facebook

facebook

Intro to NoSQL Database Algorithms

Nicolas Spiegelberg

Software Engineer, Facebook

QCon Hangzhou,
October 28th, 2012

Agenda

1 Deconstructing a Database

2 Coordination Algorithms

3 Persistence Options

4 Storage Engine

5 Parting Thoughts

What's in a database?

In the beginning... MySQL

- Query Layer for Data Normalization
- Fits on Single Machine
- Read-dominated

- Stability using Custom Hardware

Shard Manager :: MySQL :: InnoDB :: EXT

Now... NoSQL

New Use Cases: Internet & Data Analytics

- Data DENormalization

- Fits on a-Sinrgle 100/1000+ Machine(s)

- Read Write Dominated

- Stability using Custom-Hardware Software

Thin Client :: HBase :: HDFS

New Problems...

1. Data Denormalization => SQL NO! (well... kinda)
2. Fits on 1000+ Machines => (Coordination Algorithms
3. R/W Flexibility => Storage Engine

4. Stability via Software => Persistence Options

Coordination Algorithms

Network Topology

Typical layout Data Center

- Physical hosts / ‘\

Cluster Switches

P e A

. Rack switch Rack Switches

I Physical Hosts

- Cluster switch

. Data center

Sharding: Horizontal Scalabillity

Region @)

—
——

l.. [r—

i.. I

P g
] | | | | | |]
: :
: :
:
L) | H L A | .
: :
: :
- — E—— E—
l o0 ImEE mmEm l : l Y I -
: :
: :
: :
: :
(: :
: :
: :
H
:
:
:
:
:
:
:
:

——

i.g I —

——

| o0

pr——

Y ——I

—

Sharding Creation

1. Do not manually handle splits

Also In original Cassandra

2. Pre-split table on startup

Shards = servers”®2 / rack

3. Default to MD5 Prefixing
row => mdS(row) + row

harder to cross-row scan

Shard Assignment

Master/Slave

Maintain a shard -> server[] map

+ Placement Control
+ Easy to reason with bugs
+ Locality on Splits

- Separate process, more code

Distributed Hash Table

Hash ring map based on servers

+ Simpler
+ Decentralized
- Large rebalance on split/death

- No control

Shard Assignment (cont)

HBase

- Started out with randomly assigned map

- Tried a couple complicated algorithms: Munkres
- Switched to a Controlled DHT

h[0] = hash(shard _name) pos[0] =
h[1] = hash(h[0]) pos[1] =

0] % servers

1] % servers

Faillure Management
Server Death

- Log Splitting
Send 1 log to every server on the rack

- |O Fencing
In Paxos, achieved by Quorum Requirement

In M/S, achieved by independent failure domains (HDFS/ZK)
- Client Side Multiplexing

Persistence Options

Shard Replication

Where should it be handled?
- Kernel-level : MySQL

- File-level : HDFS/HBase

- Database-level : Cassandra

- Datacenter-level : Spanner

What do you mean by replicated?
- In-memory

- fsync

Shard Replication (cont)

How consistent?
- Strict: Pipeline
- Quorum: Paxos

- Loose: R+ W < N

How many copies?
- 2x (MySQL)
- 3x (HBase)
- 2.2x (HDFS Raid)

HDFS Raid

- Stripe Every N files by Parity

- Requires N files of similar [start,end]

Theory: use oldest files in LSMT
- meet this criteria
- In most cases, are the largest

- should achieve this in active state

Rack Switch Failure
The PrOblem Data Center

. Sometimes rack switches die T

Cluster Switches

- Master reassigns new regions

!

. Where? E 1% :Rackvatches
- Why? !

I Physical Hosts

Locality

Effect on network traffic

Locality Event

Tk 'r""/‘ h\

05/8 10PM 05/9 12AM 05/9 02AM 05/9 04AM 05/9 06AM 05/9 0O8AM 05/9 10AM 05/9 12PM 05/9 02PM 05/9 04PM 05/9 06PM 05/9 08PM

\\ — sum::rxbyt//txbyt — sum::rxbyt//txbyt (Previous Day)J

Block Placement
Problem:

- Making 3 copies of the data

- Placing them in the cluster

Original Algorithm:
- Local + rand() + rand()

- Meant for MR, so each file could
be scattered across every node

Data Center

—

Cluster Switches

Rack Switches

!

!

Physical Hosts

Grid Placement

S 08080

Grid Placement window 08000

- local + 2 other rack 80888

B 800

Stats: "B N N N |
- p =0.0001) »

- Default: 6.46171e-08 S 08000

- New (X=1, y=2): 1.88544e-09 N @

seees

- 30X improvement! r - . -

sesees

Per-Region Hash Ring Placement

Region #1 Blocks

~
N\

T Region #2Blocks

Region #3 Blocks

T 11
Hl ¥ B2 2
91 18 B
414 4 4
Region 1 u
Server 2 2
38
4 4
Region u
Server .
3
4 18
rack1 rack2 rack3

Pros:

 |ocality-aware “region” load-balancing/failover
» avoids network spikes on server failures
 facilitates “smooth” cluster expansion

) 1 1 1
Al 2 2
383 3 3
414 4 4 4
Region 1 u
Server Z 2
3 3
4 4
Region Region |
Server Server B
B 3
4 4
rack rack2 rack3

Storage Engine

Log Structured Merge Tree

Server

Shard #2

Shard #1

-

ﬁolumnFamily #2

~

éolumnFamin #1

[Memstore J\

-

HFiles

~

‘)ﬂush

J

\\

_/

Data in HFile is sorted; has block index for efficient
retrieval

About LSMT

Write Algorithms are relatively-trivial
- Write new, immutable file

- Avoid stalls

Read Algorithms are varied
- Block Index

- Bloom Filter

- Time Range Filters

- Compaction

Block Index
Purpose

- Data stored in "Blocks”, which is ~ optimal disk read
- Shard contents within a file, based on block

- Avoids unnecessary seeks around the block

Bloom Filter
About

- Cheap point query
- Make a Hash of every Row or Row+Col (32 bits/entry)
- Set bits instead of using full Hash (~8 bits/entry)

This makes false positives possible, but probabilistically bound

Need to use a hash ring to manage probability

for i in [0,n]: array[Hash][i] % bloom.size()] = 1
N AR RN EERERIBRERERREREIRERE.

Bloom Filter
Optimizations
- Combinatorial Hashing
Hashing (Murmur, Jenkins) is a big CPU expense
Instead of N different Hashes: Hash[0] + N * Hash[1]
- Folding
If we oversize our bloom array, we can shrink it if size % 2 =10

(Both N % 100 == X && N % 100 == X + 50 map to the same new location)
- Sharding

Treat blooms like block index & have multiple per file

Optimizing HBase File Format

- HFile v1

Arbitrarily large indexes, Bloom filtersﬂ\

Index

Bloom filter loaded on 1st access | Data | [Data Data Bloom Filter
- HFile v2 (in production since Fall 2011)
Root Index Bloom Index
- N T Tee '
Data Data Index Data Bloom Data Index Data Data Index Bloom
4 4 4

!

!

Time Range Fllters

- Log-structured Merge Tree

Time-ordered Data Storage!
Time-series data optimized
Write-biased query optimized
Short circuit on Mutations

N
HFiles
A
/./
flush
N
HFiles

Compactions: Intro
Critical for Read Performance

- Merge N files
- Reduces read 10 when earlier filters don’t help enough

- The most complicated part of an LSMT

What & when to select

4)

HFiles

Sigma Compaction
Default algorithm in HBase 0.90

#1. File selection based on summation of sizes.

>
size[i] < (size[0] + size[1] + ...size[i-1]) * C
#2. Compact only if at least N eligible files found. l.
—

+ trivial implementation - non-deterministic latency
+ minimal overwrites - files have variable lifetime

- no incremental compaction benefit

Tiered Compaction
Default algorithm in BigTable/HBase

#1. File selection based on size relative to a pivot:

size[i] * C >= size[p] <=size[k] /C i<p<Kk

#2. Compact only if at least N eligible files found.

I | II

+ trivial implementation - more files seeks necessary

(groups files into “tiers”)

+ more deterministic behavior - not good for read-heavy workload

+ medium size files are warm - no incremental compaction benefit

Leveled Compaction

Default algorithm in LevelDB

#1. Bucket into tiers of magnitude difference (~10x)
#2. Shard the compaction across files (not just block index)

#3. Only the shard that goes over a certain size

LO

L1 =
L2 -
+ optimized for read-heavy use - complicated algorithm
+ faster compaction turnaround - heavy rewrites on write-dominated use

+ easy to cache-on-compact - time range filters less effective

Parting Thoughts

Material Covered

1. Coordination Algorithms

Sharding Selection & Placement

Server Recovery

2. Persistence Options
Replication Options

Block Placement

3. Storage Engine

Filters: Block Indices, Bloom Filters, & Time Range

Compactions

Material “I wished | could cover”

1. Coordination Algorithms
Paxos in-depth
Read-repair

2. Persistence Options

Compression: Delta-encoding, Columnar Storage, LZO-GZ tiers
Backup/Replication

3. Storage Engine
Delete Blooms

Lazy Seek

Thought about Databases

- The underlying concepts are simple
- You keep coming back to the same handful of metrics

- The fun part: you must continually look at them in a different light
This is what takes Databases so long to build

It's also why NoSQL DBs are still young

A mature database has 1000+ features, you can only add 1 at a time...
CHOOSE WISELY

facebook

