

Intro to NoSQL Database Algorithms

Nicolas Spiegelberg
Software Engineer, Facebook

QCon Hangzhou,
October 28th, 2012

1 Deconstructing a Database

2 Coordination Algorithms

3 Persistence Options

4 Storage Engine

5 Parting Thoughts

Agenda

What’s in a database?

In the beginning… MySQL

▪  Query Layer for Data Normalization

▪  Fits on Single Machine

▪  Read-dominated

▪  Stability using Custom Hardware

Shard Manager :: MySQL :: InnoDB :: EXT

Now… NoSQL

New Use Cases: Internet & Data Analytics

▪  Data DENormalization

▪  Fits on a Single 100/1000+ Machine(s)

▪  Read Write Dominated

▪  Stability using Custom Hardware Software

Thin Client :: HBase :: HDFS

New Problems…

1.  Data Denormalization => SQL NO! (well… kinda)

2.  Fits on 1000+ Machines => Coordination Algorithms

3.  R/W Flexibility => Storage Engine

4.  Stability via Software => Persistence Options

Coordination Algorithms

Network Topology
Typical layout
▪  Physical hosts

▪  Rack switch

▪  Cluster switch

▪  Data center

Physical Hosts

Rack Switches

Cluster Switches

Data Center

Sharding: Horizontal Scalability

Region

.

on click bottom one of first two on
the left move over to be added to
the third box

two clicks one by one

Sharding Creation

1.  Do not manually handle splits

▪  Also in original Cassandra

2.  Pre-split table on startup

▪  Shards = servers^2 / rack

3.  Default to MD5 Prefixing

▪  row => md5(row) + row

▪  harder to cross-row scan

Shard Assignment

Master/Slave
Maintain a shard -> server[] map

+ Placement Control

+ Easy to reason with bugs

+ Locality on Splits

- Separate process, more code

Distributed Hash Table
Hash ring map based on servers

+ Simpler

+ Decentralized

-  Large rebalance on split/death

-  No control

Shard Assignment (cont)

HBase
▪  Started out with randomly assigned map

▪  Tried a couple complicated algorithms: Munkres

▪  Switched to a Controlled DHT

▪  h[0] = hash(shard_name) pos[0] = h[0] % servers

▪  h[1] = hash(h[0]) pos[1] = h[1] % servers

Failure Management
Server Death
▪  Log Splitting

▪  Send 1 log to every server on the rack

▪  IO Fencing

▪  In Paxos, achieved by Quorum Requirement

▪  In M/S, achieved by independent failure domains (HDFS/ZK)

▪  Client Side Multiplexing

Persistence Options

Shard Replication
Where should it be handled?

▪  Kernel-level : MySQL

▪  File-level : HDFS/HBase

▪  Database-level : Cassandra

▪  Datacenter-level : Spanner

What do you mean by replicated?

▪  in-memory

▪  fsync

Shard Replication (cont)

How consistent?

▪  Strict: Pipeline

▪  Quorum: Paxos

▪  Loose: R + W < N

How many copies?

▪  2x (MySQL)

▪  3x (HBase)

▪  2.2x (HDFS Raid)

HDFS Raid

▪  Stripe Every N files by Parity

▪  Requires N files of similar [start,end]

Theory: use oldest files in LSMT

▪  meet this criteria

▪  in most cases, are the largest

▪  should achieve this in active state

Rack Switch Failure
The Problem
▪  Sometimes rack switches die

▪  Master reassigns new regions

▪  Where?

▪  Why?
Physical Hosts

Rack Switches

Cluster Switches

Data Center

Locality
Effect on network traffic

Locality Event

Block Placement
Problem:
▪  Making 3 copies of the data

▪  Placing them in the cluster

Original Algorithm:
▪  Local + rand() + rand()

▪  Meant for MR, so each file could
be scattered across every node

Physical Hosts

Rack Switches

Cluster Switches

Data Center

Grid Placement

Grid Placement window

▪  local + 2 other rack

Stats:
▪  p = 0.0001

▪  Default: 6.46171e-08

▪  New (x=1, y=2): 1.88544e-09

▪  30X improvement!

Per-Region Hash Ring Placement

Region
Server

Region
Server

rack1 rack2 rack3

2

4

1

3

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

4

1

4

1

2

4

1

33 3

2

4

2

2

4

1

Region
Server

Region
Server

Region
Server

rack1 rack2 rack3

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1
2
3
4

1

2

3

4

1
2
3
4

1

2

3

4

Region #1 Blocks

Region #2 Blocks

Region #3 Blocks

Pros:
•  locality-aware “region” load-balancing/failover
•  avoids network spikes on server failures
•  facilitates “smooth” cluster expansion

3

1 1 1

1
4

2
3

2 2
3 3

4 4

Storage Engine

. . . .
Shard #2

Log Structured Merge Tree

Shard #1

Server

. . . .

ColumnFamily #2

ColumnFamily #1 Memstore

HFiles flush

Data in HFile is sorted; has block index for efficient
retrieval

About LSMT
Write Algorithms are relatively-trivial

▪  Write new, immutable file

▪  Avoid stalls

Read Algorithms are varied

▪  Block Index

▪  Bloom Filter

▪  Time Range Filters

▪  Compaction

Block Index
Purpose
▪  Data stored in “Blocks”, which is ~ optimal disk read

▪  Shard contents within a file, based on block

▪  Avoids unnecessary seeks around the block

Bloom Filter
About
▪  Cheap point query

▪  Make a Hash of every Row or Row+Col (32 bits/entry)

▪  Set bits instead of using full Hash (~8 bits/entry)

▪  This makes false positives possible, but probabilistically bound

▪  Need to use a hash ring to manage probability

for i in [0,n]: array[Hash[i] % bloom.size()] = 1

Bloom Filter
Optimizations
▪  Combinatorial Hashing

▪  Hashing (Murmur, Jenkins) is a big CPU expense

▪  Instead of N different Hashes: Hash[0] + N * Hash[1]

▪  Folding

▪  If we oversize our bloom array, we can shrink it if size % 2 = 0

(Both N % 100 == X && N % 100 == X + 50 map to the same new location)

▪  Sharding

▪  Treat blooms like block index & have multiple per file

Optimizing HBase File Format
Block Index and Bloom Filter Shards are Stored Inline
▪  HFile v1

▪  Arbitrarily large indexes, Bloom filters

▪  Bloom filter loaded on 1st access

▪  HFile v2 (in production since Fall 2011)

Data Data Data Bloom Filter

Index

…

Data Data Bloom Data Index Data Bloom Data Index Data Index

Root Index Bloom Index

Time Range Filters

HFiles
▪  Log-structured Merge Tree

▪  Time-ordered Data Storage!
▪  Time-series data optimized
▪  Write-biased query optimized
▪  Short circuit on Mutations day… hour… …

HFiles

flush

Compactions: Intro
Critical for Read Performance
▪  Merge N files

▪  Reduces read IO when earlier filters don’t help enough

▪  The most complicated part of an LSMT

▪  What & when to select

HFiles

Merge

Sigma Compaction
Default algorithm in HBase 0.90

#1. File selection based on summation of sizes.

 size[i] < (size[0] + size[1] + …size[i-1]) * C

#2. Compact only if at least N eligible files found.

+ trivial implementation - non-deterministic latency

+ minimal overwrites - files have variable lifetime

 - no incremental compaction benefit

Tiered Compaction
Default algorithm in BigTable/HBase

#1. File selection based on size relative to a pivot:

 size[i] * C >= size[p] <= size[k] / C :: i < p < k

#2. Compact only if at least N eligible files found.

(groups files into “tiers”)

+ trivial implementation - more files seeks necessary

+ more deterministic behavior - not good for read-heavy workload

+ medium size files are warm - no incremental compaction benefit

Leveled Compaction
Default algorithm in LevelDB

#1. Bucket into tiers of magnitude difference (~10x)

#2. Shard the compaction across files (not just block index)

#3. Only the shard that goes over a certain size

+ optimized for read-heavy use - complicated algorithm

+ faster compaction turnaround - heavy rewrites on write-dominated use

+ easy to cache-on-compact - time range filters less effective

Parting Thoughts

Material Covered

1.  Coordination Algorithms

1.  Sharding Selection & Placement

2.  Server Recovery

2.  Persistence Options

1.  Replication Options

2.  Block Placement

3.  Storage Engine

1.  Filters: Block Indices, Bloom Filters, & Time Range

2.  Compactions

Material “I wished I could cover”

1.  Coordination Algorithms

1.  Paxos in-depth

2.  Read-repair

2.  Persistence Options

1.  Compression: Delta-encoding, Columnar Storage, LZO-GZ tiers

2.  Backup/Replication

3.  Storage Engine

1.  Delete Blooms

2.  Lazy Seek

Thought about Databases

▪  The underlying concepts are simple

▪  You keep coming back to the same handful of metrics

▪  The fun part: you must continually look at them in a different light

▪  This is what takes Databases so long to build

▪  It’s also why NoSQL DBs are still young

A mature database has 1000+ features, you can only add 1 at a time…
CHOOSE WISELY

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

