

Improving Linux Development with better tools

Andi Kleen

Oct 2013
Intel Corporation

ak@linux.intel.com

Linux complexity growing

V3.6 V3.7 V3.8 V3.9 V3.10 V3.11
13.5

14

14.5

15

15.5

16

16.5

Source lines in Linux kernel

All source code

Kernel version

M
-L

O
C

V2.6.16
V2.6.32

V3.6
V3.7

V3.8
V3.9

V3.10
V3.11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Source lines Linux Kernel core

kernel/ lib

Kernel

M
-L

O
C

V2.6.16V2.6.32 V3.6 V3.7 V3.8 V3.9 V3.10 V3.11
0

0.5

1

1.5

2

2.5

Linux kernel source lines IO

net/ fs/ block/

Kernel version

M
-L

O
C

Do we have a problem?

● If we assume number of bugs stays constant
per line there would be more and more bugs

● If we assume programmers don't get cleverer
some code may become too complex to
change/debug

● Of course modularity saves us to some degree

Or we can use better tools to find
bugs

● Static code checker tools
● Dynamic runtime checkers
● Fuzzers/test suites
● Debuggers/Tracers to understand code
● Tools to read/understand source

Static checkers

● sparse, smatch, coccinelle, clang checker,
checkpatch, gcc -W/LTO, stanse

● Can check a lot of things, simple mistakes,
complex problems

● Generic C and kernel specific rules

Static checker challenges

● Some are very slow
● False positives

– Often only can do new warnings

– Otherwise too many false positives

● May need concentrated effort to get false
positives down
– Only done for gcc/sparse so far

– Needs both changes to Linux and to checkers

Study bug fixes

● “At least 14.8% 24.4% of the sampled bug ∼
fixes are incorrect. Moreover, 43% of the
incorrect fixes resulted in severe bugs that
caused crash, hang, data corruption or
security problems.”

● “How do fixes become bugs” Yin/Yuan et.al.
● http://opera.ucsd.edu/~zyin2/fse11.pdf
● Great paper, every kernel programmer should read it

● Can new rules for static checkers help?

http://opera.ucsd.edu/~zyin2/fse11.pdf

Cocinelle example

/// Find &&/|| operations that include the same argument more than once

//# A common source of false positives is when the argument performs a side

//# effect.

@r expression@

expression E;

position p;

@@

(

* E@p

 || ... || E

|

* E@p

 && ... && E

)

@script:python depends on org@

p << r.p;

@@

cocci.print_main("duplicated argument to && or ||",p)

Challenge: global checks

● No static checker I found can follow indirect
calls (“OO in C”, common in kernel)

struct foo_ops {
 int (*do_foo)(struct foo *obj);
}
foo->do_foo(foo);

● Can be done by using type information
● Misses a lot of potential bugs

Lock ordering: lockdep

● Deadlock from lock ordering (“ABBA” bugs)
used to be common

● Lockdep basically eliminated this problem
● Checks lock ordering, interrupt

Kmemcheck / AddressSanitizer

● Check uninitialized/freed/out of bounds data
● Kmemcheck based on page faults

– Quite slow

● AddressSanitizer seems to be a better
alternative
– Compiler instrumentation, much faster

– Still need port to kernel (some reports already)

Thread checkers

● Find data races:
– Shared data accesses not protected by locks

● User space: helgrind, ThreadSanitizer, ..
● Problem: kernel does not mark lock less accesses.

Solvable?

User:

__atomic_write(&foo, 1, __ATOMIC...);

– Kernel:

Foo = 1;

mb();

●

–

Undefined behavior checker

● UBSan. New gcc/LLVM feature
● Checks undefined C behavior at runtime

– e.g. x << 100, signed integer overflows, …

● Needs special runtime library
● Would need to be ported to kernel

Fuzzers

● Trinity is a great tool
– Finds many bugs

● Needs manual model for each syscall

How do we cover all the ioctls/sys/proc files?

● Modern fuzzers around using automatic
feedback
– But not for kernel yet
– http://taviso.decsystem.org/making_software_dumber.pdf

●

http://taviso.decsystem.org/making_software_dumber.pdf

The biggest challenge

● How to run all these tools on every new patch:
– Cannot ask every developer to use all of them

● Static checkers are relatively easy
– But can we get beyond just deltas for new code?

● But how to run the dynamic tools?

Test suites

● Ideally all kernel code would come with a test
suite
– Then someone could run all the dynamic checkers

● Difficult for hardware drivers
● LKP, kernel unit tests, tools/* limited
● Need a real unit testing framework

Coverage

● Kernel gcov can be used to test coverage of
test suites

● Should be used much more widely

Tracers

● Long beyond “real men don't use debuggers”
– Linux has good debuggers these days (kgdb etc.)

● But how to debug hard to reproduce bugs
– Ideal enough information to debug on first trigger

● Tracing:
– Low overhead instrumentation

– When problem triggers dump data

ftrace: function tracer

• Trace all functions in the kernel for PID
trace-cmd record -p function -e sched_switch -P $(pidof firefox-bin)
 plugin function
disable all
enable sched_switch
path = /sys/kernel/debug/tracing/events/sched_switch/enable
path = /sys/kernel/debug/tracing/events/*/sched_switch/enable
path = /sys/kernel/debug/tracing/events/sched_switch/enable
path = /sys/kernel/debug/tracing/events/*/sched_switch/enable
Hit Ctrl^C to stop recording
….
trace-cmd report
…
 firefox-bin-13822 [002] 36628.537061: function: sys_poll
 firefox-bin-13822 [002] 36628.537062: function: poll_select_set_timeout
 firefox-bin-13822 [002] 36628.537062: function: ktime_get_ts
 firefox-bin-13822 [002] 36628.537062: function: timekeeping_get_ns
 firefox-bin-13822 [002] 36628.537063: function: set_normalized_timespec
 firefox-bin-13822 [002] 36628.537063: function: timespec_add_safe
 firefox-bin-13822 [002] 36628.537063: function: set_normalized_timespec
 firefox-bin-13822 [002] 36628.537064: function: do_sys_poll
 firefox-bin-13822 [002] 36628.537064: function: copy_from_user
 firefox-bin-13822 [002] 36628.537065: function: might_fault
 firefox-bin-13822 [002] 36628.537065: function: _cond_resched
 firefox-bin-13822 [002] 36628.537065: function: should_resched
 firefox-bin-13822 [002] 36628.537065: function: need_resched
 firefox-bin-13822 [002] 36628.537066: function: test_ti_thread_flag
…

All kernel functions
executed

ftrace

● Can dump on events / oops / custom triggers
● But still too much overhead in many cases to

run always during debug

Intel PT

● Upcoming Intel CPU feature
● Traces all branches with low overhead
● Will be supported in perf and gdb and with

“FlightRecorder”

Biggest challenge is better tools to
understand traces (too much data)

Understanding source code

● Often biggest problem finding code
● grep/cscope work great for many cases
● But do not understand indirect pointers (OO in C model

used in kernel): Give me all “do_foo” instances
struct foo_ops {
 int (*do_foo)(struct foo *obj);
} = { .do_foo = my_foo };
foo->do_foo(foo)

● Would be great to have a cscope like tool that
understands this based on types/initializers

Conclusion

● Linux has a lot of great tools for making kernel
development easier

● We need them to control complexity
● But still many improvements possible

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Kernelshark zoom
	Slide 23
	Slide 24

