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 Event

 1988    Othello    Won Master    (Kai-Fu Lee) 

 1997    DeepBlue Won Kasparov    (IBM)

 2007    Top 10 Breakthrough    (Alberta)

 2011    Watson    Jeopardy Challenge    (IBM)

 Progress

History



 Introduction

 Go rule

 1) Who Has More Area Wins  2) Alive and Dead 

 One Of Most Difficult Challenges In AI

 Drosophila Of AI ?

 a) Fermat's Last Theorem b) Four Color Theorem

 Biostatistics, Classical Planning, Active Learning

 Page Search, Personalized Recommend, Natural Language

 Challenge

 1) Super Large Space   2) Unknown Evaluation

 Alpha-Beta Search Totally Fails !

Computer  Go



 BINGO!

 9x9:  6 Dan (Pro)    19x19:  1-2 Dan

 Country:  Top 1    World:  Top Level

Computer  Go



 Principle

 Solution To Zero-Sum Game

 Max Player Maximize The Chances Of Winning

 Min Player Minimize The Chances Max Player Winning

 Example

Mini-Max Search
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 Introduction

 Brugmann Applied In Go  (1993)

 Seemingly Ridiculous Idea

 Necessarily Bad or Slow ?

 In-Tree Part 

 Best First Search

 Mean-Value Comparison

 Out-Tree Part

 Randomly Playing Moves

 Until Terminal State  

Monte Carlo Search
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 Descend Process

 In-Tree Part And Out-Tree Part

 Until When Each Block Has Only Simple Eyes

 Backup Process

 Evaluate The Score Accurate And Fast

 Backup The Score Along The Path Reversely

Monte Carlo Search



 Problem

 Each Arm Provide Reward From Distribution

 Independent Distribution Associated To Each Arm

 Gambler Has No Initial Knowledge About Arms

 Objective: Maximize Reward Sum By Iterative Plays

 Background

 Extensively Studied Problem In Statistics

 Fundamental In Reinforcement Learning

 Exploration Vs. Exploitation Dilemma

 What Is Good Policy ?

Multi-Armed Bandit



 Introduction

 UCB = Upper Confidence Bounds  

 Auer Proposed  (2002)

 UCB1

 Initialization: Play Each Arm Once

 Loop: Play kth Arm That Maximizes This Formula

Rk/tk(n) + sqrt (2log(n)/tk(n))

Where n Is Overall Number Of Plays

 UCB1-Tuned

Rk/tk(n) + sqrt (log(n)/tk(n)·min{1/4, Tk(tk(n))})

 Auer Declares UCB1-Tuned Substantially Better Than UCB1

UCB  Algorithm



 Principle

 UCT = UCB Applied To Tree

 Consider Each Node As A Bandit

 Play Sequences Of Bandits

 Begin From Root And End At Leaf

 Formula

w/v + sqrt (2log(n)/v) (1)

w/v + sqrt(log(n)/v·min{1/4, T(v)}) (2)

 (2) Substantially Better Than (1) In Auer’s Experiments

 Correspond To Our Early Results

UCT Algorithm

0.65 0.53

0.85

0 0.67

0

0.75

0.73

0

1

0.83

0.78



 How Does Tree Grow

 Expand Some Node After Each Simulation

 Expand Nodes With Threshold T

 Expand Nodes Gradually  (Progressive Widening)

 How To Backup Values 

 Optimal Arm Is Played Exponentially More Often Than Any Arm

When Rewards Are In [0, 1]

 Not Return Real Score

 Only Return Win =1 Or Lose=0

UCT Algorithm



 Advantage

 Highly Selective Best First Search

 Only Require Black Box Simulator

 Usually Works Without Any Knowledge

 Converge To Optimal Policy With Appropriate Exploration

 Anytime, Computationally Efficient And Highly Parallelizable

UCT Algorithm



 UCT’s Weakness

 Initially Every Action Samples Once

 For Low Variance Every Action Samples Multi Times

 Slow Learning In Super Large Space

 Rapid Action Value Estimation

 Brugmann (1993) Gelly (2007)

 Consider Every Subsequent Action As First One

Let Rave(s,a) be rapid action value

For episode s1, a1, s2, a2, …, st

Rave(sm,an) is updated when

∀ sm∈ S, an∈ A(sm), m≤n and ∀ r<n, ar ≠ an

Rapid Action Value Estimation



 Rapid Action Value Estimation

 Linear Combination To UCB Formula

a·(w/v) + b·(rw/rv) (3)

Initially b≈1, RAVE Value ominates

Later b Decreases, a Increases

Eventually a≈1, b≈0, UCT Value Dominates

Rapid Action Value Estimation
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 Advantage And Disadvantage

 Learn Quickly With More Statistics (78%)

 Extensible To Partially Transposed Sequences

 Tricky, Empirical And Tuning

Rapid Action Value Estimation



Supervised Learning

 Learn What 

 Is 5x5 Pattern OK ?

 3x3 Pattern And Other Rules

 How To Learn

 Generalized Bradley-Terry Model

For Players,  P(i win) = γi / (γ1 + γ2 + … + γn)

For Teams,  P(1-2-3 win) = γ1γ2γ3 / (γ1γ2γ3 + γ2γ4 + … + γ1γ4γ5γ7)

Is Linearity Hypothesis Right ?

 How to Use Pro Manual

Consider ( γ1, γ2, …, γn ) ( R1, R2, …, RN )

L = P(R1)·P(R2)···P(RN),   P(Ri) = γi1γi2… γin / (γi1γi2… γin + …)    



Supervised Learning
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 Combination To (1)

 Easily And Straightforward

 γ’s Impact Decreases Rapidly  

w/v + sqrt (2log(n)/v) + H(p)/v

 Combination To (3)

 Not Straightforward Combination

 Worse Results Initially But Much Better Eventually

a·(w/v) + b·(rw/rv) + c·H(p)

Initially c≈1, H(p) Value Dominates

Later c Decreases, b Increases, RAVE Value Dominates

Eventually a≈1, b≈0, c≈0, UCT Value Dominates

Biasing Search With γ

Back to tree-growth



Thank You !
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