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Do we have a problem?

* |f we assume number of bugs stays constant
per line there would be more and more bugs

* |f we assume programmers don't get cleverer
some code may become too complex to
change/debug

* Of course modularity saves us to some degree



Or we can use better tools to find
bugs

Static code checker tools

Dynamic runtime checkers

Fuzzers/test suites

Debuggers/Tracers to understand code

Tools to read/understand source



Static checkers

e sparse, smatch, coccinelle, clang checker,
checkpatch, gcc -W/LTO, stanse

* Can check a lot of things, simple mistakes,
complex problems

* Generic C and kernel specific rules



Static checker challenges

 Some are very slow

* False positives
- Often only can do new warnings
- Otherwise too many false positives

* May need concentrated effort to get false
positives down

- Only done for gcc/sparse so far
- Needs both changes to Linux and to checkers



Study bug fixes

e “At least 14.8% ~24.4% of the sampled bug
fixes are incorrect. Moreover, 43% of the
incorrect fixes resulted in severe bugs that
caused crash, hang, data corruption or
security problems.”

* “How do fixes become bugs” Yin/Yuan et.al.
e http://opera.ucsd.edu/~zyin2/fse11.pdf
« Great paper, every kernel programmer should read it

 Can new rules for static checkers help?


http://opera.ucsd.edu/~zyin2/fse11.pdf

Cocinelle example

/Il Find &&/|| operations that include the same argument more than once
/I# A common source of false positives is when the argument performs a side
/14 effect.
@r expression@
expression E;
position p;
@@
(
*E@p
l|...]| E
|
“E@p
&& ... && E
)
@script:python depends on org@
p<<rp;
@@

cocci.print_main("duplicated argument to && or ||",p)



Challenge: global checks

* No static checker | found can follow indirect
calls ("OO in C”, common in kernel)

struct foo_ops {
int (*do_foo) (struct foo *obj);

¥

foo->do_foo(foo);

e Can be done by using type information

e Misses a lot of potential bugs



Lock ordering: lockdep

* Deadlock from lock ordering ("ABBA™ bugs)
used to be common

* | ockdep basically eliminated this problem
* Checks lock ordering, interrupt



Kmemcheck / AddressSanitizer

e Check uninitialized/freed/out of bounds data
« Kmemcheck based on page faults

- Quite slow

e AddressSanitizer seems to be a better
alternative

— Compiler instrumentation, much faster
- Still need port to kernel (some reports already)



Thread checkers

Find data races:
- Shared data accesses not protected by locks
User space: helgrind, ThreadSanitizer, ..

Problem: kernel does not mark lock less accesses.
Solvable?

User:

__atomic_write(&foo, 1, _ ATOMIC...);
- Kernel:

Foo = 1;

mb();



Undefined behavior checker

 UBSan. New gcc/LLVM feature
 Checks undefined C behavior at runtime

- e.g. X << 100, signed integer overflows, ...
* Needs special runtime library

* \Would need to be ported to kernel



Fuzzers

 Trinity is a great tool
- Finds many bugs
* Needs manual model for each syscall
How do we cover all the ioctls/sys/proc files?

 Modern fuzzers around using automatic
feedback

- But not for kernel yet

- http://taviso.decsystem.org/making_software _dumber.pdf


http://taviso.decsystem.org/making_software_dumber.pdf

The biggest challenge

 How to run all these tools on every new patch:

- Cannot ask every developer to use all of them

o Static checkers are relatively easy

- But can we get beyond just deltas for new code?

* But how to run the dynamic tools?



Test suites

|deally all kernel code would come with a test
suite

- Then someone could run all the dynamic checkers

Difficult for hardware drivers
LKP, kernel unit tests, tools/* limited
Need a real unit testing framework



Coverage

» Kernel gcov can be used to test coverage of
test suites

» Should be used much more widely



Tracers

* Long beyond “real men don't use debuggers”
- Linux has good debuggers these days (kgdb etc.)

 But how to debug hard to reproduce bugs

- ldeal enough information to debug on first trigger
e Tracing:

- Low overhead instrumentation

- When problem triggers dump data



ftrace: function tracer

* Trace all functions in the kernel for PID

# trace-cmd record -p function -e sched switch -P $(pidof firefox-bin)
plugin function

disable all

enable sched switch All kernel functions
path = /sys/kernel/debug/tracing/events/sched switch/enable executed

path = /sys/kernel/debug/tracing/events/*/sched switch/enable

path = /sys/kernel/debug/tracing/events/sched switch/enable

path = /sys/kernel/debug/tracing/events/*/sched switch/enable
Hit Ctr1~C to stop recording

# trace-cmd report

firefox-bin-13822 [002] 36628.537061: function: sys poll

firefox-bin-13822 [002] 36628.537062: function: poll select set timeout
firefox-bin-13822 [002] 36628.537062: function: ktime get ts
firefox-bin-13822 [002] 36628.537062: function: timekeeping get ns
firefox-bin-13822 [002] 36628.537063: function: set normalized timespec
firefox-bin-13822 [002] 36628.537063: function: timespec_add safe
firefox-bin-13822 [002] 36628.537063: function: set normalized timespec
firefox-bin-13822 [002] 36628.537064: function: do sys poll

firefox-bin-13822 [002] 36628.537064: function: copy_from user
firefox-bin-13822 [002] 36628.537065: function: might fault
firefox-bin-13822 [002] 36628.537065: function: _cond_resched
firefox-bin-13822 [002] 36628.537065: function: should resched
firefox-bin-13822 [002] 36628.537065: function: need resched

firefox-bin-13822 [002] 36628.537066: function: test ti thread flag



ftrace

 Can dump on events / oops / custom triggers

» But still too much overhead in many cases to
run always during debug



Intel PT

 Upcoming Intel CPU feature
 Traces all branches with low overhead

* Will be supported in perf and gdb and with
“FlightRecorder”



Biggest challenge Is better tools to
understand traces (too much data)
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Understanding source code

» Often biggest problem finding code
» grep/cscope work great for many cases
» But do not understand indirect pointers (OO in C model
used in kernel): Give me all “"do_foo” instances
struct foo_ops {
int (*do_foo) (struct foo *obj);
} = { .do_foo = my_foo };
foo->do_foo(foo)

* Would be great to have a cscope like tool that
understands this based on types/initializers



Conclusion

* Linux has a lot of great tools for making kernel
development easier

* \We need them to control complexity
« But still many improvements possible

e Questions?
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