Improving Linux Development with better tools

Andi Kleen

Oct 2013
Intel Corporation
ak@linux.intel.com

M-LOC

16.5
16
15.5
15
14.5
14

13.5
V3.6

M-LOC

Linux complexity growing

Source lines in Linux kernel

All source code

V3.7 V3.8 V3.9 V3.10

Kernel version

Linux kernel source lines 10

net/ fs/ block/

2.5

2

15 /
R
0.5

0
V2.6.16V2.6.32 V3.6 V3.7 V38 V39 V310 V3.11

Kernel version

V3.11

M-LOC

0.35
0.3
0.25
0.2
0.15
0.1
0.05

V2.6.16

Source lines Linux Kernel core

kernel/ lib

++ﬂ——l/.

V2.6.32 V3.7 V3.9 V3.1
V3.6 V3.8 V3.10

Kernel

Do we have a problem?

* |f we assume number of bugs stays constant
per line there would be more and more bugs

* |f we assume programmers don't get cleverer
some code may become too complex to
change/debug

* Of course modularity saves us to some degree

Or we can use better tools to find
bugs

Static code checker tools

Dynamic runtime checkers

Fuzzers/test suites

Debuggers/Tracers to understand code

Tools to read/understand source

Static checkers

e sparse, smatch, coccinelle, clang checker,
checkpatch, gcc -W/LTO, stanse

* Can check a lot of things, simple mistakes,
complex problems

* Generic C and kernel specific rules

Static checker challenges

 Some are very slow

* False positives
- Often only can do new warnings
- Otherwise too many false positives

* May need concentrated effort to get false
positives down

- Only done for gcc/sparse so far
- Needs both changes to Linux and to checkers

Study bug fixes

e “At least 14.8% ~24.4% of the sampled bug
fixes are incorrect. Moreover, 43% of the
incorrect fixes resulted in severe bugs that
caused crash, hang, data corruption or
security problems.”

* “How do fixes become bugs” Yin/Yuan et.al.
e http://opera.ucsd.edu/~zyin2/fse11.pdf
« Great paper, every kernel programmer should read it

 Can new rules for static checkers help?

http://opera.ucsd.edu/~zyin2/fse11.pdf

Cocinelle example

/Il Find &&/|| operations that include the same argument more than once
/I# A common source of false positives is when the argument performs a side
/14 effect.
@r expression@
expression E;
position p;
@@
(
*E@p
l|...]| E
|
“E@p
&& ... && E
)
@script:python depends on org@
p<<rp;
@@

cocci.print_main("duplicated argument to && or ||",p)

Challenge: global checks

* No static checker | found can follow indirect
calls ("OO in C”, common in kernel)

struct foo_ops {
int (*do_foo) (struct foo *obj);

¥

foo->do_foo(foo);

e Can be done by using type information

e Misses a lot of potential bugs

Lock ordering: lockdep

* Deadlock from lock ordering ("ABBA™ bugs)
used to be common

* | ockdep basically eliminated this problem
* Checks lock ordering, interrupt

Kmemcheck / AddressSanitizer

e Check uninitialized/freed/out of bounds data
« Kmemcheck based on page faults

- Quite slow

e AddressSanitizer seems to be a better
alternative

— Compiler instrumentation, much faster
- Still need port to kernel (some reports already)

Thread checkers

Find data races:
- Shared data accesses not protected by locks
User space: helgrind, ThreadSanitizer, ..

Problem: kernel does not mark lock less accesses.
Solvable?

User:

__atomic_write(&foo, 1, _ ATOMIC...);
- Kernel:

Foo = 1;

mb();

Undefined behavior checker

 UBSan. New gcc/LLVM feature
 Checks undefined C behavior at runtime

- e.g. X << 100, signed integer overflows, ...
* Needs special runtime library

* \Would need to be ported to kernel

Fuzzers

 Trinity is a great tool
- Finds many bugs
* Needs manual model for each syscall
How do we cover all the ioctls/sys/proc files?

 Modern fuzzers around using automatic
feedback

- But not for kernel yet

- http://taviso.decsystem.org/making_software _dumber.pdf

http://taviso.decsystem.org/making_software_dumber.pdf

The biggest challenge

 How to run all these tools on every new patch:

- Cannot ask every developer to use all of them

o Static checkers are relatively easy

- But can we get beyond just deltas for new code?

* But how to run the dynamic tools?

Test suites

|deally all kernel code would come with a test
suite

- Then someone could run all the dynamic checkers

Difficult for hardware drivers
LKP, kernel unit tests, tools/* limited
Need a real unit testing framework

Coverage

» Kernel gcov can be used to test coverage of
test suites

» Should be used much more widely

Tracers

* Long beyond “real men don't use debuggers”
- Linux has good debuggers these days (kgdb etc.)

 But how to debug hard to reproduce bugs

- ldeal enough information to debug on first trigger
e Tracing:

- Low overhead instrumentation

- When problem triggers dump data

ftrace: function tracer

* Trace all functions in the kernel for PID

trace-cmd record -p function -e sched switch -P $(pidof firefox-bin)
plugin function

disable all

enable sched switch All kernel functions
path = /sys/kernel/debug/tracing/events/sched switch/enable executed

path = /sys/kernel/debug/tracing/events/*/sched switch/enable

path = /sys/kernel/debug/tracing/events/sched switch/enable

path = /sys/kernel/debug/tracing/events/*/sched switch/enable
Hit Ctr1~C to stop recording

trace-cmd report

firefox-bin-13822 [002] 36628.537061: function: sys poll

firefox-bin-13822 [002] 36628.537062: function: poll select set timeout
firefox-bin-13822 [002] 36628.537062: function: ktime get ts
firefox-bin-13822 [002] 36628.537062: function: timekeeping get ns
firefox-bin-13822 [002] 36628.537063: function: set normalized timespec
firefox-bin-13822 [002] 36628.537063: function: timespec_add safe
firefox-bin-13822 [002] 36628.537063: function: set normalized timespec
firefox-bin-13822 [002] 36628.537064: function: do sys poll

firefox-bin-13822 [002] 36628.537064: function: copy_from user
firefox-bin-13822 [002] 36628.537065: function: might fault
firefox-bin-13822 [002] 36628.537065: function: _cond_resched
firefox-bin-13822 [002] 36628.537065: function: should resched
firefox-bin-13822 [002] 36628.537065: function: need resched

firefox-bin-13822 [002] 36628.537066: function: test ti thread flag

ftrace

 Can dump on events / oops / custom triggers

» But still too much overhead in many cases to
run always during debug

Intel PT

 Upcoming Intel CPU feature
 Traces all branches with low overhead

* Will be supported in perf and gdb and with
“FlightRecorder”

Biggest challenge Is better tools to
understand traces (too much data)

File Filter Plots Capture Help

Pointer: 29131 522551 Cursor 29132 943902 Marked® 29136299242 Markedll 29126 402369 A B Delta: -7 596572

T T

490815 29131547802 28131

d
VLT T I N Y N o | A MW AR AR (R IR AR RN N
dummy=B5535
29131.622531 <idle>

ceut (LHTLLTHEEE L LI brerrrrrmeed LU O P R A T A i et
ceuz LU UL L0 L0 O L L L L LR L L L
ceua [ILCUNMAA OO O A O A L O A O CO LR L e
Page|1 Search: Column: # ~ | containg hd ‘ | graph follows
CPU Time Stamp Task FID Latenc Event Infi -
foud s B P P e U ar SLUBU_WAREUY %, . § T L2903, 129, 0 LIdos- ol [993] Suliess
150515 3 2I132.943575 <idle= o dMh . sched_wakeup @:7:7 + 12484:120: 7 trace-cmd [833] Success
180516 3 29132943576 <idle= o dNh sched_wakeup @:7:7 + 12421:120: 7 trace-cmd [@83] Success
180817 3 29132843577 <idle> 1] dNbL sched wakeup @:7:7 + 12475012607 trace-cmd [@83] Success
180518 3 29132943578 <idle> 1] dNbL sched wakeup @:7:7 + 12485:126:7 trace-cmd [@83] Success
180819 3 29132843579 <idle= 1] dNbL sched wakeup @:7:7 + 12482:126:7 trace-cmd [@83] Success
180620 3 291328436060 <idle= 1] ML poveer_end dummy =55535
180821 3 29132943607 <idlex 0 do.. sched_switch ©:129:R ==» 12484:126: trace-cmd
180822 0 289132943610 <idle= 0 d.h.. sched_wakeup ®:7:7 + 12480:120:7 trace-omd [@8@] Success I
180523 0 29132943612 <idle= 0 dMh. . sched_wakeup ®:7:7 + 12485:128:7 trace-cmd [@88] Success
180524 0 29132943616 <idle= 0 LML power_end dummy =65535
180525 0 29132943617 <idle= 0 d.... sched_switch ©:128:R ==* 12485:128: trace-cmd
1805826 3 29132943618 trace-cmd 12484 d. . sched_switch 12484:12@:5 ==» 12481:120: trace-cmd
150528 3 29132943630 trace-cmd 12479 d. . sched_switch 12479:126:5 ==» 12483:120: trace-cmd
1505629 0 29132943631 trace-cmd 12485 d. . sched_switch 12485:126:5 ==» 12480:120: trace-cmd
150530 3 29132943636 trace-cmd 12483 d. . sched_switch 12483:126:5 ==» 12486:120: trace-cmd
150531 3 29132943641 trace-cmd 12486 d. . sched_switch 12486:126:5 ==» 12482:120: trace-cmd
150532 0 29132943641 trace-cmd 12480 4. . sched_switch 12480:126:5 ==: @:120: swapper
150533 0 29132943645 <idlex 0 d. . power_start type=1 state=3
150534 3 29132943649 trace-cmd 12482 4. sched_switch 1248212805 ==+ @:120: swappsr
1806835 3 29132.843651 <idle> 1] .. poveer_start type=1l state=3 v
failed to read event print fint for hitimer_expire_entry 'C)

Understanding source code

» Often biggest problem finding code
» grep/cscope work great for many cases
» But do not understand indirect pointers (OO in C model
used in kernel): Give me all “"do_foo” instances
struct foo_ops {
int (*do_foo) (struct foo *obj);
} = { .do_foo = my_foo };
foo->do_foo(foo)

* Would be great to have a cscope like tool that
understands this based on types/initializers

Conclusion

* Linux has a lot of great tools for making kernel
development easier

* \We need them to control complexity
« But still many improvements possible

e Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Kernelshark zoom
	Slide 23
	Slide 24

