
AWS Cloud Design Patterns &
Practice

丁建 2014/06/07

EC2

S3
SQS

SNS

CloudWatchEBS

SDB IAM

User
AWS

Domain Network

Our Service

Internet

Internet

I am guessing this is a future...

Design Principles

Principles

Stateless

Loose
Coupling

Elasticity

Automate
d

Log
Everything

Failure As
Event

• Stateless Image
• Stateless EC2 instance

• For scalable purpose
• Decouple from location, platform, time, and data format

• Each layer, service, component should be elasticity
• Bottleneck will ruin the cloud advantage
• No SPF

• Scale frequently
• Manual operation is fallible

• No disk capacity limitation
• Not easy to debug in cloud environment, use log instead
• Resource disappear after scaling
• No log level, or level is just for reference

• Design for failure
• Can recover from disaster quickly

I am guessing this is a future...

http://en.wikipedia.org/wiki/Design_Pattern
A design pattern in architecture and computer science is a formal way
of documenting a solution to a design problem in a particular field of
expertise.

Cloud Design Pattern Concept

Software Design Patterns
http://en.wikipedia.org/wiki/Software_design_pattern
In software engineering, a design pattern is a general reusable
solution to a commonly occurring problem within a given context in
software design.

Cloud Design Patterns?
A general reusable solution to a commonly occurring problem within
a given context in cloud computing system design.

Design Patterns

I am guessing this is a future...

Cloud Design Patterns

Cloud Computing Design Patterns -- Thomas Erl, Amin Naserpour
http://cloudpatterns.org/

AWS Cloud Design Patterns -- Ninja of Three
http://en.clouddesignpattern.org

Patterns For Cloud Computing – Simon Guest
http://www.slideshare.net/simonguest/patterns-for-cloud-computing

Cloud Computing Patterns -- Christoph Fehling, Frank Leymann,
Ralph Retter, Walter Schupeck, Peter Arbitter
http://www.cloudcomputingpatterns.org/

I am guessing this is a future...

Patterns For Cloud Computing by Simon Guest

• Using the Cloud for Scale
• Using the Cloud for Multi-Tenancy
• Using the Cloud for Compute
• Using the Cloud for Storage
• Using the Cloud for Communications

I am guessing this is a future...

Cloud Computing Design Patterns by CloudPatterns.org

 Prentice
Hall/Pearson PTR

 Available: 2014
 Hardcover, ~ 550

pages

Scalability & Resource
Pooling

•Dynamic Scaling &
Elasticity Patterns

•High Availability
Patterns

•Bursting & Balancing
Patterns

Reliability & Recovery

•Failover & Reliability
Patterns

•Disaster Protection
& Recovery Patterns

•Physical Platform
Patterns

•Virtualization
Patterns

•Data and Storage
Patterns

•Capacity Patterns

Infrastructure Patterns

Security

•Trust Boundary
Patterns

•Hardening Patterns
•Privacy &

Confidential Data
Exchange Patterns

Monitoring

•Cloud Monitoring
Patterns

•Usage Tracking &
Billing Patterns

•Metric Collection &
Triggers Patterns

Supplemental

•Common Compound
Design Patterns

•Strategic
Architecture
Considerations

I am guessing this is a future...

Example: Shared Resources

How can the capacity of physical IT resources be used to its potential?

Problem: Allocating dedicated IT resources to individual consumers can be wasteful and underutilize their
collective capacity.

Solution : Physical IT resources are shared by partitioning them into lower capacity virtual IT resources that
are provisioned to multiple cloud consumers.

Application: Virtualization technology is used to create virtual instances of physical IT resources. Each
virtualized IT resource can be assigned to a cloud consumer, while the underlying physical IT
resource is shared.

Mechanisms: Audit Monitor, Cloud Storage Device, Cloud Usage Monitor, Hypervisor, Logical Network
Perimeter, Resource Replication, Virtual Server

Compound Patterns: Burst In, Burst Out to Private Cloud, Burst Out to Public Cloud, Elastic
Environment, Infrastructure-as-a-Service (IaaS), Multitenant Environment, Platform-as-a-Service (PaaS), Private
Cloud, Public Cloud, Resilient Environment, Software-as-a-Service (SaaS)

I am guessing this is a future...

Each cloud consumer is allocated a virtual server instance of a single underlying physical server. In this case,
the physical server is likely greater than if each cloud consumer were given its own physical server. However,
the cost of one high-capacity physical server is lower than four medium-capacity physical servers and its
processing potential will be utilized to a greater extent.

I am guessing this is a future...

NIST Cloud Computing Reference Architecture Mapping
This pattern relates to the highlighted parts of the NIST reference architecture, as follows:

I am guessing this is a future...

Cloud Computing Patterns by Frank, et al

 Springer Vienna
 Available: 2014
 ISBN: 978-3-7091-1567-1

(Print) 978-3-7091-1568-8
(Online)

 367 pages

Cloud Computing
Fundamentals
•Static workload
•Periodic workload
•Public Cloud
•Private Cloud
•… 8 Others

Cloud Offerings
•Elastic Infrastructure
•Elastic Platform
•Node-based
Availability

•Hypervisor
•… 15 Others

Cloud Application
Architectures
•Loose Coupling
•Distributed Application
•Stateful Component
•Stateless Component
•… 17 Others

Composite Cloud
Applications
•Two-Tier Cloud
Application

•Three-Tier Cloud
Application

•Content Distribution
Network

•Hybrid User Interface
•… 7 Others

Cloud Application
Management
•Provider Adapter
•Managed Configuration
•Elasticity Manager
•Elastic Load Balancer
•… 7 Others

I am guessing this is a future...

Example: Loose Coupling

Context: Information exchange between applications and their individual components as well as associated
management tasks, such as scaling, failure handling, or update management can be simplified
significantly if application components can be treated individually and the dependencies among
them are kept to a minimum.

A communication intermediary separates application functionality from concerns of communication
partners regarding their location, implementation platform, the time of communication, and the used
data format.

How can dependencies between Distributed Applications and between
individual components of these applications be reduced?

Solution: Communicating components and multiple integrated applications are decoupled from each other by
interacting through a broker. This broker encapsulates the assumptions that communication partners
would otherwise have to make about one other and, thus, ensures separation of concerns.

I am guessing this is a future...

AWS Cloud Design Patterns by NoT

Ninja of Three
• @KenTamagawa
• @c9katayama
• @suz_lab

9 Categories, 48 Patterns

• Basic Patterns
• Patterns for Processing Static Content
• Patterns for Batch Processing
• Patterns for High Availability
• Patterns for Processing Dynamic Content
• Patterns for Uploading Data
• Patterns for Relational Database
• Patterns for Operation and Maintenance
• Patterns for Network

I am guessing this is a future...

Basic Patterns

• Scale Up Pattern --- Dynamic Server Spec Up/Down

• Scale Out Pattern --- Dynamically Increasing the Number of Servers

• Scheduled Scale Out Pattern --- Increasing or Decreasing the Number of Servers

Following a Schedule

• On-demand Disk Pattern --- Dynamically Increasing/Decreasing Disk Capacity

• Snapshot Pattern --- Data Backups

• Stamp Pattern --- Server Replication

I am guessing this is a future...

Scale Up Pattern Dynamic Server Spec Up/Down

Benefits:
 Eliminates the need for precise estimation of

server specifications at the time of system
design/development.

 Reduces opportunity costs due to system
stoppages and the inability to provide services to
customers caused by inadequate resources

 Enables reduction in waste, in terms of expenses

Cautions:
 Need time to adjust (30 seconds ~ several

minutes)
 The server specification is not limitless

Other:
 Can adjust the server periodically
 Suitable for the application which is hard to be

scale out

I am guessing this is a future...

Scale Out Pattern Dynamically Increasing the Number of Servers

Benefits:
 Provide service continuity
 Reduce cost
 Reduce the workload (automate the

scale)
 The limit is smaller than Scale Up

Pattern

Cautions:
 Cannot handle severe or rapid

variations in traffic
 States (HTTP session, SSL

processes, and the like) should be
controlled by dedicated server

Other:
 See State Sharing Pattern for

session administration

I am guessing this is a future...

Scheduled Scale Out Pattern
Increasing or Decreasing the Number of Servers Following a Schedule

Benefits:
 Use prediction to resolve the issue of severe or

rapid variations in traffic
 Reduces the cost because the instances number is

reduced when there is little traffic
 The limit is smaller than Scale Up Pattern

Cautions:
 Not work for un-predicted load increase/derease

Other:

I am guessing this is a future...

On-demand Disk Pattern Dynamically Increasing/Decreasing Disk Capacity

Benefits:
 No need to buy the storage which exceeds

your requirement
 Striping can improve the disk I/O

Cautions:
 Is charged by capacity instead of usage
 1TB capacity limit for single EBS, larger one

needs striping
 The amount of EBS is limited (10?)

Other:

I am guessing this is a future...

Snapshot Pattern Data Backups

Benefits:
 Automate the backup process
 High durability
 Backup both data and environment
 Easy to recover

Cautions:
 Maintain the logical consistency by

yourself (flush data, finish the
transaction)

Other:
 Spit EBS to be root and data

partitions can improve the backup
speed

I am guessing this is a future...

Stamp Pattern

Benefits:
 Automate the deployment
 Easy to share

Cautions:
 Need to recreate AMI if the

environment needs to be changed
(but we can use other way to
mitigate)

Other:
 See bootstrap pattern to provide

more flexibility

Server Replication

I am guessing this is a future...

Practice 1 - Use our own scaling server

• Compound scaling modes: Scale Out, Scale Up and

Scheduled Scale

• Support multiple ami types

• Support safe scaling down for long session

• Support hourly scaling

• Support reserved instance

I am guessing this is a future...

Practice 2 - Make EC2 instance stateless

• S3/SDB for configuration

• SDB/DynamoDB for NoSQL records & Key-Value data

• EBS for dependency & procedure data

• SQS for task dispatch

• Elasticache for high speed cache

• RDS for traditional relation data

I am guessing this is a future...

Practice 3 – Create our own load balancer

• Complex proxy logic supporting

• Bind the SSL certificate of our company

• Multiple instance types support

I am guessing this is a future...

Patterns for Processing Static Content

• Web Storage Pattern --- Use of High-Availability Internet Storage

• Direct Hosting Pattern --- Direct Hosting Using Internet Storage

• Private Distribution Pattern --- Data Delivery to Specified Users

• Cache Distribution Pattern --- Locating Data in a Location That Is

Physically Near to the User

• Rename Distribution Pattern --- Delivery Without Update Delay

I am guessing this is a future...

Web Storage Pattern Use of High-Availability Internet Storage

Benefits:
 High load support and limitless capacity
 High durability
 Since URL is issued for each content object, it

can be used for a broad range of purposes (file
sharing, state sharing, configuration sharing…)

Cautions:

Other:

Pe
rfo

rm
an

ce

Concurrent Access

Pe
rfo

rm
an

ce

Concurrent Access

I am guessing this is a future...

Direct Hosting Pattern Direct Hosting Using Internet Storage

Benefits:
 Increase the availability and durability of

the web system

Cautions:
 Hard to do user authentication
 Can’t run server side program in S3
 JavaScript issue

Other:
 Can still be used even in a dynamic site

(Such as blog)
 Can provide limited user access control

(signed URLs, bucket policy)
 900 billion objects, 700000 requests per

second (March 2012)

I am guessing this is a future...

Private Distribution Pattern Data Delivery to Specified Users

Benefits:
 Enables delivery of private content through

time-limited use by specified users only

Cautions:
 Must provide a validation system and a

server for issuing time-limited URLs
 Even if the user validation has not expired,

the term of effectiveness of the URL will
expire, preventing downloading

Other:
 Can use this pattern in combination with an

application validation system

I am guessing this is a future...

Cache Distribution Pattern
Locating Data in a Location That Is Physically Near to the
User

Benefits:
 Better experience in geographically

distant places
 Can distribute the file download

processes
 Can use an existing server as origin

server
 Can use S3 as an origin server

directly

Cautions:
 Be careful about the timeout issue of

cache

Other:

I am guessing this is a future...

Rename Distribution Pattern Delivery Without Update Delay

Benefits:
 Can deliver new content without waiting for the cache timeout

Cautions:
 This would be ineffective if the cache timeout for the base content itself were too long
 Old file will remain on the edge server until the cache timeout

Other:

I am guessing this is a future...

Practice 1 - Direct hosting

• Publish installer & patch

• Client side configuration

• Publish information

• Huge data accessing

https://s3.amazonaws.com/installer-bucket-name/installer/setup.exe

https://s3.amazonaws.com/configuration-bucket-name/configure.xml

https://s3.amazonaws.com/message-bucket-name/message.txt

https://s3.amazonaws.com/huge-data-bucket-name/somehugedata.data

I am guessing this is a future...

Practice 2 - Use S3 accessing log to collect metrics

• Distributed

• Stable

• Simple

• A little bit latency

6eb14f6a410a8f6a8b0405842cf4b7e77a8db7d160793d2482245bebafc9b070 bucket-for-tracking
[23/Oct/2013:08:11:04 +0000] 184.22.72.192 - 15B237D8C860633D REST.GET.OBJECT t.gif "GET /bucket-
for-tracking/t.gif?p1=xx&p2=xx&p3=xx&p4=ec2-184-124-219-1.us-west-
1.compute.amazonaws.com&un=xx&id=A2URKEKJCE2T HTTP/1.1" 200 - 807 807 162 161 "-" "-" -

I am guessing this is a future...

Practice 3 - Use S3 to collect logs

• Distributed

• Simple

• Stable

• High performance

I am guessing this is a future...

Practice 4 - Use S3 to store artifacts/scripts/binaries
for auto-deployment

• High performance

• Stable

• Cross domain accessing

I am guessing this is a future...

Patterns for Batch Processing

• Queuing Chain Pattern --- Loose-Coupling of Systems

• Priority Queue pattern --- Changing Priorities

• Job Observer Pattern --- Job Monitoring and Adding/Deleting Servers

• Scheduled Auto scaling Pattern --- Turning Batch Servers On and Off

Automatically

I am guessing this is a future...

Queuing Chain Pattern Loose-Coupling of Systems

Benefits:
 Asynchronous processing
 Loose coupling the system
 Easy to scale in job processing
 High reliability (not influenced by the

failure of EC2 instance and easy to
recover)

Cautions:
 The sequence of messages is not

completely guaranteed

Other:

I am guessing this is a future...

Priority Queue pattern Changing Priorities

Benefits:
 Asynchronous processing
 Loose coupling the system
 Easy to scale in job processing
 High reliability
 Provide the different performance and service for

different custom

Cautions:
 You need to allocate the job processing ability by

yourself

Other:

I am guessing this is a future...

Job Observer Pattern Job Monitoring and Adding/Deleting Servers

Benefits:
 Improving cost effectiveness
 Reduce the overall time for executing

jobs through parallel processing
 Robust to failure

Cautions:
 EC2 instance is charged hourly

Other:

I am guessing this is a future...

Scheduled Auto-scaling Pattern
Turning Batch Servers On and Off Automatically

Benefits:
 Reducing costs (no need to use

dedicated server to scale)

Cautions:
 Be careful of when to shutdown the

instance (leave instance itself to
shutdown)

Other:
 EC2 instance is charged hourly

I am guessing this is a future...

Practice 1

• Message transfer among servers and environments

• Cross domain accessing in CI/CD

• Decouple the components

I am guessing this is a future...

Patterns for High Availability

• Multi-Server Pattern --- Server Redundancy

• Multi-Datacenter Pattern --- Redundancy on the Data Center Level

• Floating IP Pattern --- Floating IP Address

• Deep Health Check Pattern --- System Health Check

I am guessing this is a future...

Multi-Server Pattern Server Redundancy

Benefits:
 More robust

Cautions:
 More cost
 The issue of sharing state
 Need to caution in using it as DB

server

Other:

I am guessing this is a future...

Multi-Datacenter Pattern Redundancy on the Data Center Level

Benefits:
 More robust in data center level

Cautions:
 DB synchronization and performance

Other:
 Need to pay for the communication

between AZs (US$0.01 per GB)

I am guessing this is a future...

Floating IP Pattern Floating IP Address

Benefits:
 Avoid the influence of TTL

Cautions:
 Need several seconds to take effect
 SSH may be influenced

Other:
 Can also use this in parallel with Server

Swapping Pattern to not only reassign EIP,
but to swap EBS as well

 Can also use ELB

I am guessing this is a future...

Deep Health Check Pattern System Health Check

Benefits:
 Check all the servers
 Easy to customize the error process

Cautions:
 Health check also contribute the traffic
 SPOF may take all the servers down

Other:
 DB Replication Pattern should be used in

parallel so the DB server does not become a
SPOF

I am guessing this is a future...

Practice 1 - Multiple data centers deployment

• Failure tolerance

• Mitigate latency

I am guessing this is a future...

Practice 2 - Leverage CloudWatch/SNS/S3 to monitor
the instances

• Use CloudWatch to set up alarm rule

• Use SNS for subscribe notification

• Upload result to S3 for later analysis

Thank You

