
Together, we can make
difference

The Theory, History and Future

of

System Linkers

Luba Tang

CEO & Founder, Skymizer Inc.

Outline

• The History
– Target Independent Linkers

– Post Optimizers

– Instrumentation Tools

• The Theory
– Linking Language

– Fragment-reference graph

• The Future
– for GPGPU; for virtual machines

– The bold project

唐文力 Luba Tang

CEO & Founder of Skymizer Inc.
Architect of MCLinker and GYM compiler

Compiler and Linker/Electronic System Level Design

Linker: The Elephant in the Room

• System linkers are very complicated. Only a few team can make
a full-fledge system linker.
– There are only four open source linkers that can be said full-fledge.

• GNU ld, Google gold can link Linux kernel
• Apple ld64 can link Mac OS X and iOS
• MCLinker can link BSD and Android system

• ELF linkers are super complicated. There are many
undocumented behaviors and target-specific behaviors.
– The other linkers are developed for more than three years and can not

be released. The linking problem is intricate.

• Although a lot of researches have proven linker itself can
optimize programs at a high performance level, developers still
not get benefit from these researches.

3

No Linker Really Optimize Programs

• MCLinker is 35% faster than the Google gold, and the Google
gold is ~200% faster than GNU ld

• If we turn on optimization flags, the output quality is almost
identical to all linkers (<3 %)

Comparison of ELF Linkers

GNU ld Google gold MCLinker

License GPLv3
Cannot be adopted by Android

UIUC BSD-Style

Target Platform All Linux mainstream
devices

ARM, X86, X86_64,
(Mips, SPARC)

All Android devices.
ARM, X86, Mips
(X86_64, X32, Mips64 and
Hexagon)

Object Format COFF, a.out, ELF ELF only ELF, extensible

Line of Code 500+K 100+K 50+K

Performance - Fast Fastest
Steadily x2 than GNU ld, x1.3
than Google gold

Intermediate
Representation

The BFD library for
reference graph

None Command line language and
reference graph

5

The Most-Recently Important

Target Independent Linker Research

lcc link
1982

?

1982
應該超過半數聽眾

還沒出生

LINK: A Machine-Independent Linker

• Team
– Christopher W. Fraser
– David R. Hanson

• 1982, Software Practice and Experience
– Define linker and object language (the predecessor of

linker script)
– Define three basic rules

• Define the condition of resolution
• Define the condition of absolute objects
• Define when to pull in a library

lcc link
1982

Linker; Post Optimizer; Instrumentation

lcc link
1982

?

後面的人好像重點
開始歪掉

OM: Code Optimization at Link-Time System

• Team
– Amitabh Srivastava
– David W. Wall

• 1992 Technical Report
– An approach to transform binary into RTL
– Use RTL to do inter-procedural optimization (5%~14%,

SPEC)
• Dead code elimination
• Loop Invariant Code Motion (LICM)

• 1994 SIGPLAN (3.8%, SPEC)
– Replace load instruction and eliminate GAT
– Reduce code size by 10% or more

OM
1992, 1994

OM: Code Optimization at Link-Time System

• Key Contributions of OM are

– OM identifies the problems to translate binary
back to assembly.

• PC-relative branches only

• Convert jump table back to case-statement

• No delayed branch, no delay slot

OM
1992, 1994

退休 Ya!

Spike: A successor or a competitor of OM

• DEC Team

– Robert Cohn

– David W. Goodwin

– P. Geoffrey Lowney

• 1996 Micro 29 (They call themselves
another OM)

– Hot Code Optimization to use shorter jump

– Works on Windows/NT Digital Alpha 3~8%
improvement

Spike
1996, 1997

RC

ATOM: Analysis Tools with OM (Best of PLDI 1979-1999)

• Dream Team - 1999
– Amitabh Srivastava (President of EMC)

– Alan Eustace (Senior VP of Google Search)

ATOM
1999

ATOM: Analysis Tools with OM (Best of PLDI 1979-1999)

• Key Contributions of ATOM are

– ATOM defines the use scenario and APIs of an
instrumentation tool

– Intel Pin follows APIs of ATOM.

• The rest contributions:

– Reducing procedure call overhead (caller-save and
callee-save)

– Use virtual machine to instrument program

• Defines the necessary memory layout

Chronicle of Linker Optimization

OM
1992, 1994

Spike
1996, 1997

RC

ATOM
1999

Alto
1999

ICFG
2000, 2001, 2002 Diablo

2003, 2005, 2007

Bruno
De

BUS

Pin
2005, 2007, 2011

RC

Alto: A Link-Time Optimizer for the Compaq

Alpha

• Team

– Robert Muth

– Saumya Debray

– Scott Watterson

– Keo De Bosschere

• Convert binary into control flow graph

– General approach

– The inspirer of ICFG

Alto
1999

Alto: A Link-Time Optimizer for the Compaq

Alpha

• Powerful Analysis and Optimization
– Simplification

• Dead code elimination
• Normalize operations who express the same semantics
• Use nops instead of remove instructions directly

– Analysis
• Machine level idioms for control transfer
• Live analysis (register level)

– Optimization
• Constant propagation (remove load, 6.4%)
• Dead code elimination
• Unused memory elimination (remove load, speed up 5.7%)
• Low level inlining (10% on average)
• Profile-directed code layout (6.5%)
• Instruction scheduling

ICFG: Interprocedural Control Flow Graph

• Team
– Saumya Debray
– William Evans
– Robert Muth
– Daniel Kastner
– Bjorn De Sutter
– Koen De Bosschere

• ACM Trans. on Programming Languages and
Systems, 2000
– Defines ICFG
– Collect compiler techniques for code compaction
– Reduce 30% on the average

ICFG
2000, 2001, 2002

Diablo: Post-Pass Optimization

• Team, Collection of Euro
– Bruno De Bus
– Saumya Debray
– William Evans
– Robert Muth
– Daniel Kastner
– Ludo Van Put
– Bjorn De Sutter
– Koen De Bosschere

• First complete post-pass optimizer
– A lot of following researches

Diablo
2002 - 2007

Bruno
De

BUS

Diablo: Post-Pass Optimization

• For code size, C++ have more opportunity than
C
– Sifting out the Mud: Low Level C++ Code Reuse,

OOPSLA’02
• Reduce 27~70%, 43% on average

– Combining Global Code and Data Compaction,
LCTES’01
• Reduce 23.6%~46.6%; 8% faster

• CFG reconstruction becomes mature
– Generic Control Flow reconstruction from Assembly

Code, LCTES’02
– Can handle delay slots and restricted indirection

Pin: Building Customized Program Analysis

Tools with Dynamic Instrumentation

• Team, Collection of USA, Intel
– Chi-Keung Luk
– Robert Cohn
– Robert Muth
– Harish Patil
– Artur Klauser
– Geoff Lowney
– Steven Wallace
– Vijay Janapa Reddi
– Kim Hazelwood

• Pin release the power of program analysis
– 1608 citation since 2005
– Heavily cited in GPGPU and HSA area

Pin
2005, 2007, 2011

RC

Pin: Building Customized Program Analysis

Tools with Dynamic Instrumentation

State-of-Art instrumentation tool

Pin Provides ATOM-like APIs

• User can write his own instrument and analysis code

Linker: The Elephant in the Room

• Although a lot of researches have proven

linker itself can optimize programs at a high

performance level, developers still not get

benefit from these researches.

24

Outline

• The History
– Target Independent Linkers

– Post Optimizers

– Instrumentation Tools

• The Theory
– Linking Language

– Fragment-reference graph

• The Future
– for GPGPU; for virtual machines

– The bold project

唐文力 Luba Tang

CEO & Founder of Skymizer Inc.
Architect of MCLinker and GYM compiler

Compiler and Linker/Electronic System Level Design

Introduction to Linker Intermediate Representation

• MCLinker is the first *ELF linker to provide an intermediate
representation (IR) for efficient transformation and analysis

• MCLinker provides IR on two levels
– Linker Command Line Language
– Fragment-Reference Graph

• Fragment is the basic linking unit, it can be
– A section (coarse granularity)
– A block of code or instructions (middle granularity)
– An individual symbol and its code/data (fine granularity)

• MCLinker can trade linking time for the output quality.
– The finer granularity,

• Fast, smaller program
• Longer link time

* Nick Kledzik invents the Atom IR in ld64 for MachO. ld64 inspires MCLinker IRs

The Linker Command Line Language

• Linker’s command line options is a kind of language

– The meaning of a option depends on
• their positions

• the other potions

– Some options have its own grammar

▪ Four categories of the options

– Input files

– Attributes of the input files

– Linker script options

– General options

▪ Examples

ld /tmp/xxx.o –lpthread

ld –as-needed ./yyy.so

ld –defsym=cgo13=0x224

ld –L/opt/lib –T ./my.x

The GNU ld Linker

• The GNU ld linker is an interpreter of the
command line language

– Processing is recursive.

– No clear separation between individual steps

– Binary File Descriptor (BFD) is the only IR

The Google gold Linker

• The Google gold linker separates linking into two stages
– Symbol resolution
– Relocation of instructions and data

• Although it has separated the linking processes, it does not provide reusable
IR for optimization and analysis

• The Google gold linker illustrates an efficient linking algorithm
– It’s x2 faster than the GNU ld linker
– Support multiple threads. Appropriate to cloud computing

MCLinker

• MCLinker separates the linking into four distinct stages
– Normalization – parse the command line language
– Resolution – resolve symbols
– Layout – relocate instructions and data
– Emission – emit file by various formats

• MCLinker provides two level intermediate representation (IR)
– The command line language level
– The reference graph level

Input Files on The Command Line

• An input file can be an object file, an archive, or a linker
script

• Some input files can be defined multiple times

• The result of linking depends on the positions of inputs
on the command line.
– Weak symbols are first-come-first-served
– COMDAT sections are first-come-first-served

• Two semantics to read input files
– INPUT(file1, file2, file3, ...)
– GROUP(archive1, archive2, archive3, ...)

• Archives in a group are searched repeatedly until no new
undefined references are created

$ ld a.o –start-group b.a c.a –end-group d.o e.o

The Input File Tree

• We can represent the input files on
the command line by a tree structure
– Vertices describes input files and

groups on the command line
• Object files
• Archives
• Linker scripts
• Entrances of groups

• Edges describe the relationships between
vertices
– Positional edges
– Inclusive edges

• Linkers resolve symbols by DFS and merge sections by BFS

• Example
$ ld a.o –start-group b.a c.a –end-group d.o e.o

Attributes of Input Files

• Attributes change the way that a linker handles the input files

• Attributes affect the input files after the attribute options

Functions Options Meanings

Whole archives --whole-archive Includes every file in the archive

Link against dynamic
libraries

-Bdynamic Search shared libraries for -l option

As needed --as-needed Only add the necessary shared libraries to
resolve symbols

Input format --format= The format of the following input files

Attributes in The Input File Tree

• Every input has a set of attributes

• In the MCLinker implementation,
we give every vertex a reference
to its attribute set

• If two vertices have identical
attributes, they can share a
common attribute set.

• Example
$ld ./a.o --whole-archive
 --start-group ./b.a
./c.a --end-group
 --no-whole-archive
 ./d.o ./e.o

Normalization

• Transform the command line language into the
input file tree

– Parse command line options

– Recognize input files to build up sub-trees

– Merge all sub-trees to a form the input file tree

Steps of Normalization

• Step of normalization

1. Parse the command line options

2. Recognize archives and linker
scripts

3. Read the linker scripts and
archives to create sub-trees

4. Merge all sub-trees

• Example

$ ld ./a.o ./b.a ./c.o

Traverse the Input File Tree

• MCLinker provides different iterators for different
purposes
– For symbol resolution

• Depth first search for correctness

– For section merging
• Breadth first search for cache locality of the output file

Resolution

• Transform the input file tree into the reference
graph

– Resolves symbols

– Reads relocation

– Builds the reference graph

Symbols and Relocations

• A fragment is a block of instruction code or data in a module
– A fragment may be

• a function,
• a label (Basic block),
• a 32-bit integer data, and so on.

• A defined symbol indicates a fragment

• A relocation represents an use-define relationship between two
fragments

define @bar()

…

add @a, 0x1, 0x2

…
@a = global i32 0
…

Module X Module Y

relocation
use define

Symbol
@a

Symbol
@bar

Fragment-Reference Graph (1/2)

• A reference is a symbolic linkage between two

fragments

– A reference is an directed edge from use to define

• MCLinker represents the input modules as a graph structure
– Vertices describe the fragments of modules
– Edges describe the references between two fragments

relocation

use define

symbol define fragment use fragment

a reference

Fragment-Reference Graph (2/2)

• A Fragment-Reference Graph is a digraph, FRG = (V, E, S, O)
– V is a set of fragments
– E is a set of references, from use to define
– S is a set of define symbols. They are the entrances of the graph
– O is a set of exits and explains later.

__start __global

fragment

edge

Symbol Resolution

• Determine the topology of the reference graph
– Relocation is a plug
– Define symbol is a slot
– Symbol resolution connects plugs and slots.

• Symbols has a set of attributes to help linkers determine the correct
topology

relocation

use

define

symbol define fragment

use fragment Undefine symbol

define

symbol define fragment

define

Which
one?

Optimizations on the Fragment-Reference Graph

• Fragment stripping
– Remove unused fragment for shrink code size (Reachability

problem)
– Traditional linkers strip coarse sections. But MCLinker can

strips finer-grained fragments.
– The finer granularity, the smaller code size

• Branch optimization
– Replace high cost branch by low cost branch
– Optimizing by change of the relocation type

• Low-level inlining - ICF

• Fragment duplication for TLS optimization and copy
relocations

Layout

• To serialize the reference graph into a address
space

– Scan relocations

– Layout

– Apply relocations

Exits of The Fragment-Reference Graph

• A Fragment-Reference Graph is a digraph, FRG = (V, E, S, O)
– O is a set of exits. An exit represents a dynamic relocation to GOT.
– Represent to access external variables or to call an external function exits the FRG

• If the defining fragment is in an external module, then MCLinker will add exits
for the references to the outside module.
– We have no way to know the memory address of the external module until the load time
– We add the Global Offset Table (GOT) for the unknown addresses
– We add dynamic relocations for all entries of the GOT
– Loader will apply the dynamic relocations and set the correct address in the GOT.
– The program use the GOT to accesses the external module indirectly

__start

GOT
relocation

use define

relocation

exit

Layout

• Layout is a process to finalize the address of fragment and symbols
– Sorts FRG=(V, E, S, O) topologically
– Assigns addresses to {V, S, O}

• Before layout, we must calculate the sizes of all elements of the graph
– Relocation scanning

• Reserve exits and calculate the sizes of all exits
• Undefined global symbol, GOT, and dynamic relocations

– *Pre-layout
• Calculate the size of all fragments
• Calculate the size of all entrances

– Global symbols and the hash table

* MCLinker follows the Google gold linker’s naming. But pre-layout is opaque and may be renamed.

Apply relocation (1/2)

• Adjusts the content of using fragments
– Final addresses of symbol is known after layout
– Correct use fragment by accessed address

add @a , 0x1, 0x2
…
0x24 @a
…

Symbol Table Module Y

relocation

use define

0x24

Apply relocation (2/2)

• Replaces absolute addresses by PC-related offset if supported by the target

• Basic Relocation Formula
S – P + A
– S: the symbol value
– P: the place of the use instruction
– A: addend, adjustment (by the instruction format)

…

@a

…

add @a , 0x1, 0x2

S

P

S - P

A

address space

Optimizations on Layout

• Dynamic Prelinking
– If the system puts shared libraries at a fixed memory

location, we can fill GOT with fixed addresses to avoid
symbol look up in the loader

• Static Prelinking
– If the system puts shared libraries at a fixed memory

location, we can directly refer to the fixed addresses
without any exits

• Symbol Stripping
– Strip the undefined symbols which is not a exit

• Sections/functions/basic block Reordering
– Linker knows the address and can perform better

reordering

Emission

• Emits the module in the output formats
– Adds format information
– Writes down the IR

• In order to improve both cache and page locality, MCLinker
collects and performs most file operations in this stage.
– MCLinker copies the content in the inputs and applies the resolved

reference in this stage.

Outline

• The History
– Target Independent Linkers

– Post Optimizers

– Instrumentation Tools

• The Theory
– Linking Language

– Fragment-reference graph

• The Future
– for GPGPU; for virtual machines

– The bold project

唐文力 Luba Tang

CEO & Founder of Skymizer Inc.
Architect of MCLinker and GYM compiler

Compiler and Linker/Electronic System Level Design

The bold Project

Challenge: Unified Shared Memory of

Heterogeneous Many-Core System

• Installation time compilation
– GPGPU languages (OpenCL, CUDA, RenderScript)
– Virtual Machine (Dalvik, RenderScript)

• Heterogeneous Many-core System
– Universal ELF

Unified Loader

Modular Linker

GCC LLVM Dalvik RenderScript

ARM HSA GPU DSP

OpenCL

The bold Project

• BSD licensing linker
– General purpose linker/loader
– Focus on optimization
– Linking in parallel

• OA (Owner agreement) and CA (Committer
agreement)
– Avoid interest confliction between industry and

community.
– Legal person can not be an owner

Fortune favors the bold

