
Game Server Development in
node.js

网易杭州研究院

谢骋超

@圈圈套圈圈

@xiecc

Category

Overview

 Framework

 Practice

 Performance

Overview---node.js and game
server

 Game Server

Fast Scalable

Network Real-time

Node.js is a platform built on Chrome's JavaScript

runtime for easily building fast, scalable network

applications. Node.js uses an event-driven, non-

blocking I/O model that makes it lightweight and

efficient, perfect for data-intensive real-time

applications that run across distributed devices.

Overview --- advantages
 Scalability --- event driven I/O
 Game, high density network communication

 Language, javascript
 HTML5 – same language in client and server

 Really quick iteration

 Multi-Process, Single thread
 Google grits, mozilla browser quest, single

process

 multi process VS multi thread

https://developers.google.com/live/shows/ahNzfmdvb2dsZS1kZXZlbG9wZXJzcg4LEgVFdmVudBjb9NgCDA/
http://hacks.mozilla.org/2012/03/browserquest/

Overview -- disadvantage
 Some CPU sensitive actions

Path finding

AI

 Solution

Optimization

Divide process

All can be solved in practice

Overview -- our demo

Overview---architecture of
demo

Overview --- game VS web

 Long connection VS Short
connection

 Partition: area based VS Load
balanced cluster

 State VS Stateless

 Broadcast VS Request/response

 Request&tick driven VS Request
driven

Overview --- how to solve
complexity

Too … complicated?

solution: framework

Framework --- web VS game

Web

Tomcat/Jetty

Struts/Spring

ruby on rails

django

express

Game

Reddwarf

SmartfoxServer

Bigworld

http://www.reddwarfserver.org/
http://www.smartfoxserver.com/
http://www.bigworldtech.com/

Category

Overview

 Framework

 Practice

 Performance

Framework ---

framework

data-
sync

seq-
queue

schedule ai robot

pathfind

aoi

Library

. . .

Admin
console

tools

Realtime, multi-server app framework

Framework --- design goal
 Abstract of servers(processes)
 Auto extend server types

 Auto extend servers

 Abstract of request , response and broadcast
 Zero config request

 Simple broadcast api

 Other mechanisms: filter, session

 Servers communication---rpc framework

Framework --- server
abstraction

frontend

frontend

backend

backend

backend

backend

master

Framework --- server
abstraction

Frontend（
connector）

 Client connection

 Maintain session
information

 Dispatch request to
backend

 Push message to client

Backend
 Handle request from

frontend

 Push messages to
frontend, through
channel or response

 Rpc service

Framework--- server
abstraction

Duck type

fronten
d

con
nect
or

backend

area

chat

status

Framework---server
abstraction
Convention Over Configuration

 Classify servers by folders

 handler: for client request

 remote: for rpc

 All server code in one project

 Developer job: fill the handler

 and remote

server type

Framework---server
abstraction

Framework --- request
abstraction

 Zero config

 Client, like ajax

 Server, like web mvc framework

Framework --- rpc framework
 Zero config

 Auto route

app.rpc.chat.chatRemote.kick

Framework ---
channel&broadcast

Push messages to a group of
users

channelService.pushMessageByUids(msg,
uids, callback);

var channel =
channel.getLocalChannelSync(‘area1’);

channel.pushMessage(msg);

Framework ---
channel&broadcast

area connectors client

channel

uids

connector1

connector2

client1

client2

clientn

…

regroup

uids1

uids2

… …

broadcast

 Easy API

 Most frequent action

 Potentially performance
problem

Category

Overview

 Framework

 Practice

 Performance

Practice --- game demo
 Develop time(first version): 2012-5-14~2012-

6-30

 Client
 Html 5, based on colorbox framework

 Almost 6,000 lines code

 Server
 Node.js, based on pomelo framework

 Almost 6,000 lines code

Practice --- simplest player
move

client

Area1

connector

client1

client2

clientn

…

1、Move

request

3、Move

Handler

2、Forward

4、Backward

5、Broadcast

6、Play move

animation

Practice --- Client Move
Request

… find path, move animation

pomelo.request({route:’area.playeHa
ndler.move’, path: path}, function
(result){

 …

});

Practice --- area server handler

handler.move = function(req,
session, next) {

 … verify path

 … handle move

 channelService.pushMessagesByU
ids(

 route:’onMove’,

 ….);

 session.response({code:OK});

 next();

}

Practice --- client play move

pomelo.on(‘onMove’,
function(data) {

 play move animation

 …

});

Practice --- character move

Character Move, isn’t that
easy?

In reality , it’s hard

Practice --- handle move
 Different situations
 Player move, mob move

 AI driven or player driven

 Smooth effect
 Client prediction

 Latency Compensate

 How to notify
 AOI(area of interest)

Category

Overview

 Framework

 Practice

 Performance

Performance --- overview
 The indicator
 The max online users

 Response time/throughput

 Single area or game?

 The variation
 Game logic: round or realtime, room or infinite

 Map size, character density

 Balance of areas

 Test parameters: Think time, test action

Performance --- target
 Area online users
 next-gen:

 Socket.io: 25,000 concurrent users

 But in the real world
 The real online data: maximum 1,000 concurrent

users per area, 8,000 concurrent users per group
game servers

http://www.next-gen.cc/index.php?option=com_content&view=article&id=3&Itemid=4
http://www.next-gen.cc/index.php?option=com_content&view=article&id=3&Itemid=4
http://www.next-gen.cc/index.php?option=com_content&view=article&id=3&Itemid=4

Performance --- tools

Stress testing for websocket--
pomelo-robot

master

agent agent

robot robot robot robot robot

Performance --- tools

Stress test console

Performance --- tools, profiler
Server profiler

Performance --- stress testing

 Stress on single area, increasing step
by step

 Real game logic simulation
Roam, fight, pick
Think time: 2s~4s

Performance --- hardware
 CPU , 24 cores

 Mem, 48G

Performance --- stress testing

Performance --- stress testing

Performance --- progress
 5 rounds

 Online users: 200 to 1600…

 Response time: 300ms

 Problems solved:
 Html 5, client side memory leak

 Path finding and aoi optimization

 Data too… fat, reduce weight

 Unclean connection data, make socket.io crazy

 Some api implementation: dataApi

 Divide process: path finding

 And… broadcast

Performance --- broadcast

200 online users, connector 100%
cpu

Area connectors client

channel

uids

connector1

connector2

client1

client2

clientn

…

regroup

uids1

uids2

… …

broadcast

tick:

100ms

Performance --- channel, where is wrong?

tick:50ms

serialize deserialize

serialize

serialize

serialize

deserialize

Performance --- connector
 Connector--- the middle man

What do I need data for?

connector1

connector2

…

Message in

forward

Parse the route

area
{route:’area.playerH

andler.hello’,

data:{…}}

area

forward

broadcast

Client

encode

Decode: only route

Stringify

parse

Serialize

deserialize

Performance --- the package
 Pomelo-protocal

 Only parse head for route information：

\0\0\0\3\34connector.loginHandler.lo

gin{“username”:”xcc”,……..}

Performance --- the result
 1600 onlines

Performance --- the result
 1600 onlines , server load

Isn’t that amazing? no

Performance --- the result
 800 onlines, fight each other

Performance --- the result
 Server load, fight each other

TODO
 Performance improvement
 The broadcast data size

 GC, object pool, or… really crazy

 rpc underlying protocal : socket.io, need
change

 Interface, tools improvement

 Document, website

 Open source: 2012-11

Q&
A

