Baidu)

11.30am: Neural Networks Marc’Aurelio Ranzato (Google)

12.30pm: Lunch

01.30pm: Restricted Boltzmann Honglak Lee (Michigan)
Machines

02.30pm: Deep Boltzmann Ruslan Salakhutdinov (Toronto)
Machines

03.00pm: Coftee Break

03.30pm: Transfer Learning Ruslan Salakhutdinov (Toronto)

04.00pm: Motion & Video Graham Taylor (Guelph)

05.00pm: Summary/ Q& A All

05.30pm: End



Building Block | - RBM



Restricted Boltzmann Machine

hidden variables

Bipartite  Stochastic binary visible variables v € {0, 1}
Structure  4re connected to stochastic binary hidden
variables h € {0, 1}*.

The energy of the joint configuration:

E(V, h; 0) - — Z Wij?}ihj - Z bi’Ui - Z ajhj
1] 1

J

Image visible variables

6 = {W,a,b} model parameters.

Probability of the joint configuration is given by the Boltzmann distribution:

1 1 . CTT ah
Pylv.b) = g exp (= B(v.hi6)) = g [T e [T e [Ten
¢ J

: ) ©J W—j

Z(Q) _ Z exp ( . E(V, h: 9)) partition function potential functions

Markov random fields, Boltzmann machines, log-linear models.
13-1-12 Slide Courtesy: Russ Salakhutdinov 28



Restricted Boltzmann Machine

hidden variables

Bipartite . . _
structure  Restricted: No interaction between

hidden variables

/

Inferring the distribution over the

/
P gy

N

Image visible variables

hidden variables is easy:

1
1+ exp(— Zz Wij'Ui — Cl,j)

P(hlv) = [ P(hjlv) P(h; =1|v) =

Factorizes: Easy to compute
Similarly:

P(vih) = HP(Ui|h) P(v; = 1|h) = !

1+ exp(— Zj Wz’jhj — bz)

Markov random fields, Boltzmann machines, log-linear models.

13-1-12 Slide Courtesy: Russ Salakhutdinov 29



Model Parameter Learning

hidden variables B 1 - - -
. O PQ(V)_—Z(O)Zh:eXp[V Wh+a'h+b'v
N | o
W \ /'\'M'// Given a set of i.i.d. training examples
‘//&’A‘Y/‘k D= {vh v® . v(™1, wewanttolearn
"‘V”‘/“" \ model parameters 6 = {W, a, b}.
/0 4

Maximize (penalized) log-likelihood objective:

N
1 n A
L(6) = I Zlogpe(V( ) — NHWH%

n=1

N

Image visible variables

Derivative of the log-likelihood:

OL(0 2\
8V[(/) = EPyaiaVilj] = Epy [vily] — =W
ij
Approximate maximum likelihood learning:
Contrastive Divergence (Hinton 2000) Pseudo Likelihood (Besag 1977)
MCMC-MLE estimator (Geyer 1991) Composite Likelihoods (Lindsay, 1988; Varin 2008)
Tempered MCMC Adaptive MCMC
(Salakhutdinov, NIPS 2009) (Salakhutdinov, ICML 2010)
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Run Markov chain for a few steps (e.g. one step):

P(h|v)

hOO OO OO

v OOO OOO OOO

Data Reconstructed (V‘h
ct- 1
i) = TLPsIe) Py =119 = sy
1
P(vlh) = T] P(vilh) P(v; = 1]h) =

1+ eXp(— Zj Wijhj — bz)

Update model parameters:
AW,; = Ep,,,, [vil;j| — Ep, [vih;]

13-1-12 Slide Courtesy: Russ Salakhutdinov 31



RBMs for Images

Gaussian-Bernoulli RBM: 1
P@(V7h) — Z(@)

exp(—E(V, h; 9))

Interpretation: Mixture of exponential
number of Gaussians

Image visible variables P9 (V) — Z PH (V’h)PQ(h),

h

where

Py(h) = / Py(v,h)dv is an implicit prior, and

('U x‘ ) /27_‘_0_7: 20_2

1

1 ( (ﬂf—bi—UiZjWijhj)2> .
exp | — Gaussian

13-1-12 Slide Courtesy: Russ Salakhutdinov 32



Layerwise Pre-training

Deep Belief Network
Efficient layer-wise pretraining

.'\‘.’/‘. algorithm.

A’ALA

. 1 1 Pg (hl, V)
0 R )
NN T\ 7 Y
-xesx. Variational Lower Bound

(" Wy
WCE DI | s e e

NS nto
"" Likelihzgd term
O O

Entropy functional

CY

+ Z Qs (h'|v)log Po(h'; W?)

h! |\ J
Y

Similar arguments for pretraining a Replace with a
. second layer RBM
Deep Boltzmann machine
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DBNs for MNIST Classification

Softmax Output
[10] [10]
1 W} Il W4+s4
| 2000 | 2000 |
1 W;r W3+e3
[ 500 | | 500 |
1 Wg Il W§+82
| 500 | | 500 |
T Wl T Wl +&1
Pretraining Unrolling Fine—tuning

* After layer-by-layer unsupervised pretraining, discriminative fine-tuning
by backpropagation achieves an error rate of 1.2% on MNIST. SVM’s get
1.4% and randomly initialized backprop gets 1.6%.
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Deep Autoencoders for Unsupervised
Feature Learning

Decoder

,,,,,,,,,,,,,,,,,,,,,

Pretraining Unrolling Fine—tuning

13-1-12 Slide Courtesy: Russ Salakhutdinov 35



Image Retrieval using Binary Codes

* Map images into binary codes for fast retrieval.
Input image 30-RBM

* Small Codes, Torralba, Fergus, Weiss, CVPR 2008

* Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
 Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
* Norouzi and Fleet, ICML 2011,

13-1-12 Slide Courtesy: Russ Salakhutdinov 36



Building Block 2 - Autoencoder Neural Net



Autoencoder Neural Network

input

code prediction
decoder

encoder

- input higher dimensional than code
- error: ||prediction - input]| |2
- Training: back-propagation 116

13-1-12 Slide Courtesy: Marc'Aurelio Ranzato 38



Sparse Autoencoder

Sparsity
Penalty

input prediction

decoder

encoder

code

- sparsity penalty: ||code||,

- error: ||prediction - input||?

- loss: sum of square reconstruction error and sparsity
- Training: back-propagation

13-1-12 Slide Courtesy: Marc'Aurelio Ranzato 39



Sparse Autoencoder

Sparsity
Penalty

input prediction

decoder

encoder

code

- input: X code: /= whx
“loss: L(X;W)=|W h=X|P+a% ||

Le et al. "ICA with reconstruction cost..” NIPS 2011

13-1-12 Slide Courtesy: Marc'Aurelio Ranzato 40



Building Block 3 - Sparse Coding



Sparse coding

Sparse coding (Olshausen & Field,1996). Originally
developed to explain early visual processing in the brain

(edge detection).

Training: given a set of random patches x, learning a

dictionary of bases [®; ®, ...]

Coding: for data vector x, solve LASSO to find the

sparse coefficient vector a

k
min L, — E ai,jqu
) =1

13-1-12

2

m k
—|—)\ZZ’&Z'J"

i=1 j=1
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Sparse coding: training time

Input: Images x, X,, ..., X, (€éach in R9)
Learn: Dictionary of bases ¢,, ¢,, ..., ¢, (also RY).
2

k m k
min Ti— Y ai;di|l +AD D> lail
a” . .

g=1

i=1 j=1

Alternating optimization:
1. Fix dictionary ¢,, ¢,, ..., ¢ optimize a (a standard
LASSO problem)

2. Fix activations a, optimize dictionary ¢,, ¢, ..., ¢, (a
convex QP problem)



Sparse coding: testing time

Input: Novel image patch x (in RY) and previously learned ¢.’s

Output: Representation [a; ;, a;,, ...,

™m
min E
a .

1=1

k

Ti— ) i j0;

j=1

a; ] of image patch x;.
2

m k
—|—>\ZZ‘CL¢J‘|

i=1 j=1

Representxas a=I[o0,.,00.8,0.,00.30,.,00.5, ..



Sparse coding illustration

-

~0.8 *
o s

[a,, .., ag,] =1[0,0,..,00.8,0,..,00.3,0,..,0,0.5, 0]
(feature representation)

Slide credit: Andrew Ng Compact & easily interpretable



RBM & autoencoders

- also involve activation and reconstruction
- but have explicit f(x)
- not necessarily enforce sparsity on a

- but if put sparsity on a, often get improved results
[e.g. sparse RBM, Lee et al. NIPS08]

| 3 ] [ a )
{» f(x) encoding { 83) gecoding

. .
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Sparse coding: A broader view

Any feature mapping from x to a, i.e. a = f(x), where
- a is sparse (and often higher dim. than x)

- f(x) is nonlinear

- reconstruction x’=g(a) , such that x’=x

a
1 £(x) &)
(X .

Therefore, sparse RBMs, sparse auto-encoder, even VQ
can be viewed as a form of sparse coding.
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Example of sparse activations (sparse coding)

S a,[0] [00..07
0 0% a2;| 000..0°
ox. : a;[| 0100..0:

> a [000] |...0]

o different x has different dimensions activated

 locally-shared sparse representation: similar x’s tend to have
similar non-zero dimensions
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Example of sparse activations (sparse coding)

R a,[| |000..0°
X, _

X g X a,[0] |00...0°
s T 2,00 [0..0°

> 2 [000 | |...0]

« another example: preserving manifold structure

* more informative in highlighting richer data structures,
l.e. clusters, manifolds,
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Sparsity vs. Locality

* Intuition: similar data should
get similar activated features

sparse coding

* Local sparse coding:
e data in the same
neighborhood tend to
have shared activated

local sparse
features;

coding

« data in different
neighborhoods tend to
have different features
activated.
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Sparse coding is not always local: example

Case 1
Independent subspaces

« Each basis is a “direction”
« Sparsity: each datum is a
linear combination of only
several bases.

13-1-12

Case 2
data manifold (or clusters)

« Each basis an “anchor point”
« Sparsity: each datum is a
linear combination of neighbor
anchors.

« Sparsity is caused by locality.

51



Two approaches to local sparse coding

\\ —’¢ \\___—”
Approach 1 Approach 2
Coding via local anchor points  Coding via local subspaces
Local coordinate coding Super-vector coding
Learning locality-constrained linear coding for image Image Classification using Super-Vector Coding of
classification, Jingjun Wang, Jianchao Yang, Kai Yu, Local Image Descriptors, Xi Zhou, Kai Yu, Tong Zhang,
Fengjun Lv, Thomas Huang. In CVPR 2010. and Thomas Huang. In ECCV 2010.
Nonlinear learning using local coordinate coding, Large-scale Image Classification: Fast Feature
Kai Yu, Tong Zhang, and Yihong Gong. In NIPS 2009. Extraction and SVM Training, Yuanging Lin, Fengjun

Lv, Shenghuo Zhu, Ming Yang, Timothee Cour, Kai Yu,
LiangLiang Cao, Thomas Huang. In CVPR 2011
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Two approaches to local sparse coding

Approach 1 Approach 2
Coding via local anchor points  Coding via local subspaces

Local coordinate coding Super-vector coding

Sparsity achieved by explicitly ensuring locality
Sound theoretical justifications

Much simpler to implement and compute
Strong empirical success
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Hierarchical Sparse Coding

Yu, Lin, & Lafferty, CVPR | |

. | )
(W.@) =argmin  L(W,a) + =Wl +llall;

subject to « >~ 0,
L(W,a) =

| \alpha ] N
4 ] E;{§H:E,,;—BwiH2—|—)\2wz-TQ(oz)w7;}

) Q(a) = (Z akdiagm))

v
[—
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Hierarchical Sparse Coding on MNIST

Yu, Lin, & Lafferty, CVPR ||

Methods Error rate (%)
Sparse coding (unsupervised) 2.10
Local coordinate coding (unsupervised) |21] 1.90
Extended local coordinate coding (unsupervised) [21] 1.64
Differentiable sparse coding (supervised) [5] 1.30
Discriminative sparse coding (supervised) [15] 1.05
One-layer sparse coding (unsupervised) 0.98
Convolutional neural network (supervised) |1 1] 0.82
Hierarchical sparse coding (unsupervised) 0.77

HSC vs. CNN: HSC provide even better performance than CNN
©O©O© more amazingly, HSC learns features in unsupervised manner!
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Second-layer dictionary
Yu, Lin, & Lafferty, CVPR | |

A hidden unit in the second layer is connected to a unit group in the
|t layer: invariance to translation, rotation, and deformation

56



Adaptive Deconvolutional Networks for Mid
and High Level Feature Learning
Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus, ICCV 2011

L4 Feature
" Hierarchical Maps

Convolutional Sparse [l fay elel *
i Select L4 Features
Coding. L3 Featlure o o o e
" Trained with respect ME[S
to image from all '] = MEENE

layers (L1-L4).

L2 Feature
" Pooling both spatially Maps ;

and amongst features. 4

L1 Feature
ME[ S

® | earns invariant mid-

Select L2 Feature Groups

level features. [ s

Image L1 Features



Recap of Deep Learning Tutorial

"  Building blocks
— RBMs, Autoencoder Neural Net, Sparse Coding

"  Go deeper: Layerwise feature learning
— Layer-by-layer unsupervised training

— Layer-by-layer supervised training

" Fine tuning via Backpropogation

— If data are big enough, direct fine tuning is enough

" Sparsity on hidden layers are often useful.

13-1-12
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Layer-by-layer unsupervised training +
fine tuning

O O-Im O-m

prediction
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Layer-by-Layer Supervised Training

Example of architecture:

13-1-12 Slide Courtesy: Marc'Aurelio Ranzato 60



Biological & Theoretical Justification



Why Hierarchy?

Theoretical:

“...well-known depth-breadth tradeoft in circuits design [Hastad

1987]. 'This suggests many functions can be much more
efficiently represented with deeper architectures...” [Bengio &

LeCun 2007]

Biological: Visual cortex is hierarchical (Hubel-Wiesel
Model)

Categorical judgments,
decision making

120160 ms

100-130 ms PFC

S
High level object

descriptions,

faces, objects



Sparse DBN: Training on face images

object models

AreaV4y @909 Highemlevel visual
‘ ' abstractions

ObJeCt _parjts Area V2 | ‘ Primitive shape
(COm bination detectors

of edges)

Area V1 Edge detectors

o\
Retina / /5/ ixels
/// \j .

edges i

[Lee, Grosse, Ranganath & Ng, 2009]




Sensor representation in the brain

[Roe et al., 1992; BrainPort; Welsh & Blasch, 1997]



Large-scale training



The challenge

A Large Scale problem has:
- lots of training samples (>10M)

- lots of classes (>10K) and
- lots of input dimensions (>10K).

= best optimizer in practice is on-line SGD which is naturally
sequential, hard to parallelize.

- layers cannot be trained independently and in parallel, hard to
distribute

- model can have lots of parameters that may clog the network,
hard to distribute across machines

13-1-12 Slide Courtesy: Marc'Aurelio Ranzato 66



A solution by model parallelism

151' an 3r‘d
machine \ machine\ machine

MODEL
PARALLELISM

Le et al. "Building high-level features using large-scale unsupervised learning” ICML 2012
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MODEL
PARALLELISM

<+

DATA
PARALLELISM

input #3
input #2

input #1

Le et al. "Building high-level features using large-scale unsupervised learning” ICML 2012
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1% replica 2" replica 3™ replica

158

13-1-12 Slide Courtesy: Marc'Aurelio Ranzato 70



1" replica 2" replica 3™ replica
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161

3™ replica

2" replica

1°" replica
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Training A Model with | B Parameters

Deep Net:

- 3 stages

- each stage consists of local filtering, L2 pooling, LCN
- 18x18 filters

- 8 filters at each location
- L2 pooling and LCN over 5x5 neighborhoods

- Training jointly the three layers by:
- reconstructing the input of each layer

- sparsity on the code
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Thank you





