eBay Architecture
Scalability with Agility

Tony Ng
Director, Systems Architecture

October 2011
e o

d]\

About Me

e —
e eBay — Systems Architecture and Engineering
e Yahoo! — Social, Developer Platforms, YQL

e Sun Microsystems —J2EE, GlassFish, JSRs

e Author of books on J2EE, SOA

eBay Stats

e
e 97 million active users
* 62B Gross Merchandise Volume in 2010
e 200 million items for sale in 50,000 categories
e A cell phone is sold every 5 seconds in US
e An iPad sold every 2.2 minutes in US
e A pair of shoes sold every 9 seconds in US
e A passenger vehicle sold every 2 minutes

* A motorcycle sold every 6 minutes

http://www.ebayinc.com/factsheets

ehY

eBay Scale
e I .

e 9 Petabytes of data storage
e 10,000 application servers
e 44 million lines of code

e 2 billion pictures

e Atypical day
— 75B database calls
— 4B page views
— 250B search queries
— Billions of service calls
— Hundreds of millions of internal asynchronous events

ehY

History of Technology
e I

Architecture Maturity

Agility / TTM

Innovation Potential

Java
XSL
Layered
Horizontal Scale
Some APIs

Perl/C++

Inline HTML
Monolithic
Vertical Scale
Walled Garden

1995
1999
2001

2005

Java

V4 Components

Services
Internal Cloud
Platform

2009+

d)‘

eBay Scalable Architecture
—

e Partition everything
— Databases, application tier, search engine

e Stateless preference
— No session state in app tier

e Asynchronous processing
— Event streams, batch

 Manage failures
— Central application logging
— Mark downs

ehY

Next Challenges

e I

e To stay competitive, we need to deliver quality
features and innovations at accelerating paces

e Complexity as our codebase grows
e Improve developer productivity

e Enable faster time-to-market while maintaining site
stability

ehY

Scalability with Agility

e I

e Strategy 1: Automation with Cloud
e Strategy 2: Next Gen Service Orientation

e Strategy 3: Modularity

Automation with Cloud

Hardware Acquisition
e I [

8 Before

request order receive & deliver
{ servers, rack & wire
model, } Label (app)
—
______ Vvav Y ... Cseveral
" : weeks
2-3w '
repurpose
After
request order Receive deliver to request deliver
{servers, pre-racked cache {servers, :
model } Pre-wired model, app }
quarterly f
M M minutes

repurpose d) \

10

Improving Utilization

2000

1800

1600

1400

1200

1000 |

800

600

400 +

200

12:60/LT/TT
Z1:60/LT/TT
€60/LT/11
8T:60/9T/TT
6:60/9T/1T
0:60/9T/11
ST:60/ST/TT
9:60/ST/TT
12:60/¥T/11T
Z1:60/¥T/TT
€60/VT/11T
8T:60/€T/TT
6:60/€T/TT
0'60/€T/TT
ST:60/TT/1T
9:60/ZT/1T
1Z:60/TT/TT
Z1:60/TT/TT
€60/TT/TT
8T:60/0T/TT
6:60/0T/TT
0:60/0T/TT
ST1:60/60/TT
9:60/60/1T
12:60/80/TT
Z1:60/80/TT
€:60/80/11
8T:60/L0/1T
6:60/L0/1T
0:60/L0/1T
ST:60/90/TT
9:60/90/11
12:60/S0/1T
Z1:60/S0/TT
€:60/S0/11
8T:60/¥0/TT
6:60/¥0/1T
0:60/70/1T
ST:60/€0/TT
9:60/€0/1T
12:60/20/11
Z1:60/20/1T
€:60/20/11
8T:60/T0/TT
6:60/10/1T
0:60/10/TT

ehY

Number of servers required based on utilization for 8 pools

11

Infrastructure Virtualization

Application

Application I
|9 -4 kL

App

I'___-___-___-I

Global resource pool

Shared infrastructure

=

eBay Cloud

Automation

Self Service

Capacity Management

| |
| |
Portal [[
| | — >

=} Cloud Management Platform : :
| |
I |
l |

| Virualization

: , | Spare Capacily
| |
I |
| |
- — : pool :
| provisioning I

iIn minutes

Improved Time to Market
-

Architecture Decision

———
Private __Public

%

Infrastructure & Platform as a service

T e

Higher developer
productivity

Full application level
automation

Enables innovation \/
on new platforms Platform As A Service

Infrastructure Automated Life Cycle Management
level automation

\/ Front End, Search Back End, Generic Platform

Infrastructure As A Service
Automated Operations

Virtualized & Common Infrastructure

15

Model Driven Deployment Automation

LB

Server

Server

Expected

State

Reconciliation
Comparison

Orchestration

LB Pool
Server Server Server
D
Current

State

Desired configuration is
specified in the expected state
and persisted in CMS

Upon approval, the
orchestration will configure the
site to reflect the desired
configuration.

Updated site configuration is
discovered based on
detection of configuration
events

Reconciliation between the
expected and current state
allows to verify the proper
configuration.

On going validation allows the
detection of out of band
changes.

d)‘

16

Open Source Integration
e s——

laaS/PaaS API laaS/PaaS API

orchestrat Resource D'St:;bUte orchestrat Resource Dlst:;bute
ion Allocation ion Allocation
State State

ot Applicatio Access
AuthN/ Applicatio Access AuthN/

) Point
n Point AuthZ .
p—— Controller Controller Controller Controller

Compute Cluster Pool Compute Cluster Pool
Controller Controller Controller Controller Controller Controller
Mgt. Mat. Mat. ing

Network Image/Pkg Software Solution
Prov Repo Dist. (openstack / Cloudstack)

ehY

Application Architecture

Ongoing
“Cloud
Friendly”

Future
‘Cloud

ready’ ebyY

Next Gen Service Orientation

Services @ eBay

e I
* |It's a journey !

 History

One of the first to expose APls /Services

In early 2007, embarked on service orienting our entire
ecommerce platform, whether the functionality is internal
or external

Support REST style as well as SOA style
Have close to 300 services now and more on the way

Early adopter of SOA governance automation (Discovery
vs. control)

20

Architecture Vision

Xy Py
- — "‘ﬁd’&j

S SIS E D
ke 5

Ap lication Platform Services

BB Wiy 5@ 28 2P

Login Identity Catalog Search List Prlcmg Offer ADs Messages Cart CouponsPayment Shipping CS
Technology Platform

@ @-;-Lw- ‘ % a

App Data Access Dev Tools Presenta Messaging Cloud
—Stack Cayer

Operatlons Infrastructure Layer

4 B X

e
il l

Power Data Center Hardware Network Database Tools

§< W

Operations

ehY

Challenges

e

 Multiple data formats
* Latency

e Service consumer productivity

Challenge 1: Multiple Data Formats

e

e Mix of user preferences
— SOAP
— XML / HTTP
— JSON
— Name-Value Pair (NV)

e Service developers don’t want to write extra code to do
conversions; too much maintenance impact

e Key observations:
— Users ask for whatever data format they want.

— Anything you can express in XML, you can express in other
formats

— Complete mapping from XML structures to NV and JSON

: €l

Solution: Pluggable Data Formats Using JAXB
e

I

XML | |

I

JSON |

I

NV

Other L=
formats

24

Uniform interface

Pluggable formats

wet
.
.
Piiae
.t
.

v Asingle
3 LML gl
8
GEJ % IJ;\](\)/N Passedto
g- % Iothers ... objects
of Lo
SOA frameéwork

v

No intermediate format, \
Avoids extra conversion d)

Challenge 2: Latency

e I

e For large datasets, there can be nasty latencies.

—Not fixed by compressing or using Fast Infoset

2MB structured response payload

0 Wire Time (msec)

ehY
25

Solution: Binary Formats

e
* Evaluated binary formats:

* Google Protocol Buffers, Avro, Thrift
* Numbers look promising (serialization, deserialization)

* New challenges with these:

e Each has its own schema (type definition language) to
model types and messages

* Each has its own code generation for language bindings

* NOT directly compatible with JAXB beans

* eBay SOA platform uses WSDL/XML Schema (XSD) data
modeling, and JAXB language bindings

26

Compare Popular Binary Formats

Own IDL/schema

Sequence numbers for each
element

Compact binary representation on
the wire

Most XML schema elements are
mappable to equivalents, except
polymorphic constructs

Versioning is similar to XML, a bit
more complex in implementing due
to sequence numbers

JSON based Schema

Schema prepended to the message
on the wire

Compact binary representation on
the wire

Most XML schema elements are
mappable to equivalent, except
polymorphic constructs

Versioning is easier

Self-
Complex Unions References
Types (Choice Type) (Trees) Enums
Protobuf Yes No Yes Yes
Yes (with
Avro Yes Yes workaround) Yes
Thrift Yes No No No
XML Yes Yes Yes Yes

* Own IDL/schema

+ Sequence numbers for each
element

+ Compact binary representation on
the wire

* Most XML schema elements are
mappable to equivalents, except
polymorphic constructs

* Versioning is similar to XML, a bit
more complex in implementing due
to sequence numbers

Inheritance

/

Polymorph

ism Inline Attachment
No No

No No

No No

Yes Yes (MIME-TYPE)

Comparison of Data Formats

——
Response data: 50 items x 75 fields (about 8000 objects)

200
180
160
140
120
100
80
60
40
20

28

JSON

XML

Fast Infoset

Protobuf

Size (KB)
Wire time (msec)

Latency Improvements
e [

200
180
160
140
120
100
80 Wire Time(msec)
60
40
20

XML XMLno XMLflat PB no PB flat
poly poly

ehY
29

Challenge 3: Service Consumer Productivity
B —

* Large, complex requests and responses

e Get exactly what they want in data returned from services

e Lack of consistency in service interface conventions and data
access patterns

e Real client applications make calls to multiple services at a
time
— Serial calls increase latency. Managing parallel calls is complex

* Impedance mismatch between service interface and client
needs

— Too much data is returned
— 1+ n calls to get detailed data

.,
o b

Sneak Preview: g |
— .

* New technology from eBay

* Plan to open source soon

e SQL + JSON based scripting language for aggregation
and orchestration of service calls

e Filtering and projections of responses

e Async orchestration engine

— Automatic parallelization, fork / join

What gl.io Enables

e

e Create consumer-controlled interfaces
— fix/patch APIs on the fly

* Filter and project responses
— use a declarative language

* Bring in consistency
— offer RESTful shims with simpler syntax

e Aggregate multiple APIs
— such as batching

e Orchestrate requests
— without worrying about async forks and joins

32

ql.io Examples
e e

e Simple Select

— select * from ebay.finding.items where keywords=‘ipad’

 Field Projections

— select title, itemld from ebay.finding.items where
keywords=‘ipad’

e Sub-Select

— select e.Title, e.ltemID from ebay.item.details as e where
e.itemld in (select itemld from ebay.finding.items where
keywords = ‘ipad’)

ehY
33

ql.io Batch Example
e I e

itemld = select itemld from ebay.finding.items where keywords = 'ferrari' limit 1;
item = select * from ebay.shopping.singleitem where itemld = '{itemld}’;
user = select * from ebay.shopping.userprofile where userld = 'sallamar’;
tradingltem = select * from ebay.trading.getitem where itemld = '{itemld}’;
bestOffers = select * from ebay.trading.bestoffers where itemld = '{itemld}’;
bidders = select * from ebay.trading.getallbidders where itemld = '{itemld}’;
return {

"user" : "{user}",

"item" : "{item}”,

"tradingltem" : "{tradingltem}",

"bidders" : "{bidders}",

"bestOffers" : "{bestOffers}"

ehY
34

ql.io Demo
e I

Modularity

Key modularity concepts for software

e I —
o Granularity
¢ B u I I d I n g b I OC kS Services Médules Packages

e Re-use

NN

e Granularity — —

—

e Dependencies

Architecture All the Way Down

OO0
| | BRBERE |

Unit of Deployment Unit of State

e Encapsulation

Unit of Composition

¢ CO m pOS |t| on Unit of Inter-Process Reuse

Unit of Intra-Process Reuse

* Versioning

Source: http://techdistrict.kirkk.com/2010/04/22/granularity-architectures-nemesis/
Author: Kirk Knoernschild

ehY
37

Challenges for Large Enterprises
e |

e Some stats on the eBay code base
— ~ 44 million of lines of code and growing
— Hundreds of thousands of classes

— Tens of thousands of packages
—~ 4,000+ jars

 We have too many dependencies and tight coupling
in our code
— Everyone sees everyone else

— Everyone affects everyone else

38 a ‘

Challenges for Large Enterprises
e I

* Developer productivity/agility suffers as the knowledge goes down
— Changes ripple throughout the system
— Fallouts from changes/features are difficult to resolve

— Developers slow down and become risk averse

knowledge complexity

code size ﬁ\)
39

Our Goals with Modularity Efforts

e
e Tame complexity

e Organize our code base in loose coupling fashion
— Coarse-grained modules: number matters!
— Declarative coupling contract
— Ability to hide internals

e Establish clear code ownership, boundaries and
dependencies

e Allow different components (and teams) evolve at
different speeds

* Increase development agility

40

Modularity Solutions Evaluation
e e

e Evaluated OSGi, Maven, Jigsaw and JBoss Module

e Criteria include:
— Modularity enforcement
— End-to-end development
— Migration concerns
— Adoption
— Maturity

e Selected OSGi

OSGi @ eBay

e -
e Modularize platform into OSGi bundles with well-defined imports and
exports

e Challenges: split packages, Classloader contructs

e Source to binary dependencies

e Refresh end-to-end development life cycle

pull/push

Command line
build (CI)

publish/consume

Deployment
packaging deploy

- ehY

consume

Lessons Learned
— e

OSGi learning curve is still fairly steep
— large group of developers with varying skill levels

End-to-end development lifecycle

— Tools may not work well together. Leverage OSGi tools like bnd

* Conversion/migration of existing code base
— Not starting from vacuum
— Cost to rewrite / refactor code

— We cannot afford disruption to business meanwhile: “change parts
while the car is running”

e Semantic versioning adoption is important

43

ehY

Overall Summary
.

e Strategies
— Deployment Agility: Automation with Cloud
— Development Agility: Next gen Service Orientation
— Taming complexity: Modularity

e Systems quality & scalable architecture as key
foundation

e Complexity management and developer productivity
becomes increasingly important

e Strike balance between agility and stability

eBay Open Source

} o eBay Open Source
/ yop

¢
N\

e I

45

« eBay has been a strong supporter of Open
Source model and community

« Check out http://eBayOpenSource.org

Mission is to open source some of the best of breed
technologies that were developed originally within eBay
Inc.

Under a liberal open source license.

These projects are generic technology projects and
several years of development effort has gone into them
to mature them.

VJET ql.

(Coming soon)

ehY

